VOLUME PRESERVING EMBEDDINGS OF OPEN
SUBSETS OF R"™ INTO MANIFOLDS

FELIX SCHLENK

ABSTRACT. We consider a connected smooth n-dimensional man-
ifold M endowed with a volume form €2, and we show that an
open subset U of R™ of Lebesgue measure Vol (U) embeds into M
by a smooth volume preserving embedding whenever the volume
condition Vol (U) < Vol (M, Q) is met.

1. INTRODUCTION

Consider a connected smooth n-dimensional manifold M with or with-
out boundary. A volume form on M is a smooth nowhere vanishing
differential n-form €2. It follows that M is orientable. We orient M
such that [, € is positive, and we write Vol (M, Q) = [, Q. We en-
dow each open (not necessarily connected) subset U of R™ with the
Euclidean volume form

Q(]:dﬂfl/\"'/\dl’n.
A smooth embedding ¢: U — M is called volume preserving if
QO*Q = Qo.

Then Vol (U, ) < Vol (M, ). In this note we prove that this obvious
condition for the existence of a volume preserving embedding is the
only one.

Theorem 1. Consider an open subset U of R™ and a smooth con-
nected n-dimensional manifold M endowed with a volume form ().
Then there exists a volume preserving embedding ¢: U — M if and

only if Vol (U, ) < Vol (M, Q).

If U is a bounded subset whose boundary has zero measure and if
Vol (U, Q) < Vol (M, ), Theorem 1 is an easy consequence of Moser’s
deformation method. Moreover, if U is a ball and M is compact, The-
orem 1 has been proved in [3]. The main point of this note therefore
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2 Volume preserving embeddings of open subsets of R™ into manifolds

is to show that Theorem 1 holds true for an arbitrary open subset of
R™ and an arbitrary connected manifold even in case that the volumes
are equal.
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helpful discussions.

2. PROOF OF THEOREM 1

Assume first that ¢: U < M is a smooth embedding such that ¢*Q =
Q. Then

Vol (U, Q) = /QO = /QD*Q :/ Q< / Q = Vol (M, Q).
U U o(U) M

Assume now that Vol (U, ) < Vol (M, Q). We are going to construct
a smooth embedding ¢: U < M such that ¢*() = ().

We orient R" in the natural way. The orientations of R™ and M
orient each open subset of R” and M. We abbreviate the Lebesgue
measure Vol (V,€) of a measurable subset V' of R™ by |V|, and we
write V for the closure of V in R". Moreover, we denote by B, the
open ball in R" of radius r centered at the origin.

Proposition 2. Assume that V is a non-empty open subset of R™.
Then there exists a smooth embedding o: V — R™ such that |R™ \ o(V')| =
0.

Proof. We choose an increasing sequence
VicVoC---CVeCVipr C---

of non-empty open subsets of V such that V,, C Vi1, k=1,2,..., and
U;ozl Vi = V. To fix the ideas, we assume that the sets V), have smooth
boundaries.

Let 01: Vo — R™ be a smooth embedding such that o(V;) C B
and

B\ o1(V1)] < 271

Since V; C V5 and o1(V1) C By C By, we find a smooth embedding
oq9: V3 — R™ such that o3|y, = 01|y, and o5(Va) C By and

1By \ 02(Va)| < 272

Arguing by induction we find smooth embeddings o : Vi1 — R"™ such
that ox|v,_, = ok—1]v,_, and o4 (Vk) C By and

(1) 1B \ ox(Vii)| < 27,
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k=1,2,.... The map o: V — R" defined by oly, = oi|y, is a well
defined smooth embedding of V' into R™. Moreover, the inclusions
0, (Vi) C o(V) and the estimates (1) imply that

B\ o(V)| < |Bi\ ow(Vi)] < 27F,

and so
R\ o(V)] = lim |Bi\o(V)] = 0
This completes the proof of Proposition 2. O

Our next goal is to construct a smooth embedding of R™ into the con-
nected n-dimensional manifold M such that the complement of the im-
age has measure zero. If M is compact, such an embedding has been
obtained by Ozols [7] and Katok [3, Proposition 1.3]. While Ozols
combines an engulfing method with tools from Riemannian geometry,
Katok successively exhausts a smooth triangulation of M. Both ap-
proaches can be generalized to the case of an arbitrary connected man-

ifold M, and we shall follow Ozols.
We abbreviate Rug = {r € R |7 > 0} and R+¢ = Rso U {oo}. We

endow R~ with the topology whose base of open sets consists of the

intervals |a, b[ C R~¢ and the subsets of the form |a, oo] = Ja, co[ U {oc}.
We denote the Euclidean norm on R™ by || - || and the unit sphere in

Proposition 3. Endow R" with its standard smooth structure, let
w: S1 — Rso be a continuous function and let

0< || <“(ﬁ)}

be the starlike domain associated with . Then S s diffeomorphic to
R™.

Remark 4. The diffeomorphism guaranteed by Proposition 3 may be
chosen such that the rays emanating from the origin are preserved.

S = {:cEIR”

Proof of Proposition 3. If u(S1) = {oc}, there is nothing to prove. In
the case that p is bounded, Proposition 3 has been proved by Ozols
[7]. In the case that neither p(S;) = {oo} nor u is bounded, Ozols’s
proof readily extends to this situation. Using his notation, the only
modifications needed are: Require in addition that ry < 1 and that
€1 < 2, and define continuous functions fi;: S; — R by

[Li:min{i, u—ei+%}.
With these minor adaptations the proof in [7] applies word by word. O
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In the following we shall use some basic Riemannian geometry. We
refer to [4] for basic notions and results in Riemannian geometry. Con-
sider an n-dimensional complete Riemannian manifold (N, g). We de-
note the cut locus of a point p € N by C(p).

Corollary 5. The maximal normal neighbourhood N \ C(p) of any
point p in an n-dimensional complete Riemannian manifold (N, g) is
diffeomorphic to R" endowed with its standard smooth structure.

Proof. Fix p € N. We identify the tangent space (1,N,g(p)) with
Euclidean space R" by a (linear) isometry. Let exp,: R" — N be the
exponential map at p with respect to g, and let S; be the unit sphere
in R™. We define the function p: S; — Rsg by

(2) p(r) = inf{t >0 |exp,(tr) € C(p)}.

Since the Riemannian metric g is complete, the function p is continuous
[4, VIII, Theorem 7.3]. Let S C R™ be the starlike domain associated
with p. In view of Proposition 3 the set S is diffeomorphic to R”, and
in view of [4, VIII, Theorem 7.4 (3)] we have exp,(S) = N \ C(p).
Therefore, N \ C(p) is diffeomorphic to R". O

A main ingredient of our proof of Theorem 1 are the following two
special cases of a theorem of Greene and Shiohama [2].

Proposition 6. (i) Assume that Qy is a volume form on the connected
open subset U of R™ such that Vol (U, Q) = |U| < co. Then there exists
a diffeomorphism i of U such that 1¥*{2y = ).

(i1) Assume that 0y is a volume form on R™ such that Vol (R", ;) =
00. Then there exists a diffeomorphism 1 of R™ such that 1*2 = €.

End of the proof of Theorem 1.

Let U C R"™ and (M, () be as in Theorem 1. After enlarging U, if
necessary, we can assume that |U| = Vol(M, Q). We set N = M \ OM.
Then

(3) |U| = Vol(M,Q) = Vol(N, Q).

Since N is a connected manifold without boundary, there exists a com-
plete Riemannian metric ¢ on N. Indeed, according to a theorem of
Whitney [8], N can be embedded as a closed submanifold in some R™.
We can then take the induced Riemannian metric. A direct and el-
ementary proof of the existence of a complete Riemannian metric is
given in [6].

Fix a point p € N. As in the proof of Corollary 5 we identify
(T,N, g(p)) with R™ and define the function p: S; — Rsg as in (2).
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Using polar coordinates on R"™ we see from Fubini’s Theorem that the
set

Clp) = {u(@)z | v € S} C R"

has measure zero, and so C(p) = exp, (5(1))) also has measure zero
(see [1, VI, Corollary 1.14]). It follows that

(4) Vol(N \ C(p),$2) = Vol(N, ).
According to Corollary 5 there exists a diffeomorphism
0: R" — N\ C(p).

After composing § with a reflection of R”, if necessary, we can assume
that § is orientation preserving. In view of (3) and (4) we then have

(5) U] = Vol(R", 6*Q).

Case 1. |U] < o0.

Let U;, i = 1,2,..., be the countably many components of U. Then
0 < |U;| < oo for each i. Given numbers a and b with —oo < a < b < o0
we abbreviate the “open strip”

Sap ={(x1,...,2,) € R" | a < 1 < b}.
In view of the identity (5) we have
> Ui = U] = Vol(R",5*Q).
i>1
We can therefore inductively define ag = —oo and a; € | — 00, 00| by
Vol (Su,_1.0:,0°Q) = |Uy].
Abbreviating S; = S,, .4, We then have R" = Ui21 S,

For each i > 1 we choose an orientation preserving diffeomorphism
7, R® — S5;. In view of Proposition 2 we find a smooth embedding
o;: U; — R™ such that R™ \ 0;(U;) has measure zero. After compos-
ing o; with a reflection of R", if necessary, we can assume that o; is
orientation preserving. Using the definition of the volume, we can now
conclude that

Vol (U;, o7 770"Q) = Vol (0;(U;), 770%2) = Vol (R", 776*Q) = Vol (S;,6"Q) = |Uj].

In view of Proposition 6 (i) we therefore find a diffeomorphism ; of U;
such that

(6) W (0F Q) = Q.
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We define ¢;: U; — M to be the composition of diffeomorphisms and
smooth embeddings

Uzﬂ Z&RnlSZCRniN\C(p)CM
The identity (6) implies that ¢fQ = Qy. The smooth embedding

80:H<Pi3U:HUi‘—>M

therefore satisfies ¢*Q2 = Q.

Case 2. |U| = 0.
In view of (5) we have Vol (R",6*Q?) = co. Proposition 6 (ii) shows
that there exists a diffeomorphism ¢ of R™ such that

(7) b5 = Q.

We define ¢: U — M to be the composition of inclusions and diffeo-
morphisms

UcR" % RS N\C(p) C M.
The identity (7) implies that ¢*Q = Qy. The proof of Theorem 1 is
complete. O
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