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Some of the most important equations of physics
and geometry are conformally invariant. One ex-
ample is Laplace’s equation

(1) ∆u = 0

for functions u on a domain in R2, which arises as
the variational equation of the energy

(2) E(u) =
∫
|du|2 dvol.

Conformal invariance can be seen by explicitly writ-
ing the integrand, as geometers do, in terms of the
Riemannian metric gij (and its inverse gij). Thus we
write |du|2 as 

∑
ij gij∂iu∂ju and write the volume

form as 
√

detgij dxdy . One then sees that, for any 

positive function ϕ , the conformal change of met-
ric gij �→ϕgij leaves E(u) invariant, and therefore 
solutions of the variational equation (1) remain 
solutions. That is the meaning of the phrase 
“conformally invariant”.

The holomorphic map equation—which is a 
nonlinear generalization of the Cauchy-Riemann
equation that applies to maps from a Riemann 
surface to a complex manifold X—also is confor-
mally invariant. When X has a Kähler metric, 
solutions minimize the energy integral (2).

Other nonlinear conformally invariant equa-
tions, such as the equations for Yang-Mills fields,
harmonic maps, and constant-mean-curvature hy-
persurfaces in R3, also have an associated energy.
For each, standard methods of partial differential
equations imply that there is an ε0 > 0 such that:

(A) (Energy Gap) Any positive-energy solution u on
the n-sphere Sn has E(u) ≥ ε0.

(B) (Uniform Convergence) Any bounded sequence
{uk} of solutions defined on a ball with
E(uk) < ε0 for all n has a subsequence converg-
ing in the C∞ topology on compact subsets.

(C) (Removable Singularities) Any smooth finite-
energy solution on a punctured ball B \ {0}
extends to a smooth solution on B.

Solutions of conformally invariant equations
on Rn pull back to solutions under any conformal
transformations, including translations, rescalings
x �→ λx, and stereographic projection σ : Sn → Rn .
Thus, given a positive-energy solution on Sn, we can
pull back by σ−1, rescale, and then translate to get
a solution on Rn concentrated near any desired
point. Such a solution is called an instanton. 
Superpositions of instantons concentrated at 
different points are not solutions—these are non-
linear equations!—but are nearly solutions. It is 
a general theme, which began with C. Taubes’s
work on Yang-Mills fields and now runs across the
study of all these conformally invariant equations,
that under certain conditions one can perturb such 
superpositions to obtain “multi-instanton” solu-
tions on Rn (and also on manifolds, as illustrated
below).

Additional rescalings of Rn yield a sequence of
multi-instanton solutions that concentrate at the
origin and converge to a trivial solution pointwise
on Rn \ {0}. That limit loses energy. A bubble tree
is a way of recovering the lost energy by keeping
track of the part of the solution that is squeezed
into the origin.

The Bubble Tree Construction
Given a sequence {uk} of solutions of some con-
formally invariant equation, we would like to find
a convergent subsequence. For that we assume
that the images are uniformly bounded, that
E(uk) < E for all k , and that the domain is a closed
manifold M . The key is to look at the energy den-
sities e(uk) = |duk|2 dvol and use the “bubbling”
idea of K. Uhlenbeck [3] as modified in [2].

Cover M with balls of radius ρ so that no point
is in more than, say, ten balls. Passing to a
subsequence, we can ensure that (B) applies on all 
but at most 10E/ε0 “bad” balls. Doing that for a 
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sequence ρm → 0 , we can pass to a diagonal 
subsequence (still denoted uk) for which the bad
balls converge to points x1, …, x . By facts (B) and
(C), these uk converge in C∞ to a limit u0 on
M \ {x1, . . . , x } , and the energy densities e(uk)
converge as measures to e(u0) plus a sum of point
measures at the xi with mass mi ≥ ε0:

e(uk) → e(u0) +
∑
i
mi δxi .

While this limit u0 is a solution, it is not the full
story, because some energy (an amount mi > 0)
concentrates at each xi and is not accounted for by
u0 . We can recover the lost energy by renormaliz-
ing the uk to “catch a bubble”.

Fix a ball B(xi, ε) around one xi . For each k
translate the center of mass of the measure e(uk) to
the origin, then dilate by the (smallest) factor λk
which pushes mass (at least) ε0/4 outside the unit
ball. It follows that λk →∞ . Pulling the uk back by
stereographic projection from the south pole
P ∈ Sn gives renormalized maps ũk defined on
larger and larger sets in Sn \ {P}. We can then let
ε → 0 and pass to a subsequence to conclude that
ũk → ũ0 on Sn \ {xi1, · · · , xim, P}. This ũ0 is the
bubble map at xi.

Convergence near the pole P must be carefully
studied. The issue is whether energy accumulates
in the “neck”—the annulus B(xi, ε) \ σ (B(P, ε)) that
connects the original domain to the domain of the
bubble. That does not happen for holomorphic
maps, and consequently the bubble map has a re-
movable singularity at P, and the images of the base
and the bubble meet at u0(xi) = ũ0(P ). A similar “No
Neck Energy” lemma holds for some—but not all—
other conformally invariant equations (see [1]).

We can now iterate the construction, renormal-
izing around each xij and repeating, constructing
bubbles on bubbles (see [2]). The end result is a bub-
ble tree domain consisting of the original domain
M with an attached tree of spheres Snα and a limit
map u∞ with component maps u0 on M and ũ0,α
on each bubble Snα. Facts (A)–(C) and a “No Neck
Energy” lemma imply two key properties:

• Stability: Each bubble map ũ0 either has
E(ũ0) ≥ ε0 or has at least two higher bubbles 
attached to its domain.

Because the total energy is bounded, stability 
implies that the iteration process ends.

• Bubble Tree Convergence Theorem: After pass-
ing to a subsequence, e(uk) converges to e(u∞)
as measures, and {uk} → u∞ in C0, and in C∞
away from the double points of the bubble 
domain. In particular, no energy is lost in the
limit.

Application to Gromov-Witten Invariants
The bubble tree construction generalizes to in-
clude (i) marked points pi on the domain (by adding
point masses at the pi to the measures e(uk) ) and
(ii) varying conformal structures on the domain.
That leads to M. Kontsevich’s notion of a stable
map: a holomorphic map u, from a genus-g nodal
complex curve C with  marked points to a com-
pact Kähler manifold X, is a stable map if 2g +  ≥ 3
and E(u) > 0 on each genus-0 component with
fewer than three marked or double points. Let
Mg, (X,β) be the space of all such stable maps
whose image represents the homology class
β ∈ H2(X), topologized by bubble tree convergence.
The above analysis then implies the fact, first
pointed out by M. Gromov, that the space
Mg, (X,β) of stable maps is compact. After a 
perturbation of the equations, evaluation at the 
 marked points gives a map

Mg, (X,β) → X 

whose image, thought of as a homology class, is 
a Gromov-Witten invariant of X. In that sense, 
Gromov-Witten invariants arise naturally from 
the bubble tree construction.
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