WHAT |§..

a Mihimal Model?

Roughly speaking, a compact complex manifold M
is aminimal model if the underlying space M is the
“best match” to the meromorphic function theory
of M. Toillustrate what a “best match” is, consider
a parallel example from the holomorphic function
theory of C2.

By Hartogs’ theorem, every holomorphic func-
tion on the spherical shell ¥ < [x|> + |y|? < 1}
extends to the ball [x|2 + |y|2 < r#. Thus it does
not make much sense to study holomorphic func-
tion theory on 2-dimensional spherical shells. By
contrast, an open ball turns out to be an optimal
domainfor function theory.

The precise notion of optimal domain leads to
Stein manifolds. These are complex manifolds U
satisfying the following two properties:

Point separation: For any two pointsp = g € U
there is a holomorphic function f on U such that
f(p) #f(q).

Maximality of domain: Given any topological
space T D U containing U as an open subset, for
any boundary point ¥ € oU there is a holomorphic
function f on U such that lim,_,f(p) does not
exist.

Minimal models arise when we consider anal-
ogous questions for compact complex manifolds.
The maximum principle implies that on a compact
complex manifold every holomorphic function is
constant; thus the theory of global holomorphic
functions is not interesting. On the other hand, a
compact complex manifold may well have many
interesting meromorphic functions, that is, func-
tions that can locally be written as the quotient of
two holomorphic functions. At a point the value

Janos Kollar is a professor of mathematics at Prince-
ton University. His email address is kollar@math.
princeton.edu.

NOTICES OF THE AMS

Janos Kollar

of a meromorphic function f can be finite, infinite,
or undefined. For instance x/y is undefined at
the origin and has value « at the points (x, 0) for
x # 0. The set of points where { is undefined has
(complex) codimension 2 (or, very rarely, is empty).
This makes it hard to control what happens in codi-
mensions > 2. The guiding principle in dealing with
meromorphic functions is: take care of codimen-
sion 1 and hope that the higher codimensions do
notcause extraproblems.

Meromorphic functions on M form a field C(M),
called the function field of M. So, following the ex-
ample of Stein domains, we ask: How tight is the
connectionbetween M and C(M)?

In dimension 1, thatis, when M is a compact Rie-
mann surface, the correspondenceis perfect: M and
C(M) determine each other.

The situation is more complicated in higher
dimensions, so let us start with the first condition
(with some attention toundefined values).

Point separation: For any two points p # g €
M and finite subset R € M, there is a meromor-
phic function f on M such that f(p) # f(g) and f is
defined atall points of R.

By a combination of works of Chevalley, Chow,
and Kleiman, such an M is algebraic. That is, there
isanembedding of M into some complex projective
space CPN whose image is defined by polynomial
equations and every meromorphic functionon M is
rational, that is, globally a quotient of two polyno-
mials.

In the algebraic case, the relationship between
M and C(M) is pretty strong. Assume that we have
M, c CP" with coordinates (xo : - -+ : X,), My C
CP* with coordinates (Yo : --- : ¥s), and an iso-
morphism ¢ : C(M;) = C(M>). Then there are ra-
tional functions ¢y, ..., ¢, on M, such that (), :
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<o 1Y) = (o :---: ¢,) defines arational map
® : M, --» M; and g isinducedbypulling back func-
tions by ®. Similarly, ¢! leads to the inverse !,
Suchaninvertiblerational mapis called birational.

Amapwithaninverseisusuallyanisomorphism,
but this fails here, since ® and ®-! are not every-
where defined. To get a typical example, let Q> C
CP? be the quadric surface given by the equation
X% +y?+z2 = t?.(Youcan think of it as the complex-
ified sphere.)Lettm: (x:y:z:t) -—» (x:y:t—2)
be the projection from the northpole (0 : 0:1:1)
to the equatorial plane (z = 0). Its inverse 1t~ ! is
givenby
(X:y:t) —-» (xt:2yt: x> +y? —t2 1 X2+ y> +t2).
These maps show that the meromorphic function
theory of Q? is the same as that of CP2. On the other
hand, Q? and CP? are quite different as manifolds.
For instance, 7t contracts the lines (s : ++/—1s:1:
1) to the points (1 : ++/—1 : 0), and 7w~ contracts
the line atinfinity (t = 0) tothepoint (0:0:1:1).
Neither Q? nor CP?is simpler than the other.

We say that a birational map ® : M; --+ M, con-
tractsa codimension 1 subsetD c M, if®(D) c M,
has codimension > 2. ® is called a contraction if it
contracts some codimension 1 subsetbut ®-! does
not contractany.

The simplest examples of contractions are blow-
downs.Let Z ¢ M be asubmanifold of codimension
> 2,and let E; be the set of all normal directions to
Z.Foreachp € Z the normal directions at p form a
CP4-! whered = dimM — dim Z. Thus the projec-
tiontr; : E; — ZisaCP9 !-bundle,and sodimF; =
dimM — 1. It turns out that B;M := E; U (M \ Z)
isnaturally acompact complex manifold, called the
blow-up of Z C M. The projection on E; and the
identity on M \ Z glue together to a birational map
1 : B;M — M, called a blow-down. It collapses the
CP4-1-bundle E, to Z. Note that m1(Z) = E; has
codimension 1, thus 7T is a contraction. As a first ap-
proximation, one can think of any contraction as a
composite of blow-downs.

Byblowing up repeatedly, starting with any M we
can create more and more complicated manifolds
with the same function field. Thus here a maximal
domain does not exist, but one can look for a mini-
mal one.

Minimality of domain: M is a minimal model if
every birational map ® : M; --» M is either a con-
traction or an isomorphism outside codimension
> 2 subsets. We also say that M is a minimal model
of any such M; .

In the first case M is simpler than M;, at least
in codimension 1. In the second case M is about as
complicated as M;.

The map 1T : Q%> --» CP? shows that neither Q?
nor CP? is a minimal model. In fact, no manifold
birational to CP! x Y has a minimal model. More
generally, we exclude all n-folds X that are unir-
uled, that is, for which there is a meromorphic map
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CP! X Y --» X with dense image for some (n — 1)-
fold Y. We have other methods to study these; see
[2].

Castelnuovo and Enriques proved in 1901 that
every smooth, compact, complex algebraic surface
S that is not uniruled has a unique minimal model
Smin Tn the past twenty-five years a lot of effort in
algebraic geometry has gone into generalizing this
resulttohigher dimensions.

(Minimal model conjecture of Mori-Reid). Let M
be a compact, smooth algebraic n-fold that is not
uniruled. Then

(1) M has a minimal model M™", and
(2) M™n has a Kdhler metric whose Ricci cur-
vature is < 0.

Two caveats are in order. First, we must allow
M™n o have certain mild (so called terminal) sin-
gularities. Algebraic geometers learned to live with
these singularities, though their differential geom-
etry is less understood. Second, minimal models
are not unique, but birational maps between two
minimal models are isomorphisms outside codi-
mension > 2 subsets. In dimension 2 such amap is
anisomorphism, butin higher dimensions it can be
afliporaflop[1].

In dimension 3 the first part is a theorem, due
mainly to Mori. For ageneral introduction, see[3].In
higher dimensions, for manifolds of “general type”,
the first part is settled by recent work of Hacon,
M¢Kernan, and Siu, and the second part by Eyssi-
dieux, Guedj, and Zeriahi, generalizing the work of
Aubinand YauonMonge-Ampeére equations.

In applications, part (2) of the conjecture is espe-
cially useful. Besides having the simplest codimen-
sion 1 geometry, we have very strong global differ-
ential geometric properties aswell.

Algebraic geometers usually consider a weaker
variant, using the canonical class Ky, which is de-
fined as thenegative of the first Chernclass c; (M) €
H?(M, Q).

(2') The canonical class of M™™ js > 0; that is,
it has nonnegative cap product with any
algebraic curve C C M. Equivalently, the
integral of the Ricci curvature of M on C is
nonpositive.

This is known in dimension 3 and for manifolds
of general type inany dimension.
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