WHAT T§...

How much of the algebraic topology of a con-
nected finite simplicial complex X is captured by
its one-dimensional cohomology? Specifically, how
much do you know about X when you know
HY(X,Z) alone?

For a (nearly tautological) answer, put GX =
the compact, connected abelian Lie group
(i.e., product of circles) which is the Pontrjagin
dual of the free abelian group HY(X,Z). Now
HYGX,Z) is canonically isomorphic to HY(X,Z) =
Hom(GX,R/Z) and there is a canonical homotopy
class of mappings

X — GX

that induces the identity mapping on H!.

The answer: we know whatever information can
be read off from GX and are ignorant of anything
that gets lost in the projection X — GX.

The theory of Eilenberg-Mac Lane spaces offers
us a somewhat analogous analysis of what we know
and don’t know about X, when we equip ourselves
with n-dimensional cohomology, for any specific
n, with specific coefficients.

If we repeat our rhetorical question in the con-
text of algebraic geometry, where the structure is
somewhat richer, can we hope for a similar dis-
cussion?

In algebraic topology, the standard cohomol-
ogy functor is uniquely characterized by the basic
Eilenberg-Steenrod axioms in terms of a simple
normalization (the value of the functor on a single
point). In contrast, in algebraic geometry we have
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a more intricate setup to deal with: for one thing,
we don’t even have a cohomology theory with co-
efficients in Z for varieties over a field k unless we
provide a homomorphism k — C, so that we can
form the topological space of complex points on
our variety and compute the cohomology groups
of that topological space. One perplexity here is
that this cohomology construction may (and in
general, does!) depend upon the imbedding k — C.
And, of course, there are fields k not admitting
embeddings into C.

In compensation, there is a profusion of differ-
ent cohomology functors beyond the ones coming
from classical algebraic topology via imbeddings
k — C. Some of these theories come dependent
upon the specific ground field k, with their specific
rings of coefficients, and with global requirements
on the varieties for which they are defined. Some
come with their own particular attendant structure
and with their relations to all the other cohomol-
ogy theories: Hodge cohomology, algebraic de Rham
cohomology, crystalline cohomology, the étale £ -adic
cohomology theories for each prime number £, ...

Is there some systematic and natural way of
encapsulating all this information about the
n-dimensional cohomology of projective smooth
varieties V (even just for n=1)? (The tradition
has been to simplify things a bit by tensoring the
cohomology theories in question with Q before
asking this question.)

If you restrict your attention only to one-
dimensional cohomology, things seem promising.
For example, recall the construction that associates
to any smooth projective curve C over a field k its
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jacobian J(C), which is an abelian variety over k of
dimension equal to the genus of C. The group of
points of J(C) over an algebraic closure of k con-
sists in the quotient group of divisors of degree zero
modulo divisors of zeroes-and-poles of rational
functions on C. The classical construction gives us
a clean functor, C —~ J(C), from the subcategory of
such curves to the additive category of abelian
varieties over k, preserving all 1-dimensional
cohomological information. This is somewhat rem-
iniscent of the passage X — GX described earlier,
except for the fact that the target, J(C), is an abelian
variety over k; it has a good deal more structure
than the product of circles GX.

Generalizing this, there is a beautiful construc-
tion, due essentially to Albanese, that associates to
an algebraic variety V of arbitrary dimension an
abelian variety A(V) over k. We might hope for
something similar for higher dimensional coho-
mology, seeking some sort of algebraic geometric
version of Eilenberg-Mac Lane spaces to replace the
abelian varieties (up to isogeny) that do the trick
for dimension 1. But it’s not that simple.

A strategy to encapsulate all the different co-
homology theories in algebraic geometry was
formulated initially by Alexandre Grothendieck,
who is responsible for setting up much of this
marvelous cohomological machinery in the first
place. Grothendieck sought a single theory that is
cohomological in nature that acts as a gateway be-
tween algebraic geometry and the assortment of spe-
cial cohomological theories, such as the ones listed
above—that acts as the motive behind all this
cohomological apparatus. Here is his description:

Contrary to what occurs in ordinary
topology, one finds oneself confronting
a disconcerting abundance of different
cohomological theories. One has the
distinct impression (but in a sense that
remains vague) that each of these the-
ories “amount to the same thing”, that
they “give the same results”. In order to
express this intuition, of the kinship of
these different cohomological theories,
I formulated the notion of “motive” as-
sociated to an algebraic variety. By this
term, I want to suggest that it is the
“common motive” (or “common rea-
son”) behind this multitude of coho-
mological invariants attached to an
algebraic variety, or indeed, behind all
cohomological invariants that are a
priori possible. [G]

Grothendieck goes on, in that text, [G], to work
out a musical analogy, referring to the motivic co-
homology he desires to set up as the basic motif
from which each particular cohomology theory
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draws its thematic material, playing it in a key,
major or minor, and a tempo all its own.

Think of axiomatizing a cohomology theory! in
algebraic geometry over a field k as a contravari-
ant functor V — H(V) from the category of smooth
projective varieties over k to a graded abelian cat-
egory H (where sets of morphisms between objects
of H form Q-vector spaces) with all the properties
we expect. For example, we would want any cor-
respondence V — W (i.e., algebraic cycle in the
product V x W that can be viewed as the “graph”
of a multivalued algebraic mapping) to induce,
contravariantly, a mapping on cohomology. More-
over, we want our category HH to be an adequate
receptacle for our cohomology theory, which should
enjoy the standard perquisites of the usual coho-
mology theories, such as the Kiinneth formula and
Poincaré duality.

Grothendieck’s initial attempt to fashion a uni-
versal cohomology theory is elegant and cleanly
straightforward. Start with the category of projec-
tive varieties and modify it in a formal, and most
economical, manner to produce a category—one
hopes that it is abelian—that has all the cohomo-
logical properties one wants. There are three steps
to this. First, change the morphisms of the category
of projective varieties, replacing them by equiva-
lence classes of Q-correspondences, where the
equivalence relation is chosen to be the coarsest
one which, by the axioms of cohomology theory,
can be seen to induce well-defined homomorphisms
on cohomology. Second, augment the objects of the
category to make it look more like an abelian cat-
egory (formally deeming, for example, kernels and
images of projectors as new objects of the category)
and a category in which, for example, the Kiinneth
formula can be formulated. Third, let { be the op-
posite category of what was constructed in step two.
The natural contravariant functor from the category
of smooth projective varieties to H will, by its de-
sign, factor through any particular cohomology
theory and therefore might be considered to be our
“theory of motives”.

The first problem with any such construction is
its nonexplicit nature. Standing in the way of any
explicit understanding of the category of motives
is a constellation of conjectures that offer coho-
mological criteria for existence of correspondences
and, more generally, for the existence of algebraic
cycles (e.g., versions of Hodge conjectures over C
and/or conjectures of Tate over finite fields). Any
concrete realization of the projected theory of mo-
tives—even in some limited context—seems to bear
directly upon these standard conjectures, and vice
versa.

1 Compare the notions of a geometric cohomology theory
in [M] and the slightly more restricted version of this,
called a Weil cohomology theory, in [K].
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The dream, then, is of getting a fairly usable de-
scription of the universal cohomological functor,

V—HV) € H,

with HH a very concretely described category. At
its best, we might hope for a theory that carries
forward the successes of the classical theory of
1-dimensional cohomology as embodied in the
theory of the jacobian of curves, and as concretized
by the theory of abelian varieties, to treat coho-
mology of all dimensions. Equally important,
just as in the theory of group representations
where the irreducible representations play a primal
role and have their own “logic”, we might hope for
a similar denouement here and study direct sum
decompositions in this category of motives, relat-
ing H(V) to irreducible motives, representing
cohomological pieces of algebraic varieties, perhaps
isolatable by correspondences, each of which might
be analyzed separately.

Recently, the work of Vladimir Voevodsky and
his collaborators have provided us with a very in-
teresting candidate-category of motives: a cate-
gory (of sheaves relative to an extraordinarily fine
Grothendieck-style topology on the category of
schemes) which in some intuitive sense “softens
algebraic geometry” so as to allow for a good
notion of homotopy in an algebro-geometric
setup and is sufficiently directly connected to con-
crete algebraic geometry to have already yielded
some extraordinary applications.

The quest for a full theory of motives is a potent
driving force in complex analysis, algebraic geom-
etry, automorphic representation theory, the study
of L functions, and arithmetic. It will continue to
be so throughout the current century.
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