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a Projective Structure?
William M. Goldman

The theory of locally homogeneous geometric
structures on manifolds is a rich playground of
examples on the border of topology and geometry.
While geometry concerns quantitative relation-
ships between collections of points, topology
concerns the loose qualitative organization of
points. Given a geometry (such as Euclidean ge-
ometry) and a manifold with some topology (such
as the round 2-sphere), how many ways can one
put the geometry, at least locally, on the mani-
fold? The familiar fact that no metrically accurate
world atlas exists is just the fact that the sphere
admits no Euclidean geometry. However, the wide
variety of geometries (homogeneous spaces of Lie
groups) and manifolds leads to a fascinating array
of questions.

Here is a precise definition. Consider a homoge-
neous space X with a transitive Lie group G of dif-
feomorphisms. In the spirit of Felix Klein’s 1872 Er-
langen program, X admits a geometry defined by
the symmetrygroupG.

Klein simply defined the “geometry” to be all the
objectsonX togetherwith theG-invariant relations
between them.

So a Euclidean structure on a manifold is sim-
ply a system of Euclidean coordinates related by
isometries on overlapping coordinate patches.
Such a structure defines a Riemannian metric local-
ly isometric to Euclidean space (and hence having
zero curvature). In fact this structure is equivalent
toa flatRiemannianmetric.

A projective structure on a manifoldM is a sys-
tem of local coordinates modeled on a projective
space P so that on any two overlapping coordinate
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patches, the change of coordinates is locally a

projective transformation of P. Recall that a pro-

jective space is the n-dimensional space P(V) of all

1-dimensional linear subspaces of a vector spaceV

of dimensionn+1.

A collineation (or projective transformation) of

P(V) is the map induced on projective space by a

linear transformation of V . Projective geometry

(in the spirit of Felix Klein’s Erlangen program)

is the study of objects on projective space P in-

variant under the collineation group Aut(P) of P.

For example, lines, hyperplanes, conics, quadrics,

and cross-ratio are all meaningful concepts in

projective geometry. On a manifold with a projec-

tive structure there is a local projective geometry

that, at least locally, agrees with the geometry of

the model space P. Projective structures arise in

many areas of mathematics, including differen-

tial geometry,mathematical physics, topology, and

analysis.

This definition is what may also be called a flat

projective structure, since the coordinate changes

are locally constant maps into the Lie group of

collineations of P. More general projective struc-

tures, defined as Cartan connections modelled

on projective space, can be defined, although we

do not discuss them here. The analogous Cartan

connections for Euclidean geometry are just Rie-

mannian metrics, where the Euclidean geometry

is defined infinitesimally (on each tangent space).

We are interested in structures where the geometry

is defined locally, and this is detected by the van-

ishing of a certain curvature tensor. See Sharpe [3]

for an excellent treatment of Cartan connections,

includinggeneralprojectiveconnections.

Coordinate atlases may be a bit unwieldy and

can be replaced by a developing map dev, which is
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defined on the universal covering M̃ into the mod-
el space X and which globalizes the coordinate
charts.

One simply begins with one coordinate chart

and analytically continues it over all of M̃ (the
action of G is analytic). Since the analytic con-
tinuation may depend on the path (or chain of
overlapping coordinate patches), dev is defined
only on a covering space—a multi-valued function
in nineteenth-century parlance. The coordinate
changes globalize to a holonomy representation
π1(M) -→ G with respect to which the developing
mapdev is equivariant.

Acomplex-projective structureoraCP1-structure
is a structure locally modelled on the Riemann
sphere CP1, with coordinate changes restrictions
of complex linear fractional transformation. Since
projective transformations are analytic, every
CP1-structure determines an underlying complex
structure. For n = 1, these structures were studied
in the nineteenth century in relation to Schwarzian
differentialequationsandtheirmonodromy.

A Schwarzian differential equation on a domain
Ω ∈ CP1 is given by

(1) w ′′(z)+
1

2
q(z)w(z) = 0

where Ω
q
-→ C is a holomorphic function. In a

neighborhood of z0 ∈ Ω, the solutions form a
two-dimensional complex vector space, and one
chooses a basis w1(z),w2(z) of solutions. Any
other basis is related by a linear transformation.
Analyticcontinuationdefinesaholomorphicmap

(w̃1, w̃2) : Ω̃ -→ C
2

on the universal covering Ω̃ -→ Ω, such that the
deck transformations are realized by linear trans-
formationsofC2.Thecorrespondingquotient

φ̃ : M̃ -→ CP
1

z 7 -→ w̃1(z)/w̃2(z)

is a developing map for a projective structure on
Ω.

More generally, let Σ be a Riemann surface and
regardq(z)as a holomorphic quadratic differential
on Σ—the holomorphic tensor fieldΦ = q(z)dz2 is
a section of the tensor product square of the canon-
ical line bundle (the holomorphic cotangent bun-
dle) of Σ. The solution w(z) is a section of another
holomorphic line bundle over Σ, and the develop-
ing map φ relates to the quadratic differential by
the Schwarzian derivative:

φ,z :=

(

φ′′(z)

φ′(z)

)′

−
1

2

(

φ′′(z)

φ′(z)

)2

= q(z),

which is equivalent toφ being the projective solu-
tion to (1). By standard existence and uniqueness of
solutions to systems of (holomorphic) differential
equations, any holomorphic developing maparises
fromaholomorphicquadraticdifferentialΦ.

Figure 1. A genus two surface M can be cut
along four curves to produce an octagon.
The sides of the octagon identify in pairs
to reconstruct M . The octagon defines a
fundamental domain for the fundamental
group ofM acting on the universal covering

M̃ .

Figure 2. The fundamental octagon is re-
alized geometrically by a regular octagon
in the Poincaré disc with all interior an-
gles π/4. The identifications of the sides
are realized by unique isometries of the
Poincaré disc, generating the fundamental
group, and defining a Fuchsian representa-

tion of π1(M) -→ PSL(2,C). The fundamental
domains in M̃ tile M̃ , and the resulting de-
veloping map takes this topological tiling
to a tiling of the Poincaré disc by regular
octagons.

Conversely, every holomorphic quadratic differ-

entialdeterminesa developingmapφ, unique upto

compositionwithaMöbius transformation.
Thus a CP1-structure on a surface M corre-

sponds to a pair (Σ,Φ) where Σ is a Riemann

surface homeomorphic to M and Φ is a holomor-
phic quadratic differential. The marked complex

structures (that is, the Σ’s) form a complex mani-

fold, Teichmüller space, homeomorphic to C3g−3

January 2007 Notices of the AMS 31



(where g is the genus of M) and, given Σ, the qua-

dratic differentials form a complex vector space

≅ C3g−3. Thus all the CP1-structures form a space

homeomorphic to C6g−6. Furthermore, without

even “seeing” one structure, one understands the

whole moduli space globally as a cell of dimension

12g−12.

Figure 3. A small deformation of this
developing map maps M̃ to a domain in

CP
1 that has fractal boundary. The
corresponding representation is

quasi-Fuchsian, that is, topologically
conjugate to the original Fuchsian

representation. The developing map
remains an embedding, and the holonomy

representation embeds π1(M) onto a
discrete subgroup of PSL(2,C). In contrast
to the Fuchsian uniformization, where the

developing image is a round disc, now
the developing image has nonrectifiable

boundary.

The individual structures are rich and fascinat-

ing, however. One may start with the Fuchsian uni-

formization, that is, the representation of the Rie-

mann surfaceM as the quotient of a geometric disc

by a Fuchsian group and deform it along a path of

projective structures. (See Figure 1.)

In another direction, the uniformization ofM as

the quotient of a domain by a Schottky group gives

another projective structure whose developing

map is not injective although the holonomy group

is discrete. See [2] for more information and other

examplesofKleiniangroups.

For RP2-structures, which are structures mod-

elled on the real projective plane, similar results

are known.

For compact surfaces of genus g > 1, the defor-

mationspace iscompletelyknowntobeacountable

disjoint union of open cells of dimension 16(g − 1)

[1]. One component consists of structures that are

quotients of convex domains in RP2. However, it is

not immediately clear how these structures relate

to Riemann surfaces. Through a long development

of the theory of hyperbolic affine spheres, culmi-

nating with work of Labourie and Loftin, this space

naturally identifies with a holomorphic vector bun-

dle over Teichmüller space whose fiber over a point

〈M〉 is the space of holomorphic cubic differentials

on M . An example of such a projectively symmet-

rical convex domain is depicted on the cover of the

November2002issueoftheNotices (SeeFigure5).

Figure 4. As the deformation parameter
increases, the images of the fundamental

octagons eventually meet and overlap
each other. The developing map ceases to

be injective, and in fact winds all over
CP1. Typically the image of the holonomy

representation is dense in PSL(2,C).

Figure 5.
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Although all eight of Thurston’s 3-dimensional
geometries [4] can be given RP3-structures, not
every closed 3-manifold admits such a struc-
ture (for example, Daryl Cooper has proved that
RP3#RP3 admits no RP3-structure). The Poincaré
conjecture for RP3-manifolds follows easily from
the existence of the developing map. However,
finding an RP3-structure on a connected sum
seems particularly difficult. Yet recent examples
of Benoist and Kapovich indicate a rich abundance
of projective structures in dimensions three and
higher.
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