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A dessin d’enfant (“child’s drawing”) is a connected
graph with two extra bits of structure:
• at each vertex is given a cyclic ordering of the

edges meeting it;
• each vertex is assigned one of two colors, con-

ventionally black and white, and the two ends
of every edge are colored differently.

These structures were introduced, at least in the
context about to be described, by Alexandre
Grothendieck in about 1984. There is an amazing 
relationship between these dessins and deep arith-
metical questions.

Dessins and Complex Geometry
Dessins arise naturally from finite coverings
X �→ P1(C) by a Riemann surface X unramified 
outside the points 0, 1, ∞. Here P1(C) is just the
Riemann sphere C∪ {∞}. To such a covering a
dessin is associated in the following way: the black
nodes are the inverse images of 0, the white ones
the inverse images of 1, and the edges of the dessin
are the components of the inverse image of the line
segment (0,1). The cyclic order arises from local
monodromy around the vertices—i.e., winding
around the local sheets of the covering containing

a common point. Thus, we get not only a dessin but
along with it an embedding into a Riemann surface.
We also get a cellular decomposition of the surface.
The faces of this decomposition are the connected
components of the inverse image of the comple-
ment of [0,1].

Monodromy associates to each path in the fun-
damental group of  P∗ = P1 − {0,1,∞} with respect
to 1/2 a permutation of the edges in the dessin: a
closed path starting and ending at 1/2 will lift to
a path in the covering starting at one edge of the
dessin and ending at another.

This idea allows one to see, conversely, a sim-
ple way to construct a covering from a dessin. The
fundamental group of P∗ with respect to 1/2 is a
free group on two generators σ0 and σ1, loops
around 0 and 1. Associated to each of these is a
permutation of the edges of a dessin. The one as-
sociated to σ0 rotates the edges around each black
node in accord with the cyclic ordering at that
node, and similarly σ1 rotates around the white
nodes. This extends to a permutation representa-
tion of the whole free group. This group acts tran-
sitively on the edges, since the dessin is connected,
and the isotropy subgroup of any edge is therefore
a subgroup of index equal to the number of edges,
hence is associated to a finite covering of P∗ . Dif-
ferent isotropy subgroups are conjugate. But the
finite coverings of P∗ are also the coverings of
P1(C) unramified except at 0, 1, or ∞. Thus the
dessin determines such a covering.

Grothendieck wrote of this relationship: “This
discovery, which is technically so simple, made a
very strong impression on me, and it represents a
decisive turning point in the course of my reflec-
tions, a shift in particular of my centre of interest
in mathematics, which suddenly found itself
strongly focussed. I do not believe that a mathe-
matical fact has ever struck me quite so strongly
as this one, nor had a comparable psychological 
impact. This is surely because of the very familiar,
non-technical nature of the objects considered, 
of which any child’s drawing scrawled on a bit of
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Figure 1. The dessins with three edges. The cyclic ordering at each
vertex is indicated geometrically. The last two are distinct because
of different cyclic orders at the bottom vertex—(1,3,2) against
(1,2,3) .
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paper (at least if the drawing is made without lift-
ing the pencil) gives a perfectly explicit example.
To such a dessin we find associated subtle arith-
metic invariants, which are completely turned
topsy-turvy as soon as we add one more stroke.”

Arithmetic and Algebraic Geometry
Any finite cover of P1(C) has an algebraic structure
defined over C. That is to say, the Riemann surface
and the projection are both defined by polynomi-
als in C. In the following table we give the explicit
list for the dessins we have already seen.

Dessin X̂ Equation for the cover

P1(C) β1(x) = x3

P1(C) β2(x) = 1− β1(x) = 1− x3

P1(C) β3(x) = (4− x)(1 + 2x)2
27x

P1(C) β4(x) = 1− β3(x)

= 4(x− 1)3
27x

P1(C) β5(x) = x
3 + 3x2

4

P1(C) β6(x) = x3

x3 − 1

y2 = x3 + 1 β7(x, y) = 1
2 (1 + y)

We can see easily now that there are three faces
for the next to last dessin, which sits in a sphere,
but only one for the last, which is embedded in a
torus (Figure 2).

In Figure 3 these faces can be read off directly
from the dessin as the connected components of
a thickened dessin.

But now we enter into the realm of arithmetic
algebraic geometry with this pleasant observation:
Any dessin arises from a finite covering of P1 that
can be defined over the field  Q of algebraic num-
bers. This is essentially a consequence of Weil’s 
descent theory.

Figure 2. The last dessin
embedded in a torus.

Belyı̆ ’s Theorem
Everything so far is elementary, and yet…the man-
ner in which “squishy” combinatorial objects (clay)
turn out to possess canonical rigid structures (crys-
tal) remains astonishing. At this point we have
seen that dessins correspond to certain finite cov-
erings of P1 defined over Q, but we do not know
what algebraic curves arise in this way. Grothen-
dieck was amazed by this famous and remarkably
simple theorem due to G. V. Belyı̆ , first announced
in Helsinki in 1978: Every algebraic curve defined
over Q can be represented as a covering of P1

ramified over at most three points. In other words,
every algebraic curve defined over  Q contains an
embedded dessin.

Galois Action
Dessins correspond to covers of P1 defined over
Q. The covers are permuted by the Galois group
Gal(Q/Q) , so this group also acts on the set of
dessins, and one consequence of Belyı̆ ’s theorem
is that the action is faithful. The deepest open
question in the theory of dessins is this: Can the
Galois orbits of dessins be distinguished by combi-
natorial or topological invariants? That is, is there
an effective way to tell whether two dessins belong
to the same Galois orbit? There are several obvi-
ous invariants, such as genus, valency lists, etc., but
it is known that they are insufficient to answer
this question. Other more delicate invariants have
been discovered, but whether a complete list ex-
ists—and, if so, whether finite or infinite—remains
a mystery.
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Figure 3. Three faces on the left, one on the
right.


