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a Minimal Model?
János Kollár

Roughly speaking, a compact complex manifoldM
is a minimal model if the underlying spaceM is the
“best match” to the meromorphic function theory
ofM . To illustrate what a “best match” is, consider
a parallel example from the holomorphic function
theoryofC2.

By Hartogs’ theorem, every holomorphic func-
tion on the spherical shell r 2

1 < |x|2 + |y|2 < r 2
2

extends to the ball |x|2 + |y|2 < r 2
2 . Thus it does

not make much sense to study holomorphic func-
tion theory on 2–dimensional spherical shells. By
contrast, an open ball turns out to be an optimal
domainforfunctiontheory.

The precise notion of optimal domain leads to
Stein manifolds. These are complex manifolds U
satisfyingthefollowingtwoproperties:

Point separation: For any two points p ≠ q ∈ U
there is a holomorphic function f on U such that
f (p) ≠ f (q).

Maximality of domain: Given any topological
space T ⊃ U containing U as an open subset, for
any boundary point r ∈ ∂U there is a holomorphic
function f on U such that limp→r f (p) does not
exist.

Minimal models arise when we consider anal-
ogous questions for compact complex manifolds.
The maximum principle implies that on a compact
complex manifold every holomorphic function is
constant; thus the theory of global holomorphic
functions is not interesting. On the other hand, a
compact complex manifold may well have many
interesting meromorphic functions, that is, func-
tions that can locally be written as the quotient of
two holomorphic functions. At a point the value

János Kollár is a professor of mathematics at Prince-

ton University. His email address is kollar@math.

princeton.edu.

of a meromorphic function f can be finite, infinite,

or undefined. For instance x/y is undefined at

the origin and has value ∞ at the points (x,0) for

x ≠ 0. The set of points where f is undefined has

(complex) codimension 2 (or, very rarely, is empty).

This makes it hard to control what happens in codi-

mensions≥ 2.The guidingprinciple indealingwith

meromorphic functions is: take care of codimen-

sion 1 and hope that the higher codimensions do

notcauseextraproblems.

Meromorphic functions onM form a fieldC(M),

called the function field ofM . So, following the ex-

ample of Stein domains, we ask: How tight is the

connectionbetweenM andC(M)?

In dimension 1, that is, whenM is a compact Rie-

mannsurface, thecorrespondenceisperfect:M and

C(M)determineeachother.

The situation is more complicated in higher

dimensions, so let us start with the first condition

(withsomeattentiontoundefinedvalues).

Point separation: For any two points p ≠ q ∈
M and finite subset R ⊂ M , there is a meromor-

phic function f onM such that f (p) ≠ f (q) and f is

definedatallpointsofR.

By a combination of works of Chevalley, Chow,

and Kleiman, such anM is algebraic. That is, there

is anembeddingofM intosome complex projective

space CPN whose image is defined by polynomial

equations and every meromorphic function onM is

rational, that is, globally a quotient of two polyno-

mials.

In the algebraic case, the relationship between

M and C(M) is pretty strong. Assume that we have

M1 ⊂ CPr with coordinates (x0 : · · · : xr), M2 ⊂
CPs with coordinates (y0 : · · · : ys), and an iso-

morphismψ : C(M1) ≅ C(M2). Then there are ra-

tional functions φ0, . . . ,φr on M2 such that (y0 :
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· · · : ys) ֏ (φ0 : · · · : φr) defines a rational map
Φ :M2 99K M1 andψ is inducedbypullingbackfunc-
tions by Φ. Similarly, ψ−1 leads to the inverse Φ−1.
Suchaninvertiblerationalmapiscalledbirational.

Amapwithaninverse isusuallyanisomorphism,
but this fails here, since Φ and Φ−1 are not every-
where defined. To get a typical example, let Q2 ⊂
CP3 be the quadric surface given by the equation
x2+y2+z2 = t2. (Youcanthinkof itas thecomplex-
ified sphere.) Letπ : (x : y : z : t) 99K (x : y : t − z)
be the projection from the north pole (0 : 0 : 1 : 1)
to the equatorial plane (z = 0). Its inverse π−1 is
givenby

(x : y : t) 99K (2xt : 2yt : x2+y2− t2 : x2+y2+ t2).
These maps show that the meromorphic function
theory of Q2 is the same as that ofCP2. On the other
hand, Q2 and CP2 are quite different as manifolds.
For instance,π contracts the lines (s : ±

√
−1s : 1 :

1) to the points (1 : ±
√
−1 : 0), and π−1 contracts

the line at infinity (t = 0) to the point (0 : 0 : 1 : 1).
NeitherQ2 norCP2 issimplerthantheother.

We say that a birational mapΦ : M1 99K M2 con-
tracts a codimension 1 subsetD ⊂ M1 ifΦ(D) ⊂M2

has codimension ≥ 2. Φ is called a contraction if it
contracts some codimension 1 subset butΦ−1 does
notcontractany.

The simplest examplesof contractions are blow-
downs. LetZ ⊂M be a submanifoldofcodimension
≥ 2, and let EZ be the set of all normal directions to
Z . For eachp ∈ Z the normal directions atp form a
CPd−1 where d = dimM − dimZ . Thus the projec-
tionπZ : EZ → Z is aCPd−1-bundle, and so dimEZ =
dimM − 1. It turns out that BZM := EZ ∪ (M \ Z)
isnaturallya compactcomplex manifold, called the
blow-up of Z ⊂ M . The projection on EZ and the
identity onM \ Z glue together to a birational map
π : BZM → M , called a blow-down. It collapses the
CPd−1-bundle EZ to Z . Note that π−1(Z) = EZ has
codimension1, thusπ is a contraction.Asa firstap-
proximation, one can think of any contraction as a
compositeofblow-downs.

Byblowinguprepeatedly, startingwithanyMwe
can create more and more complicated manifolds
with the same function field. Thus here a maximal
domain does not exist, but one can look for a mini-
malone.

Minimality of domain: M is a minimal model if
every birational map Φ : M1 99K M is either a con-
traction or an isomorphism outside codimension
≥ 2 subsets. We also say thatM is a minimal model
ofanysuchM1.

In the first case M is simpler than M1, at least
in codimension 1. In the second caseM is about as
complicatedasM1.

The map π : Q2
99K CP2 shows that neither Q2

nor CP2 is a minimal model. In fact, no manifold
birational to CP1 × Y has a minimal model. More
generally, we exclude all n-folds X that are unir-
uled, that is, for which there is a meromorphic map

CP1 × Y 99K X with dense image for some (n − 1)-
fold Y . We have other methods to study these; see
[2].

Castelnuovo and Enriques proved in 1901 that
every smooth, compact, complex algebraic surface
S that is not uniruled has a unique minimal model
Smin. In the past twenty-five years a lot of effort in
algebraic geometry has gone into generalizing this
resulttohigherdimensions.

(Minimal model conjecture of Mori-Reid). Let M
be a compact, smooth algebraic n-fold that is not
uniruled. Then

(1) M has a minimal model Mmin, and
(2) Mmin has a Kähler metric whose Ricci cur-

vature is ≤ 0.

Two caveats are in order. First, we must allow
Mmin to have certain mild (so called terminal) sin-
gularities. Algebraic geometers learned to live with
these singularities, though their differential geom-
etry is less understood. Second, minimal models
are not unique, but birational maps between two
minimal models are isomorphisms outside codi-
mension≥ 2 subsets. In dimension 2 such a map is
an isomorphism, but in higher dimensions it can be
afliporaflop [1].

In dimension 3 the first part is a theorem, due
mainlytoMori. Forageneral introduction,see [3]. In
higherdimensions, formanifoldsof “general type”,
the first part is settled by recent work of Hacon,
McKernan, and Siu, and the second part by Eyssi-
dieux, Guedj, and Zeriahi, generalizing the work of
AubinandYauonMonge-Ampèreequations.

In applications, part (2) of the conjecture is espe-
cially useful. Besides having the simplest codimen-
sion 1 geometry, we have very strong global differ-
entialgeometricpropertiesaswell.

Algebraic geometers usually consider a weaker
variant, using the canonical class KM , which is de-
finedasthenegativeof thefirstChernclassc1(M) ∈
H2(M,Q).

(2′) The canonical class of Mmin is ≥ 0; that is,
it has nonnegative cap product with any
algebraic curve C ⊂ M . Equivalently, the
integral of the Ricci curvature ofM on C is
nonpositive.

This is known in dimension 3 and for manifolds
ofgeneraltypeinanydimension.
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