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We give a uniform lower bound for the polynomial complexity of Reeb flows on the
spherization (S∗M, ξ) over a closed manifold. Our measure for the dynamical complexity
of Reeb flows is slow volume growth, a polynomial version of topological entropy, and
our lower bound is in terms of the polynomial growth of the homology of the based loop
space of M . As an application, we extend the Bott–Samelson theorem from geodesic
flows to Reeb flows: If (S∗M, ξ) admits a periodic Reeb flow, or, more generally, if there
exists a positive Legendrian loop of a fiber S∗

q M , then M is a circle or the fundamental
group of M is finite and the integral cohomology ring of the universal cover of M agrees
with that of a compact rank one symmetric space.
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1. Summary

In this summary we state our main results, assuming that the reader is familiar
with the relevant notions. In the subsequent section, all notions are defined and
finer results are given.

Vocabulary. The spherization (S∗M, ξ) over a closed manifold M is the unit
cosphere bundle S∗M endowed with its canonical contact structure ξ. Reeb flows
on spherizations are the natural contact-dynamical generalization of geodesic flows.
The slow volume growth slow-vol(ϕ) of a diffeomorphism ϕ of a closed manifold
is a slow analogue of topological entropy, namely the maximal polynomial volume
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growth rate of submanifolds under ϕ. The (topological) slow growth γ(M) is the
polynomial growth rate of the homology of the based loop space ΩM , namely
the sum of the polynomial growth of π1(M) and of the polynomial growth of∑

k≤m dimHk(Ω0M), where Ω0M is the component of contractible loops. An iso-
topy {Lt}t∈[0,1] of Legendrian submanifolds in (S∗M, ξ) is positive if the trajectories
Lt(x), x ∈ L0, are transverse to ξ.

Results. In the first part of this paper we show that γ(M) is a uniform lower
bound for the slow volume growth of all Reeb flows on S∗M .

Theorem 1.1. (Uniform slow volume growth of Reeb flows) If γ(M) is finite, then

slow-vol(ϕα) ≥ γ(M) − 1

for every Reeb flow ϕα on (S∗M, ξ).

This result extends the main result in [59] to the slow scale.
In the second part we study the homotopy invariant γ(M). In particular we

show that γ(M) = 1 if and only if M = S1 or if π1(M) is finite and the integral
cohomology ring of the universal cover M̃ agrees with that of a compact rank one
symmetric space.

In the third part we extend the classical Bott–Samelson theorem to contact
dynamics and contact topology. The Bott–Samelson theorem states that if a closed
manifold M of dimension at least two admits a Riemannian metric with periodic
geodesic flow, then π1(M) is finite and the integral cohomology ring of M̃ agrees
with that of a compact rank one symmetric space.

This result extends to all Reeb flows on (S∗M, ξ), as Theorem 1.1 and the
above characterization of manifolds with γ(M) = 1 show. In fact, the following
more general result shows that the proper setting for the Bott–Samelson theorem
is neither Riemannian dynamics nor contact dynamics, but contact topology:

Theorem 1.2. (Bott–Samelson for positive Legendrian loops) Let M be a closed
manifold of dimension at least two, and let {Lt}t∈[0,1] be a positive Legendrian
isotopy in (S∗M, ξ) with L0 = L1 = S∗

qM the fiber over q. Then π1(M) is finite

and the integral cohomology ring of M̃ agrees with that of a compact rank one
symmetric space.

This theorem extends a result in [5] and answers a question asked in [20].

2. Introduction and Main Results

2.1. Reeb flows on spherizations

Consider a closed manifold M . The positive real numbers �>0 freely act on the
cotangent bundle T ∗M by r(q, p) = (q, rp). While the canonical 1-form λ = pdq

on T ∗M does not descend to the quotient S∗M := T ∗M/�>0, its kernel does and
defines a contact structure ξ on S∗M . We call the contact manifold (S∗M, ξ) the
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spherization over M . For an intrinsic definition of this contact manifold we refer
to Arnold’s book [7, Appendix 4.D]. There, (S∗M, ξ) is called the space of oriented
contact elements, which is the double cover of the space of contact elements, the
prototypical example of a contact manifold, see also [27, 9.4.F.4] and [26, 1.5].
The contact manifold (S∗M, ξ) is co-orientable. The choice of a nowhere vanishing
1-form α on S∗M with kerα = ξ (called a contact form) defines a vector field Rα
(the Reeb vector field of α) by the two conditions dα(Rα, ·) = 0, α(Rα) = 1. Its
flow ϕtα is called the Reeb flow of α.

To give a more concrete description of the manifold (S∗M, ξ) and the flows ϕtα,
consider a smooth hypersurface Σ in T ∗M which is fiberwise starshaped with respect
to the zero-section: For every q ∈M the set Σq := Σ ∩ T ∗

qM bounds a set in T ∗
qM

that is strictly starshaped with respect to the origin of T ∗
qM . In other words, the

Liouville vector field p ∂
∂p on T ∗M is strictly transverse to Σ. Since λ|Σ = (ιp ∂

∂p
ω)|Σ

(where ω = dp ∧ dq is the canonical symplectic form on T ∗M), it follows that
ξΣ := ker(λ|Σ) is a contact structure on Σ. By construction, the contact manifolds
(S∗M, ξ) and (Σ, ξΣ) are isomorphic.

Let ϕtΣ be the Reeb flow on Σ defined by the contact form λΣ := λ|Σ. Any other
Reeb flow on (Σ, ξΣ) comes from a contact form fλΣ for a function f : Σ → �>0.
Consider the graph Σf of f , i.e. the image of

Ψ : Σ → T ∗M, (q, p) �→ (q, f(q, p)p).

The map Ψ : (Σ, ξΣ) → (Σf , ξΣf
) is a contactomorphism that conjugates the Reeb

flow of fλΣ on Σ with the Reeb flow ϕtΣf
of λΣf

on Σf . We can therefore identify
the set of Reeb flows on (S∗M, ξ) with the Reeb flows ϕtΣ on the set of fiberwise
starshaped hypersurfaces Σ in T ∗M .

The flows ϕtΣ are restrictions of Hamiltonian flows: Consider a Hamiltonian
function H : T ∗M → � such that Σ = H−1(1) is a regular energy surface and such
that H is fiberwise homogeneous of degree one near Σ:

H(q, rp) = rH(q, p) for (q, p) ∈ Σ and r ∈
(

1
2
, 2
)
.

For the Hamiltonian flow ϕtH we then have ϕtH |Σ = ϕtΣ, see Lemma 4.2 below.
It follows that geodesic flows and Finsler flows (up to the time change t �→ 2t)
are examples of Reeb flows on spherizations. Indeed, for geodesic flows the Σq are
ellipsoids, and for (symmetric) Finsler flows the Σq are (symmetric and) convex.
The flows ϕtΣ for varying Σ are very different, in general, as is already clear from
looking at geodesic flows on a sphere. One goal of this paper is to give uniform
lower bounds for the complexity of all these flows on (S∗M, ξ).

Remark 2.1. (1) It is important that the Reeb flows ϕtΣ are exactly the Hamilto-
nian flows ϕtH , not just up to a time-change. Indeed, our complexity measure for the
flows defined in the next paragraph is not invariant under time-change, in general.
We therefore do not consider arbitrary Hamiltonians H with Σ as a regular energy
level, but only Hamiltonians that are homogeneous near Σ.
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(2) The class of Reeb flows ϕtα is much larger than the class of Finsler flows.
Indeed, most Reeb flows are not conjugate to a Finsler flow. One way to see this is
to consider the Maslov indices of closed orbits. These are non-negative for Finsler
flows, while one can perturb a convex hypersurface Σ to a fiberwise starshaped Σ′

with closed orbits of negative Maslov index. We refer to [48] for details.

2.2. Slow volume growth

Consider a smooth diffeomorphism ϕ of a closed (compact without boundary) man-
ifold X . Denote by S the set of smooth compact submanifolds (with or without
boundary) of X . Fix a Riemannian metric g on X , and denote by Volg(σ) the
j-dimensional volume of a j-dimensional submanifold σ ∈ S computed with respect
to the measure on σ induced by g. Following [33, 54] we define the slow volume
growth of σ ∈ S as

slow-vol(σ;ϕ) = lim sup
m→∞

log Volg(ϕm(σ))
logm

, (1)

and define the slow volume growth of ϕ as

slow-vol(ϕ) = sup
σ∈S

slow-vol(σ;ϕ).

Notice that these invariants do not depend on the choice of g. Also notice that
slow-vol(σ;ϕ) vanishes for zero- or top-dimensional submanifolds σ. For surfaces, it
thus suffices to consider the growth rate of embedded segments. The slow volume
growth of ϕ measures the polynomial volume growth of the smooth family of initial
data that is most distorted under the iterates of ϕ. The slow volume growth of a
smooth flow ϕt on X is defined as slow-vol(ϕ1).

Remark 2.2. (1) If in definition (1) the denominator logm is replaced by m, one
obtains the volume growth vol(ϕ), that measures the maximal exponential volume
growth of submanifolds in X . The volume growth may vanish for systems of rather
different complexity. For instance, on the sublevel {|p| ≤ 1} of T ∗S1 the Hamil-
tonian flows of p and 1

2p
2 have slow volume growth 0 and 1. One is thus led to

look at the dynamical complexity at a polynomial scale, namely at the slow volume
growth.

(2) By a celebrated result of Yomdin [93] and Newhouse [74], the volume growth
vol(ϕ) agrees with the topological entropy htop(ϕ), a basic numerical invariant
measuring the exponential growth rate of the orbit complexity of ϕ. There are
various ways of defining htop(ϕ), see [43]. If one replaces in these definitions the
denominator m by logm, one obtains the slow entropy slow-htop(ϕ), an invariant
introduced in [63] (see also [54]) and further studied in [56–58]. The invariants
slow-vol(ϕ) and slow-htop(ϕ) do not always agree, however. For instance, for the
Hamiltonian flow of the pendulum on T ∗S1, restricted to a compact set containing
the separatrices, slow-vol(ϕ) = 1 while slow-htop(ϕ) = 2, see [63].
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2.3. The lower bound from the topology of the based loop space

Fix a point q ∈ M . The based loops space of M is the space of continuous maps
γ : [0, 1] → M with γ(0) = γ(1) = q, endowed with the C0-topology. The homo-
topy type of this space does not depend on q. The path components of ΩM are
parametrized by the elements of the fundamental group π1(M), and each compo-
nent has the same homotopy type:

ΩM =
∐

α∈π1(M)

ΩαM � Ω0M,

where Ω0M is the component of contractible loops. Notice that Ω0M can be iden-
tified with the loop space ΩM̃ of the universal cover of M . The homology of ΩM is
therefore the direct sum of the homology of Ω0M , one summand for each element
in π1(M). To give a lower bound on the slow volume growth of Reeb flows on S∗M
in terms of this homology, we must consider an appropriate growth of the homo-
logy of ΩM . Not surprisingly, it will be the sum of the growth of π1(M) and of the
growth of the homology of Ω0M .

The slow growth of π1(M). Since M is a closed manifold, its fundamental group
π1(M) is a finitely presented group. Consider, more generally, a finitely generated
group G. Choose a finite set S of generators of G. For each positive integer m, let
γS(m) be the number of distinct elements in G which can be written as words with
at most m letters from S ∪ S−1. The slow growth of G is defined as

γ(G) := lim
m→∞

log γS(m)
logm

∈ [0,∞]. (2)

This limit indeed exists in view of [25], and it is easy to see that γ(G) does not
depend on the set of generators S, see [91, Lemma 3.5]. (This is in contrast to the
exponential growth of G, that may depend on the set of generators.) One says that
G has polynomial growth if γ(G) <∞.

Example 2.3. (a) For the d-dimensional torus, γ(π1(T d)) = d.
(b) For a closed orientable surface of genus g ≥ 2, γ(π1(Σg)) = ∞.
(c) For a product, γ(π1(M1 ×M2)) = γ(π1(M1)) + γ(π1(M2)).

More information on the slow growth of finitely generated groups can be found
in Sec. 3 and in [62].

The slow growth of H∗(Ω0M). Given an Abelian group G, denote by dimG the
minimal (possibly infinite) number of generators of G. Define

γ(Ω0M) = lim sup
m→∞

log
∑m

k=0 dimHk(Ω0M ;�)
logm

.

Here and throughout, H∗ denotes singular homology. Notice that γ(Ω0M) can
be infinite. This may happen because one summand dimHk(Ω0M ;�) is infinite
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(as in Example (c) below) or even if each summand is finite (as in Example (b)
below).

Example 2.4. (a) γ(Ω0S
d) = 1 provided that d ≥ 2.

(b) γ(Ω0(�P2 #�P2 #�P2)) = ∞.
(c) γ(Ω0(T 4#�P2)) = ∞.
(d) For a product, γ(Ω0(M1 ×M2)) ≤ γ(Ω0M1) + γ(Ω0M2).

References and proofs for these statements are given at the end of Sec. 3. In
that section further computations and properties of γ(Ω0M) can be found.

We finally define the slow homological growth of the based loop space of M as

γ(M) = γ(π1(M)) + γ(Ω0M).

This is a homotopy invariant of M . For instance, γ(T 2 × S2) = 2 + 1.

2.4. The main result on slow volume growth

Definition 2.5. A closed manifold M is slow if γ(M) is finite.

Our main result on the slow volume growth of Reeb flows on spherizations can
now be formulated as follows:

Theorem 2.6. Assume that M is slow. Then

slow-vol(ϕα) ≥ γ(M) − 1

for every Reeb flow ϕα on (S∗M, ξ).

Remark 2.7. (1) (i) Our proof will actually show that for every q ∈M ,

slow-vol(S∗
qM ;ϕα) ≥ γ(M) − 1

for every Reeb flow ϕα on (S∗M, ξ). Here, S∗
qM denotes the fiber of S∗M over

q ∈M .
(ii) In the study of the complexity of contactomorphisms (such as Reeb flows),

it is natural to take into account the growth of Legendrian submanifolds only. Since
the spheres Σq are Legendrian, (i) in particular implies that the Legendrian slow
volume growth of every Reeb flow on (S∗M, ξ) is at least γ(M) − 1.

(2) The estimate in Theorem 2.6 is sharp in dimension d ≤ 3, see Remark A.4.
We do not know an example of a closed manifold M for which the estimate is not
sharp, see the discussion in Sec. 7.2.

(3) Our lower bounds for the slow volume growth of Reeb flows are in terms of
the topology of the based loop space. Lower bounds of similar slow growth char-
acteristics for (Hamiltonian) symplectomorphisms on certain symplectic manifolds
were obtained in [79] by finding two fixed points of different action and in [8] by
using nonvanishing of the flux.
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(4) A “non-slow” version of Theorem 2.6 was proven in [59]: For instance, if
π1(M) has exponential growth or if π1(M) is finite and

∑m
k=0 dimHk(Ω0M ;�)

grows exponentially, then every Reeb flow on (S∗M, ξ) has positive topological
entropy.

For this result and also for Theorem 2.6 and its generalization Theorem 4.1 it is
essential that ξ is the standard contact structure on S∗M . For example, for every
closed oriented surface Σg of genus g ≥ 2, the manifold S∗Σg carries a contact
structure (the “pre-quantization structure”) that admits a periodic Reeb flow, see
e.g. [14, Sec. 3.3].

Call a closed manifold fast if it is not slow, that is γ(M)= γ(π1(M))+
γ(Ω0M) = ∞. Based on the last remark, we make the

Conjecture 2.8. If M is fast, then every Reeb flow on (S∗M, ξ) has positive topo-
logical entropy.

We shall relate this conjecture to other conjectures in Sec. 7.

2.5. Properties of γ(M)

In view of Theorem 2.6 we proceed with analyzing the topological invariant γ(M) =
γ(π1(M)) + γ(Ω0M).

The invariant γ(π1(M)) is often computable thanks to Gromov’s theorem
according to which γ(π1(M)) < ∞ implies that π1(M) is virtually nilpotent, and
thanks to the Bass–Guivarc’h formula that computes the slow growth of nilpotent
groups. The invariant γ(Ω0M) is harder to compute, though quite accessible thanks
to rational homotopy theory and its extension to finite fields. We refer to Sec. 3 for
more explanations. The following proposition shows that γ(M) is an integer which
is bounded in terms of the dimension of M .

Proposition 2.9. Let M be a slow manifold of dimension d.

(i) γ(M) ∈ �.
(ii) γ(M) ≤ d(d−1)

2 + 1.
(iii) γ(M) = 1 if and only if M =S1 or if M is finitely covered by a manifold whose

integral cohomology ring is generated by one element.

For a more precise result (including a lower bound for γ(Ω0M)) we refer to
Proposition 3.5. By (ii), the invariant γ(M) of a closed d-dimensional manifold is
either bounded by d(d−1)

2 +1 or infinite. This dichotomy is reminiscent of the elliptic
versus hyperbolic dichotomy in rational homotopy theory. Assertion (iii) answers
Question 1 in [34]. Together with Remark 2.7(1)(i), assertion (iii) has the following
dynamical consequence.

Corollary 2.10. Consider a slow manifold M that is neither S1 nor is finitely
covered by a manifold whose integral cohomology ring is generated by one element.
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Then for every q ∈M,

slow-vol(S∗
qM ;ϕα) ≥ 1

for every Reeb flow ϕα on (S∗M, ξ).

2.6. The Bott–Samelson theorem for Reeb flows and positive

Legendrian loops on spherizations

Consider a manifold M that carries a Riemannian metric all of whose geodesics
are closed. Examples are compact rank one symmetric spaces (CROSSes), namely
the spheres Sd, the complex and quaternionic projective spaces �Pn and �Pn,
and the Cayley plane ��P2 of dimension 16, and their quotients by finite isome-
try groups. Their integral cohomology rings are generated by one element (i.e. are
truncated polynomial rings). According to the Bott–Samelson theorem [11, 16, 84],
there is not much room for other examples: Either M is the circle, or the funda-
mental group of M is finite and the integral cohomology ring of the universal cover
of M is the one of a CROSS. One may ask whether this result is a Riemannian
phenomenon or a contact phenomenon, i.e. a result on geodesic flows or on Reeb
flows. We show that the latter holds:

Theorem 2.11. (Bott–Samelson for Reeb flows) Let M be a closed manifold of
dimension d ≥ 2, and let ϕtα be a Reeb flow on the spherization (S∗M, ξ).

(i) Assume that one of the following conditions holds.

(1) Every orbit of ϕtα is closed.
(2) There exists a point q ∈M and T > 0 such that ϕTα(S∗

qM) = S∗
qM .

Then the fundamental group of M is finite and the integral cohomology ring of
the universal cover of M is the one of a CROSS.

(ii) If there exists a point q ∈ M and T > 0 such that ϕTα(S∗
qM) = S∗

qM and
ϕtα(S∗

qM) ∩ S∗
qM = ∅ for all t ∈ (0, T ), then either M is simply connected or

M is homotopy equivalent to �Pd.

Remark 2.12. (1) Hypothesis (1) of Theorem 2.11(i) implies hypothesis (2).
Indeed, since (ϕtα)∗α = α, Lemma 2.2 of [90] implies that there exists a Rieman-
nian metric on S∗M whose unit speed geodesics are the flow lines of ϕtα (see also
Theorem 2.2 of [22]). Since every orbit of ϕtα is closed, [90, §4] (see also [11, p. 182])
now implies that the orbits of ϕtα have a common period, i.e. there exists T > 0
such that ϕTα is the identity of S∗M . In particular, ϕTα(S∗

qM) = S∗
qM .

(2) Clearly, ϕTα(S∗
qM) = S∗

qM implies that slow-vol(S∗
qM,ϕα) = 0. At least

for slow manifolds, assertion (i) of Theorem 2.11 thus follows at once from Corol-
lary 2.10. Our proof of this corollary (and of assertion (i)) is based on Lagrangian
Floer homology. A different proof of Theorem 2.11(i) over rational coefficients, that
is based on Lagrangian Rabinowitz–Floer homology, has been given in [5]. We shall
use Lagrangian Rabinowitz–Floer homology to prove assertion (ii) of Theorem 2.11.
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(3) There exist periodic Reeb flows on spherizations that are not geodesic flows
and, in fact, are not orbit equivalent to a reversible Finsler flow. Indeed, for a
periodic reversible Finsler flow on S2 all orbits have the same period [39], but there
exist periodic Reeb flows on (S∗S2, ξ) whose orbits have different minimal periods,
see [94, p. 143] and [89].

(4) Assume that M is a simply connected closed manifold whose integral coho-
mology ring is the one of a CROSS P . If P = Sd, then M is homeomorphic to Sd,
and for d ≥ 5 every such sphere carries a Riemannian metric whose geodesic flow
satisfies (ii). If P = �Pn, then M has the homotopy type of �Pn. There exist
closed manifolds with the integral cohomology ring of �P2 and ��P2 which are
not homotopy equivalent to �P2 and ��P2 and which carry a Riemannian metric
whose geodesic flow satisfies (ii). We refer to [11, Chap. 7] and [34, Sec. 3] for more
information, as well as for a discussion of the topology of quotients of manifolds
whose integral cohomology ring is the one of a CROSS. We add here that all �2-
quotients of manifolds whose integral cohomology ring is the one of �P2n+1 are
homotopy equivalent, [83, Theorem 3.1].

Assertion (i) of Theorem 2.11 can be further generalized as follows. A contac-
tomorphism of a contact manifold (V, ξ) is a diffeomorphism that preserves the
contact structure ξ. An isotopy of contactomorphisms ϕt of a co-oriented contact
manifold (V, α) is called positive if α(Xt) > 0, where Xt = d

dtϕ
t is the vector field

generating ϕt. Hence at every time and at every point the flow ϕt is positively
transverse to the contact distribution. A positive contact isotopy is the same thing
as a “time-dependent Reeb flow”, i.e. the flow of a time-dependent vector field Rαt

where for each t, Rαt is the Reeb vector field of a positive contact form αt for ξ. A
positive contact loop is a positive contact isotopy {ϕt}t∈� which is periodic: ϕ0 = id
and ϕt+T = ϕt for some T > 0.

An isotopy {Lt}t∈[0,1] of Legendrian submanifolds in (V, α) is positive if it can be
parametrized in such a way that the trajectories Lt(x), x ∈ L0, are positively trans-
verse to ξ. A positive Legendrian loop is a positive Legendrian isotopy {Lt}t∈[0,1]

with L0 = L1. Positive contact isotopies yield positive Legendrian isotopies, and
positive contact loops yield positive Legendrian loops. Spherizations (S∗M, ξ) are
positively oriented in a natural way (namely, when identified with Σ ⊂ T ∗M , by
pdq|Σ), and each fiber S∗

qM is a Legendrian submanifold. The following theorem
therefore generalizes assertion (i) of Theorem 2.11.

Theorem 2.13. (Bott–Samelson for positive Legendrian loops) Let M be a closed
manifold of dimension d ≥ 2, and let {Lt}t∈[0,1] be a positive Legendrian isotopy
in the spherization (S∗M, ξ) with L0 = L1 = S∗

qM . Then the fundamental group
of M is finite and the integral cohomology ring of the universal cover of M is the
one of a CROSS.

Remark 2.14. (1) This theorem answers a question asked in [20, Exam-
ple 8.3]. The finiteness of π1(M) asserted in the theorem has been proven in



May 11, 2015 6:30 WSPC/243-JTA 1550016

416 U. Frauenfelder, C. Labrousse & F. Schlenk

[20, Corollary 8.1]. The theorem has been proven for positive contact loops and over
rational coefficients in [5, Theorem 1.1] by a similar method (namely Rabinowitz–
Floer homology).

(2) We conclude with a remark on our methods. While Theorem 2.6 and its
Corollary 2.10 as well as Theorems 2.11(i) and 2.13 are proven by Morse type Floer
theories (Lagrangian Floer homology and Lagrangian Rabinowitz–Floer homology),
the proof of Theorem 2.11(ii) requires the more innovative tool of Morse–Bott
type Floer theory (Lagrangian Rabinowitz–Floer homology with cascades): For the
proof of this result one cannot move to a near-by fiber S∗

q′M . Instead, leaving the
geometric situation intact, one verifies that the relevant functional on the space of
paths from S∗

qM to itself is Morse–Bott, and achieves the necessary perturbation
to a Morse situation by choosing a Morse function on the critical manifolds and by
defining the boundary operator by gradient flow lines with cascades.

Outlook. In [23], Theorem 2.6 is generalized to positive contact isotopies, and asser-
tion (ii) of Theorem 2.11 is generalized to positive Legendrian loops: If in the
situation of Theorem 2.13 the isotopy {Lt}t∈[0,1] is such that Lt ∩ L0 = ∅ for all
t ∈ (0, 1), then either M is simply connected or M is homotopy equivalent to �Pd,
cf. Remark 6.3.

The paper is organized as follows: In Sec. 3 we analyze the topological invariant
γ(M) and prove Proposition 2.9. In Sec. 4 we prove Theorem 2.6. In Secs. 5 and 6 we
prove the generalizations Theorems 2.11 and 2.13 of the Bott–Samelson theorem,
respectively. In Sec. 7 we explain our conjecture that Reeb flows on spherizations
of fast manifolds have positive topological entropy, discuss how our results give
rise to a slow version of the minimal entropy problem, and ask many questions. In
Appendix A we compute γ(M) for all closed 3-manifolds, and find that Theorem 2.6
is sharp in dimensions ≤ 3.

3. Estimates for γ(M)

In this section we study the invariant γ(M) = γ(π1(M))+ γ(Ω0M), and in partic-
ular prove Proposition 3.5, which refines Proposition 2.9. For the computation of
γ(M) for all closed manifolds of dimension at most three we refer to Appendix A.

The following lemma will be used many times.

Lemma 3.1. Let M̂ be a covering space of M . Then γ(Ω0M̂) = γ(Ω0M). If M̂ is
a finite cover of M, then also γ(π1(M̂)) = γ(π1(M)) and γ(M̂) = γ(M).

Proof. The equality γ(Ω0M̂) = γ(Ω0M) follows from Ω0M = Ω0M̂ = Ω0M̃ .
Moreover, if M̂ is a finite cover of M , then π1(M̂) is a subgroup of π1(M) of finite
index. Hence γ(π1(M)) = γ(π1(M̂)). A combinatorial proof of this implication is
given on p. 432 of [91], and a geometric proof is provided by the Švarc–Milnor
Lemma, [17, Proposition 8.19], which states that π1(M̂) and π1(M) are both quasi-
isometric to the universal cover M̃ .
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There are two theorems that make the computation of γ(π1(M)) often possible:
First, according to a theorem of Gromov [41], a finitely generated group G has
polynomial growth if and only if G has a nilpotent subgroup Γ of finite index (that
is, G is virtually nilpotent). As is easy to see, γ(G) = γ(Γ). Let (Γk)k≥1 be the
lower central series of Γ inductively defined by Γ1 = Γ and Γk+1 = [Γ,Γk]. Then
the Bass–Guivarc’h formula

γ(Γ) =
∑
k≥1

k dim((Γk/Γk+1) ⊗� �) (3)

holds true, [10, 42]. We in particular see that γ(G) is an integer. To illustrate this
formula, we consider the Heisenberg group

Γ =


1 x z

0 1 y

0 0 1

∣∣∣∣∣x, y, z ∈ �
. (4)

Then Γ1 = Γ and Γ2 = {M(x, y, z) ∈ Γ |x = y = 0} ∼= � and Γk = {e} for k ≥ 3.
Hence γ(Γ) = 1 · 2 + 2 · 1 = 4.

Denote by M̃ the universal cover of the closed manifold M . Then γ(Ω0M) =
γ(Ω0M̃). Recall that M is said to be of finite type if M̃ is homotopy equivalent to
a finite CW-complex. As we shall see, for such manifolds the number γ(Ω0M) can
often be computed or at least estimated by Sullivan’s work on rational homotopy
theory and its partial extension to finite fields �p by Friedlander, Félix, Halperin,
Thomas and others.

Lemma 3.2. If M is slow, then M is of finite type. Moreover, the following are
equivalent.

(i) M is of finite type.
(ii) The groups Hk(M̃) are finitely generated for all k.
(iii) The groups πk(M) are finitely generated for all k.

Proof. While the implication (i) ⇒ (ii) is clear, the implication (ii) ⇒ (i) follows
from [44, Proposition 4C.1]. The equivalence (ii) ⇔ (iii) is the content of Serre’s
theory of C-classes, applied to the class C of finitely generated Abelian groups:
For a simply connected space X , the Abelian groups πk(X) are finitely generated
for all k if and only if the Abelian groups Hk(X) are finitely generated for all k,
see [87, Theorem 1 on p. 271] or [45, Theorem 1.7]. The equivalence (ii) ⇔ (iii)
follows by taking X = M̃ and by using that πk(M) = πk(M̃) for k ≥ 2.

IfM is slow, dimHk(Ω0M ;�) is finite for all k, in particularHk(Ω0M) is finitely
generated for all k. Again by Serre’s theory of C-classes, πk(Ω0M) = πk+1(M)
is then finitely generated for all k. Hence M is of finite type by the implication
(iii) ⇒ (i).

Example 3.3. (1) An important class of manifolds of finite type are simply con-
nected manifolds. For these manifolds, γ(M) = γ(Ω0M). Following [31] we call a
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simply connected manifold elliptic if γ(M) < ∞. While a “generic” simply con-
nected manifold is not elliptic, many geometrically interesting simply connected
manifolds are elliptic, [31]. Among them are simply connected Lie groups and homo-
geneous spaces (in particular CROSSes), and fibrations built out of elliptic spaces.

(2) Let M be nilpotent, that is, the fundamental group π1(M) is nilpotent, and
its natural action on the higher homotopy groups πk, k ≥ 2, is nilpotent. Then M
is of finite type, see [51, II, Theorem 2.16] or [50, Satz 7.22]. It follows that if a
closed manifold M has a finite nilpotent cover, then M is of finite type. Note that
the Klein bottle and even-dimensional real projective spaces are not nilpotent, but
their double covers are, [50, p. 165]. An example of a manifold that is not of finite
type is T 4#�P2.

Let �0 = � and for a prime number p let �p be the field with p elements.
Denote by � the set of prime numbers. For p ∈ � ∪ {0} define

γ(Ω0M ;�p) = lim sup
m→∞

log
∑m

k=0 dimHk(Ω0M ;�p)
logm

∈ [0,∞].

By the universal coefficient theorem, γ(Ω0M ;�p) ≥ γ(Ω0M ;�0) for all p ∈ �. If M
has finite type, then the Abelian groups Hk(Ω0M) are finitely generated for all k
(cf. the proof of Lemma 3.2). In particular, dimHk(Ω0M ;�p) < ∞ for all p ∈ �
and all k. The following lemma shows that for manifolds of finite type, our invariant
γ(Ω0M) agrees with the invariant studied for instance in [34, 59].

Lemma 3.4. Assume that M is of finite type. Then

γ(Ω0M) = sup
p∈�

γ(Ω0M ;�p).

Proof. If M̃ is rationally hyperbolic, then γ(Ω0M ;�) = ∞, hence both sides
are infinite. We can thus assume that M̃ is rationally elliptic. By a theorem of
McGibbon and Wilkerson [66], H∗(Ω0M) has p-torsion for only a finite set P ⊂ �
of primes p. In particular, the right-hand side equals maxp∈P γ(Ω0M ;�p). For a
finitely generated group G,

dimG = max
p∈�

dimG⊗� �p

by the Chinese remainder theorem. Together with the universal coefficient theorem
we find that

γ(Ω0M) = lim sup
m→∞

log
∑m
k=0 maxp∈P dimHk(Ω0M ;�p)

logm
.

Since P is finite, the right-hand side equals maxp∈P γ(Ω0M ;�p).
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Recall that a path-connected topological space whose fundamental group is
isomorphic to a given group π and which has contractible universal covering space
is called a K(π, 1). Also recall that the Lusternik–Schnirelmann category catK of
a compact CW-complex K is the least number m such that K is the union of m+1
open subsets that are contractible in K. (Thus cat(Sn)=1.) The connectivity of K
is the largest r such that πj(K)= 0 for 1 ≤ j ≤ r. It is classical that catK ≤
dimK/(r + 1), see [32, 52].

Proposition 3.5. Let M be a closed d-dimensional manifold of finite type with
fundamental group π1(M) of polynomial growth. Let K be a simply connected finite
CW-complex homotopy equivalent to M̃ .

(i) γ(π1(M)) ∈ {0} ∪�, and γ(π1(M)) = 0 if and only if π1(M) is finite.
If M is a K(π, 1), then γ(π1(M)) ≤ d(d−1)

2 + 1.
If M is not a K(π, 1), then γ(π1(M)) ≤ (d−2)(d−3)

2 + 1.
(ii) Assume that γ(Ω0M) < ∞. Then γ(Ω0M ;�p) ∈ {0} ∪� for all p ∈ �, and

γ(Ω0M) ∈ {0} ∪�. Moreover, if K has connectivity r, then

d∑
k=2

dim(π2k−1(M) ⊗�) = γ(Ω0M ;�) ≤ γ(Ω0M) ≤ cat(K) ≤ d

r + 1
≤ d

2
.

(iii) γ(M) ∈ �∪{∞}. Moreover, γ(M)= 1 if and only if M =S1 or if M is a finite
quotient of a manifold whose integral cohomology ring is the one of a CROSS.

Remark 3.6. (1) The estimates in (i) are sharp, see [18, Corollary 1.6]. Taking
the product of these spaces with S2 we see that the second estimate in (i) is also
sharp.

(2) The chain of inequalities in (ii) is sharp (up to d
r+1 ) for products of spheres

×kSn with n ≥ 2. The inequality γ(Ω0M ;�) ≤ γ(Ω0M) can be strict, how-
ever: For every prime number p there are simply connected five manifolds with
γ(Ω0M ;�)=1 but γ(Ω0M) = γ(Ω0M ;�p) = ∞, [9]. Moreover, there are ellip-
tic manifolds with γ(Ω0M ;�) = 1 and γ(Ω0M) ≥ 2. In view of (iii), examples
are simply connected rational homology spheres that are not integral homology
spheres, such as the Wu manifold SU(3)/ SO(3). All these examples show that it is
important that γ(Ω0M) takes into account fields of all characteristics.

Proof of Proposition 3.5. (i) By assumption π1(M) grows polynomially. Gro-
mov’s theorem in [41] implies that π1(M) has a nilpotent subgroup Γ of finite
index. Its growth agrees with the one of π1(M) in view of Lemma 3.1. By the
Bass–Guivarc’h formula (3), γ(Γ) is an integer. If γ(Γ) = 0, then all the quotients
Γk/Γk+1 are finitely generated Abelian groups that are torsion, and hence finite.
Thus Γ = Γ1 is also finite. The first line of assertion (i) is proven.

A group G is called polycyclic if it admits a finite normal series

G = G1 � G2 � · · · � Gk = 1
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with cyclic factors Gi/Gi+1. K. A. Hirsch proved in 1938 that the number of infinite
cyclic factors in such a series is independent of the choice of the series, see [62,
Proposition 2.11]. This number is called the Hirsch length h(G).

Now let Γ be an infinite finitely generated nilpotent group, with lower central
series

Γ = Γ1 � Γ2 � · · · � Γc � 1. (5)

Set ri = dim((Γi/Γi+1) ⊗�). By refining the sequence (5) one sees that Γ is poly-
cyclic, and that

h(Γ) =
c∑
i=1

ri,

see [50, proof of Satz 3.20]. The lower central series of Γ is a shortest normal series
of Γ. This implies that ri ≥ 1 for all i. Assume that γ(Γ) ≥ 2. Then r1 ≥ 2,
see [62, p. 48]. Hence h := h(Γ) ≥ c+ 1. By the Bass–Guivarc’h formula (3),

γ(Γ) = r1 + 2r2 + · · · + crc.

Under the constraints r1 ≥ 2, ri ≥ 1 this sum becomes maximal for r1 = 2,
r2 = · · · = rc = 1, in which case c = h− 1 (since then h = r1 + · · · + rc = c+ 1).
Hence

γ(Γ) ≤ 2 + 2 · 1 + · · ·+(h− 1) · 1

= 1 +
(h− 1)h

2
.

Note that this estimate also holds for γ(Γ) = 1, since then h = 1.
Let M̂ be a finite cover of M with π1(M̂) = Γ. Then M is a K(π, 1) if and only

if M̂ is a K(π, 1). Damian proved in [24] that h(Γ) ≤ d and that h(Γ) ≤ d− 2 if M̂
is not a K(π, 1). Together with (6) we conclude that γ(π1(M)) = γ(Γ) ≤ 1+ (d−1)d

2

and that γ(π1(M)) = γ(Γ) ≤ 1 + (d−3)(d−1)
2 if M is not a K(π, 1).

We note that in the case that M is a K(π, 1) one can do without Damian’s
theorem, by using a more elementary theorem of Mal’cev instead: After passing to
a finite cover, we can again assume that Γ is nilpotent. The fundamental group of a
finite dimensional K(π, 1) is torsionfree (see e.g. [44, Proposition 2.45]). Hence Γ is
a finitely generated torsionfree nilpotent group. By a theorem of Mal’cev [61], such
a group embeds as a discrete cocompact subgroup in a simply connected nilpotent
Lie group diffeomorphic to �d, and c ≤ d− 1.

Proof of (ii). Recall that Ω0M is homotopy equivalent to Ω0K = ΩK. The iden-
tity γ(ΩK;�) = dimπodd(K) ⊗ � follows at once from the Milnor–Moore the-
orem and the Poincaré–Birkhoff–Witt theorem (see Proposition 33.9(i) in [32]).
The reader may also enjoy proving this identity via Sullivan’s minimal model
for ΩK, that is obtained from the one of K by shifting the degrees by −1 and
setting the differential to 0. Our assumption γ(ΩK) <∞ in particular implies that



May 11, 2015 6:30 WSPC/243-JTA 1550016

Slow volume growth for Reeb flows 421

γ(ΩK;�) <∞, and hence dimπ∗(K) ⊗� < ∞ by the Milnor–Moore theorem. It
follows that πj(K)⊗�= 0 for j ≥ 2d, see [36, Corollary 1.3] or also [32, §32]).
Hence γ(ΩK;�) =

∑d
j=2 dimπ2j−1(K) ⊗�.

By the universal coefficient theorem, γ(ΩK;�) ≤ γ(ΩK;�p) for all prime num-
bers p. Fix a prime p. Recall that H∗(ΩK;�p) is an algebra with multiplication
induced from composition of loops (the Pontryagin product). The depth of a graded
	-algebra A is the least integer m (or ∞) such that ExtmA (	;A) �= 0 (see [29]). It is
shown in [29] that

depthH∗(ΩK,�p) ≤ catK (6)

(see also [32, §35]). In particular, H∗(ΩK,�p) has finite depth. By assumption,
γ(ΩK;�p) is finite. Theorem C of [30] now implies that H∗(ΩK,�p) is a finitely
generated and nilpotent Hopf algebra. Consider the formal power series G(z) =∑∞

n=0 dimHn(ΩK,�p)zn. According to Proposition 3.6 in [30],

G(z) = p(z)
r∏
j=1

1
1 − z�j

,

where p(z) is a polynomial, r= depthH∗(ΩK,�p), and 
j ∈�. It follows at
once that γ(ΩK;�p)= r= depthH∗(ΩK;�p) (see also [31]). (We remark that
together with Theorem B(ii) in [30] one has the more precise result that the alge-
bra H∗(ΩK;�p) is a free finitely generated module over a central polynomial subal-
gebra �p[y1, . . . , yr].) In particular, γ(ΩK;�p) ∈ {0}∪�, and so γ(ΩK) ∈ {0}∪�.
Together with (6) we conclude that γ(ΩK;�p) ≤ catK. Hence γ(ΩK) ≤ catK.

Finally, if K is r-connected, then catK ≤ d
r+1 .

Proof of (iii). Assertions (i) and (ii) imply that γ(M) ∈ {0} ∪� ∪ {∞}. Assume
that γ(π1(M))= 0. Then π1(M) is finite by (i), and hence M̃ is a closed simply
connected manifold. Since d ≥ 1, Proposition 11 in [86, p. 483] implies that
γ(ΩM̃)≥ 1. Hence γ(M) ∈ � ∪ {∞}.

It is clear that γ(M) = 1 for the circle and for manifolds finitely covered by a
CROSS. Assume now that γ(M) = 1.

Case 1. γ(π1(M)) = 0 and γ(Ω0M) = 1. Then M̃ is a closed simply connected
manifold with γ(ΩM̃) = 1. McCleary proved in [65] that if the reduced cohomology
ring H̃∗(K;�p) of a finite CW-complex K is not generated by one element, then
H∗(ΩK;�p) contains the polynomial algebra �p[u, v] as a subvector space, and
hence γ(ΩK;�p) ≥ 2. It follows that H̃∗(M̃ ;�p) is generated by one element for
all primes p. Hence H̃∗(M ;�) is generated by one element, and hence agrees with
the integral cohomology ring of a CROSS.

Case 2. γ(π1(M)) = 1 and γ(Ω0M) = 0. Then π1(M) ∼= � up to finite index by
Gromov’s theorem and formula (3) (or see [62, Theorem 3.1] for a combinatorial
argument). Moreover, M̃ is homotopy equivalent to a finite CW-complex K with
γ(ΩK) = 0. Again by Proposition 11 of [86] it follows that K is contractible.
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Hence M is a K(π; 1), hence π1(M) is torsion-free, hence π1(M) ∼= �. Hence
M = S1.

We end this section with justifying the statements in Example 2.4. The identity
γ(Ω0S

d)= 1 for d≥ 2 follows fromHk(ΩSd)=� if k≡ 0 mod d− 1 and Hk(ΩSd) =
0 otherwise, a result that follows for instance from Morse theory [70, Corollary 17.4]
(where for d = 2 one must take orientations into account) or from the Wang exact
sequence [86, Proposition 17 on p. 487]. For γ(Ω0(�P2 #�P2 #�P2)) = ∞ we
refer to [75, Lemma 5.3] and for γ(Ω0(T 4#�P2)) = ∞ to the proof of Theorem D
in [77]. We finally show that for any two closed manifolds M1,M2,

γ(Ω0(M1 ×M2)) ≤ γ(Ω0M1) + γ(Ω0M2). (7)

We can assume that γ(Ω0M1) and γ(Ω0M2) are finite. As we have seen at the end
of the proof of Lemma 3.2, both M1 and M2 are then of finite type. Hence M1×M2

is also of finite type. Since Ω0(M1 ×M2) = Ω0M1 × Ω0M2, the Künneth formula
implies that

γ(Ω0(M1 ×M2);�p) = γ(Ω0M1;�p) + γ(Ω0M2;�p)

for every field �p. This and Lemma 3.4 imply inequality (7).

4. Proof of Theorem 2.6

Let ϕα be a Reeb flow on (S∗M, ξ). As in Sec. 2.1 we take a fiberwise starshaped
hypersurface Σ ⊂ T ∗M such that the Reeb flow ϕΣ on Σ corresponds to ϕα. Fix
q ∈ M and recall that Σq = Σ ∩ T ∗

qM . Since slow manifolds are of finite type by
Lemma 3.2, Theorem 2.6 (in its strong form of Remarks 2.7(1)(i)) follows from

Theorem 4.1. If M is of finite type, then

slow-vol(Σq;ϕΣ) ≥ γ(M) − 1.

Proof. For µ > 0 consider the Hamiltonian function Hµ : T ∗M→� such that
Σ = H−1

µ ( 1
µ) is a regular energy surface and such that Hµ is fiberwise homogeneous

of degree µ:

Hµ(q, rp) = rµHµ(q, p) for (q, p) ∈ Σ and r ∈ [0,∞). (8)

This function is smooth away from the zero-section, and there its Hamiltonian
vector field XHµ defined by

ω(XHµ , ·) = −dHµ

generates the Hamiltonian flow ϕtHµ
. Denote by ϕtHµ

|Σ its restriction to Σ.

Lemma 4.2. ϕtHµ
|Σ = ϕtΣ for all t ∈ �.
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Proof. The Reeb flow ϕtΣ on Σ is the flow of the Reeb vector field RΣ defined by

dλΣ(RΣ, ·) = 0, λΣ(RΣ) = 1,

where λΣ = (pdq)|Σ. For vectors v ∈ TΣ we have ω(XHµ , v) = −dHµ(v) = 0, hence
XHµ |Σ is parallel to RΣ. Furthermore, for the Liouville vector field Y :=

∑d
i=1 pi

∂
∂pi

we have λΣ = (pdq)|Σ = (ιY ω)|Σ and hence

λΣ(XHµ) = ω(Y,XHµ) = dHµ(Y ) = µHµ(q, p) = 1,

where the third identity follows from Euler’s theorem on homogeneous functions.
We conclude that XHµ |Σ = RΣ.

By the lemma it suffices to prove Theorem 4.1 with ϕΣ replaced by ϕtH |Σ where
H := H2 is the function in (8) with µ = 2.

Denote by D(Σ) the closure of the bounded component of T ∗M\Σ, which con-
tains the zero-section of T ∗M . The set Dq(Σ) = D(Σ)∩ T ∗

qM is diffeomorphic to a
d-dimensional closed ball. We shall prove Theorem 4.1 in two steps: We first show
that it suffices to prove a lower bound for the slow volume growth of ϕH on the
punctured Lagrangian disc Ḋq(Σ) = Dq(Σ)\{0q}. We then obtain this lower bound
from Lagrangian Floer homology as in [59].

Step 1. Reduction to estimating the slow volume growth on Ḋq(Σ). The
following proposition explains the summand −1 in Theorem 4.1.

Proposition 4.3.

slow-vol(Σq;ϕtH |Σ) ≥ slow-vol(Ḋq(Σ);ϕtH) − 1.

The idea of the proof is simple: Since H is homogeneous of degree two, its
Hamiltonian vector field XH is homogenous of degree one. Hence for each p ∈ Σq
the length of the segment {(q, rp) | 0 < r ≤ 1} grows linearly with ϕmH . Homogeneity
also implies that ϕmH(rΣq) = rϕrmH (Σq) for all r ∈ (0, 1], that is, all spheres rΣq
have the same ϕmH -growth. The slow ϕmH -growths of Ḋq(Σ) and Σq should therefore
differ by 1.

On a more technical level, we shall use the homogeneity of H and the strict
starshapedness of Σq to show that there exists a constant C > 0 such that

Vol(ϕmH(Ḋq(Σ))) ≤ C

∫ m
0

Vol(ϕsH(Σq))ds.

In particular,

Vol(ϕmH(Ḋq(Σ))) ≤ Cm max
0≤s≤m

Vol(ϕsH(Σq)). (9)

If we could replace the maximum on the right-hand side by Vol(ϕmH(Σq)), then
Proposition 4.3 would follow at once by applying the operation lim supm→∞

log(·)
logm . It

is geometrically not clear how to justify this replacement. However, this replacement
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is possible when followed by the operation lim supm→∞
log(·)
logm , because for every

continuous function f : �>0 → �>0,

lim sup
R→∞

1
logR

log max
1≤s≤R

f(s) ≤ lim sup
R→∞

log f(R)
logR

,

see the proof of Lemma 4.5 below.

Proof of Proposition 4.3. We shall work with a convenient Riemannian measure
on submanifolds of D(Σ): Fix a Riemannian metric g on M , and let g∗ be the
Riemannian metric induced on T ∗M (namely the Riemannian metric induced by
the Sasaki metric on the tangent bundle TM by the identification TM = T ∗M
induced by g). Given an orientable k-dimensional submanifold S of T ∗M , we denote
by µk the Riemannian volume form associated with the restriction of g∗ to S and
Vol(S) = Volg∗(S) =

∫
S µk. We denote by ‖ · ‖q the norm on TD(Σ) induced by gq

and by ‖ · ‖2 the usual Euclidean norm on �d.
Denote by 
d−1 the unit sphere in �d, and consider polar coordinates Φ :


d−1 ×�>0 → �d \{0} : (θ, r) �→ rθ. Since Σq is strictly starshaped with respect
to 0q, the maps

pr : Σq → 
d−1, p �→ p

‖p‖2
, ΦΣ : Σq ×�>0 → T ∗

qM\{0}, (p, r) �→ rp

are both diffeomorphisms. By means of these maps we define the diffeomorphism
u : �d \{0} → T ∗

qM\{0} by

u(θ) = pr−1(θ) for θ ∈ 
d−1,

u(Φ(r, θ)) = ΦΣ(r, u(θ)) for (θ, r) ∈ 
d−1 ×�>0 .

The map u sends the punctured unit ball Ḃ in �d to Ḋq(Σ), sends the sphere S(r)
of radius r to Σq(r) := ΦΣ(Σq, r) = rΣq , and its differential du sends the unit radial
vector field ∂

∂r to the Liouville vector field Y = p ∂
∂p . For each m ∈ � we have

Vol(ϕmH(Ḋq(Σ))) = Vol(ϕmH ◦ u(Ḃ)) =
∫
Ḃ

(ϕmH ◦ u)∗µd

=
∫ 1

0

(∫
S(r)

ι ∂
∂r

(ϕmH ◦ u)∗µd

)
dr.

For x∈ϕmH(Σq(r)) letN(x) be the unit vector normal to ϕmH(Σq(r)) in ϕmH(T ∗
qM)

and pointing outwards.

Lemma 4.4. For any z ∈ S(r),

ι ∂
∂r

(ϕmH ◦ u)∗µd(z) = 〈N(ϕmH(u(z))), du(z)ϕ
m
H(Y )〉 ((ϕmH ◦ u)∗ιNµd)(z). (10)
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Proof. Write ψ = ϕmH ◦ u. Decompose dzψ( ∂∂r ) = 〈N(ψ(z)), dzψ( ∂∂r )〉N(ψ(z)) + T

with T ∈ Tψ(z)ψ(Σq(r)). Given v1, . . . , vd−1 in TzS(r), the d-form µd(ψ(z)) vanishes
on the linearly dependent vectors dzψ(v1), . . . , dzψ(vd−1), T . Hence

ι ∂
∂r
ψ∗µd(v1, . . . , vd−1) =

〈
N(ψ(z)), dzψ

(
∂

∂r

)〉
×µd(dzψ(v1), . . . , dzψ(vd−1), N(ψ(z)))

=
〈
N(ψ(z)), dzψ

(
∂

∂r

)〉
ψ∗ιNµd(v1, . . . , vd−1).

Finally observe that dzψ( ∂∂r ) = dz(ϕmH ◦ u)( ∂∂r ) = du(z)ϕ
m
H(Y ).

Using (10) we can estimate

Vol(ϕmH(Ḋq(Σ))) ≤
∫ 1

0

(∫
S(r)

‖du(z)ϕ
m
H(Y )‖(ϕmH ◦ u)∗ιNµd

)
dr

≤ sup
Ḃ

‖du(z)ϕ
m
H(Y )‖

∫ 1

0

(∫
S(r)

(ϕmH ◦ u)∗ιNµd

)
dr

= sup
Ḃ

‖du(z)ϕ
m
H(Y )‖

∫ 1

0

Vol(ϕmH(Σq(r)))dr. (11)

For r > 0 consider the dilation δr : (q, p) �→ (q, rp) of T ∗M . By assumption, H ◦ δr =
r2H for all r > 0. Hence

ϕrtH = δ−1
r ◦ ϕtH ◦ δr for all t, r > 0. (12)

Therefore dϕmH(Y )=mdδ−1
m ◦ dϕ1

H(Y ). Since ‖dδ−1
m ‖=1, ‖dϕmH(Y )‖≤m‖dϕ1

H(Y )‖.
Set C = C(Σ) := supp∈Ḋq(Σ) ‖dϕ1

H(Y )‖ = maxp∈Σq ‖dϕ1
H(Y )‖. Then (11) yields

Vol(ϕmH(Ḋq(Σ))) ≤ mC

∫ 1

0

Vol(ϕmH(Σq(r)))dr. (13)

We denote by |det dϕmH | the Riemannian determinant of dϕmH , where ϕmH is seen
as a map Σq(r) → ϕmH(Σq(r)). Then∫ 1

0

Vol(ϕmH(Σq(r)))dr =
∫ 1

0

(∫
Σq(r)

|det dϕmH |dµd−1

)
dr

=
∫ 1

0

(∫
Σq

rd−1|det d(ϕmH ◦ δr)|dµd−1

)
dr. (14)

The determinant of δr : Σq(1) → Σq(r), (q, p) �→ (q, rp) is rd−1. Hence, with
(12), rd−1|det d(ϕmH ◦ δr)| = rd−1|det d(δr ◦ϕrmH )| = r2(d−1)|det dϕmrH | ≤ |det dϕmrH |.
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Together with (13) and (14) we find

Vol(ϕmH(Ḋq(Σ))) ≤ mC

∫ 1

0

(∫
Σq

|det dϕmrH |dµd−1

)
dr

= mC
1
m

∫ m
0

(∫
Σq

|det dϕrH |dµd−1

)
dr

= C

∫ m
0

Vol(ϕrH(Σq))dr.

The proposition follows by applying the following lemma, which is a slow version
of Lemma 3.24.2 in [75], to the function f(r) = Vol(ϕrH(Σq)).

Lemma 4.5. Let f : �>0 → �>0 be a continuous function. Then

lim sup
R→∞

1
logR

log
∫ R

0

f(r)dr ≤ 1 + lim sup
R→∞

log f(R)
logR

.

Proof. We can assume that

lim sup
R→∞

log f(R)
logR

<∞.

Let

A> lim sup
R→∞

log f(R)
logR

.

There exists R0 such that log f(r)≤A log r for all r≥R0, that is, f(r)≤ rA for all
r ≥ R0. Set M := max0≤r≤R0 f(r). Then f(r) ≤ max(M, rA) for all r > 0. Fix
R > R0 with M ≤ RA. Then∫ R

0

f(r)dr ≤ Rmax
[0,R]

f(r) ≤ Rmax(M,RA) ≤ RA+1.

Hence

1
logR

log
∫ R

0

f(r)dr ≤ A+ 1

and the lemma follows since A > lim supR→∞
log f(R)

logR was arbitrary.

Remark 4.6. The above argument, that owes much to [75, Sec. 3], also yields an
elementary proof of the identity

vol(Σq;ϕH |Σ) = vol(Dq(Σ);ϕH) (15)

for the volume growth. For manifolds M with γ(M) infinite, lower bounds for
the volume growth vol(ϕα) of Reeb flows thus follow from lower bounds for
vol(Dq(Σ);ϕH). In [59], lower bounds for vol(ϕα) were obtained from the identity

vol(ϕH |Σ) = vol(ϕH |D(Σ))
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which was proven by appealing to the Yomdin–Newhouse theorem equating volume
growth and topological entropy, as well as to a variational principle for topological
entropy due to Bowen. At the slow scale, however, the Yomdin–Newhouse theorem
is not known (cf. Remark 1.2(2)) and Bowen’s variational principle does not hold.

Step 2. A lower bound for the slow volume growth of Ḋq(Σ). Theorem 4.1
follows from Proposition 4.3 and the following proposition.

Proposition 4.7. slow-vol(Ḋq(Σ);ϕtH) ≥ γ(M).

Proof. This estimate can be extracted from [34] and [59]. We repeat the proof
for the reader’s convenience, omitting most of the technical details. The idea of
the proof is to show that for almost every point q′ ∈M the two Lagrangian discs
ϕmH(Dq(Σ)) and Dq′(Σ) intersect transversally in at least mγ(M) points. This then
implies that Vol(ϕmH(Dq(Σ))) grows at least like mγ(M), proving the proposition.
The main tool for proving this lower bound on the intersection points is the
Lagrangian Floer homology of these two discs, because its chain group is gener-
ated by these intersection points, and because it is isomorphic to the homology
of the space of based loops in M of length ≤ m by the Abbondandolo–Schwarz
isomorphism from [2]. The homology of this space grows like mγ(M) by Gromov’s
famous theorem from [40], which can be applied because M is of finite type.

Let U ⊂ M be a ball around q that covers less than half of the volume of M .
For ε ∈ (0, 1) define the open disc in Dq(Σ) of “radius” ε,

Dq(ε) = {(q, rp) ∈ Dq(Σ) | (q, p) ∈ Σq, 0 ≤ r < ε},

and the closed “annulus”Dq(ε, 1) = Dq(Σ)\Dq(ε). Recall thatH is the Hamiltonian
function defined by (8) with µ = 2.

Fix a Riemannian metric g on M , and let G : T ∗M → � be the corresponding
geodesic Hamiltonian. After multiplying g with a constant we can assume that
G ≤ H . Denote by Ωqq′M the space of piecewise smooth paths in M from q to q′,
and by Ωmqq′M its subspace of paths of g-length ≤ m. This inclusion induces the
map ιm∗ : H∗(Ωmqq′M) → H∗(Ωqq′M) in homology. Below, � denotes any field.

Proposition 4.8. For every m ∈ � there exists εm ∈ (0, 1) and an open and dense
subset Vm of M\U such that for every point q′ ∈ Vm the sets ϕmH(Dq(εm, 1)) and
Dq′(εm, 1) intersect transversally in at least dim ιm∗ H∗(Ωmqq′M ;�) many points.

Postponing the proof, we use Proposition 4.8 to prove Proposition 4.7, following
[33, §2.6] and [59, Sec. 5.1].

Case 1. Assume first that π1(M) has polynomial growth and that γ(Ω0M)<∞,
i.e. γ(M) <∞. By Proposition 3.5(ii) there exists p ∈ �∪{0} such that γ(Ω0M) =
γ(Ω0M ;�p). Since M is of finite type, M̃ is homotopy equivalent to a simply
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connected finite CW-complex. It thus follows from Gromov’s theorem in [40] applied
to M̃ that

lim sup
m→∞

1
logm

log dim ιm∗ H∗(Ωmqq′M ;�p) ≥ γ(M) for all q′ ∈M, (16)

see [34, Proposition 3(ii)]. (In [34], all asymptotic invariants are defined in terms of
lim inf, but all results continue to hold if the asymptotic invariants are defined in
terms of lim sup as in this paper. Actually, equality holds in (16) because M is of
finite type.) Fix δ > 0, and fix q0 ∈ M . We then find a sequence (mk) ⊂ � such
that

dim ιmk∗ H∗(Ωmk
qq0M ;�p) ≥ m

γ(M)−δ
k for all k.

Since M is bounded, we find k0 such that

dim ιmk∗ H∗(Ωmk

qq′M ;�p) ≥ m
γ(M)−2δ
k for all q′ ∈M and k ≥ k0.

For q′ in the set Vmk
⊂ M\U from Proposition 4.8 the sets ϕmk

H (Dq(εmk
, 1)) and

Dq′(εmk
, 1) intersect transversally and

#(ϕmk

H (Dq(εmk
, 1)) ∩Dq′(εmk

, 1)) ≥ dim ιmk∗ H∗(Ωmk

qq′M ;�p)

≥ m
γ(M)−2δ
k for k ≥ k0.

Since the projection pr : T ∗M → M is a Riemannian submersion with respect to
the Riemannian metrics g∗ and g, and since Vmk

⊂M\U has measure ≥ 1
2 Volg(M),

we obtain

Volg∗(ϕmk

H (Dq(εmk
, 1))) ≥ m

γ(M)−2δ
k

1
2

Volg(M) for k ≥ k0. (17)

We conclude that

slow-vol(Ḋq(Σ);ϕtH) := lim sup
m→∞

log Volg∗(ϕmH(Ḋq(Σ)))
logm

≥ lim sup
m→∞

log Volg∗(ϕmH(Dq(εm, 1)))
logm

(17)

≥ γ(M) − 2δ.

Since δ > 0 was arbitrary, slow-vol(Ḋq(Σ);ϕtH) ≥ γ(M).

Case 2. Assume now that π1(M) has polynomial growth and that γ(Ω0M) = ∞.
For N ∈ � we then find p ∈ � ∪ {0} such that γ(Ω0M ;�p) ≥ N . As in
Case 1 we conclude that slow-vol(Ḋq(Σ);ϕtH) ≥ N . Since N was arbitrary,
slow-vol(Ḋq(Σ);ϕtH) = ∞.

Case 3. Assume finally that γ(π1(M)) = ∞. Proposition 4.8 in particular implies
that

#(ϕmH(Dq(εm, 1)) ∩Dq′(εm, 1)) ≥ dim ιm0 H0(Ωmqq′M ;�) for all q′ ∈ Vm.



May 11, 2015 6:30 WSPC/243-JTA 1550016

Slow volume growth for Reeb flows 429

The right-hand side is the number of homotopy classes in π1(M, q, q′) that can be
represented by curves of length ≤ m. By assumption, this number grows faster than
every polynomial. As in Case 1 we conclude that Volg∗(ϕmH(Ḋq(Σ))) grows faster
than every polynomial, whence slow-vol(Ḋq(Σ);ϕtH) = ∞.

Proof of Proposition 4.8. We follow [59, Sec. 4], assuming that the reader
is familiar with Lagrangian Floer homology. Denote by P(H) the set of smooth
paths x : [0, 1] → T ∗M with x(0) ∈ T ∗

qM , x(1) ∈ T ∗
q′M that are solutions to

Hamilton’s equation ẋ(t) = XH(x(t)). The action of x ∈ P(H) is

AH(x) :=
∫ 1

0

(λ(ẋ(t)) −H(x(t)))dt,

where λ is the Liouville 1-form on T ∗M . Since H is homogeneous of degree two
and H−1(Σ) = 1

2 , and since ϕTH = ϕ1
TH , the set PT 2/2(H) := {x ∈ P(H) | AH(x) ≤

T 2/2} corresponds to the set ϕTH(Dq(Σ)) ∩Dq′(Σ) for each T > 0.
Fix m ∈ �. Since H is homogeneous of degree two, its Hamiltonian vector

field XH is homogeneous of degree one. Hence ‖XH(q, p)‖ → 0 uniformly in q as
|p| → 0. We can therefore choose εm ∈ (0, 1) so small that

ϕmH(Dq(εm)) ∩Dq′(εm) = ∅ for all q′ ∈M\U.
Choose a smooth function f : �≥0 → � such that

f(r) = 0 for r near 0, f(r) = r for r ≥ ε2m/2,

f(r) ≤ r and 0 ≤ f ′(r) ≤ 2 for all r.

The function K := f ◦H : T ∗M → � is smooth. Choosing εm smaller if necessary
we can also assume that

ϕmK(Dq(εm)) ∩Dq′(εm) = ∅ for all q′ ∈M\U.
Since K = H outside D(εm) it follows that

ϕmK(Dq(Σ)) ∩Dq′(Σ) = ϕmH(Dq(Σ)) ∩Dq′(Σ) for all q′ ∈M\U (18)

and that for q′ ∈ M\U this set corresponds to the set Pm2/2(K) of Hamiltonian
chords of XK from T ∗

qM to T ∗
q′M of action AK ≤ m2/2. It thus remains to show

that

#Pm2/2(K) ≥ dim ιm∗ H∗(Ωmqq′M ;�)

for an open and dense set Vm of points q′ ∈M\U and for any field �.
Let Vm(K) be the set of points q′ ∈ M\U for which ϕmK(Dq(Σ)) and Dq′(Σ)

intersect transversally. Since Dq(Σ) is compact, Vm(K) is open, and Vm(K) has
full measure by Sard’s theorem. Abbreviate a = m2/2. Fix q′ ∈ Vm(K). Then the
set Pa(K) is finite. The Floer chain group CFa(K) is the �-vector space freely
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generated by the chords in Pa(K). The Conley–Zehnder index of these chords
(normalized such that it agrees with the Morse index in case of a nondegenerate
geodesic chord) gives this module a grading ∗. The Floer boundary operator on
CFa∗(K) is a map of degree −1. Its homology is the Lagrangian Floer homology
HFa∗(K). Since the dimension of the homology HFa∗(K) is not greater than the
dimension of the chain group CFa∗(K), which equals #Pa(K), it suffices to show
that

dim HFa∗(K) ≥ dim ιm∗ H∗(Ωmqq′M ;�).

Recall that G : T ∗M → � is a geodesic Hamiltonian such that G ≤ H . Since Σ is
fiberwise starshaped with respect to the origin, we find a constant σ ≥ 1 such that
H ≤ σG. Then

G− := f ◦G ≤ f ◦H = K ≤ σG =: G+.

Set Dq(G±) = {(q, p) ∈ T ∗
qM |G±(q, p) ≤ 1

2}, and consider the set Vm(G±) of
points q′ ∈M\U for which ϕmG±(Dq(G±)) and Dq′(G±) intersect transversally. For
q′ ∈ Vm(G±) the Floer homology HFa∗(G±) is defined in the same way as HFa∗(K).
The set

Vm := Vm(K) ∩ Vm(G−) ∩ Vm(G+)

is open and dense in M\U , and for q′ ∈ Vm all the three Floer homologies HFa∗(K),
HFa∗(G−), HFa∗(G+) are defined.

There is a commutative diagram

HFa∗(G−)

ΦG−K

��

ΦG−G+ �� HFa/σ∗ (G+)

��

ASM �� H∗(Ωmqq′M ;�)

��
HFa∗(K)

ΦKG+ �� HFa∗(G+) ASM �� H∗(Ω
√
σm

qq′ M ;�)

Here, the three maps Φ between Floer homologies are Floer continuation maps, and
ΦG−G+ is an isomorphism. The upper map ASM is the composition

HFa/σ∗ (G+)
AS �� HMa/σ

∗ (L)
AM �� H∗(Ωmqq′M ;�)

of the Abbondandolo–Schwarz isomorphism from Floer homology to the Morse
homology of the Legendre transform L of G+ with the Abbondandolo–Majer iso-
morphism from this homology to the homology of Ωmqq′M , see [1] and [2]. (The
orientation of the moduli spaces for Lagrangian Floer homology in [2] is correct,
cf. [4].) Finally, the two unlabeled vertical arrows are induced by inclusion.

It follows that dim HFa∗(K) is at least the rank of the right vertical map. This
rank is at least dim ιm∗ H∗(Ωmqq′M ;�), as we wished to show.
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5. Proof of Theorem 2.11

Recall from Remark 2.12(1) that hypothesis (1) of Theorem 2.11(i) implies hypo-
thesis (2). We therefore restate Theorem 2.11 as follows.

Theorem 5.1. Let M be a closed manifold of dimension d ≥ 2, and let ϕtΣ be
a Reeb flow on Σ. Assume that there exists a point q ∈ M and T > 0 such that
ϕTΣ(Σq) = Σq.

(i) The fundamental group π1(M) is finite and H∗(M̃ ;�) is generated by one
element.

(ii) If in addition ϕtΣ(Σq) ∩ Σq = ∅ for all t ∈ (0, T ), then either M is simply
connected or M is homotopy equivalent to �Pd.

Proof of assertion (i) by Lagrangian Floer homology. By Corollary 8.1
in [20] (which is proven by using generating functions), π1(M) is finite. Hence M is
of finite type. Since ϕkTΣ (Σq) = Σq for all k ∈ �, we see that slow-vol(Σq, ϕtΣ) = 0.
Theorem 4.1 and Proposition 3.5(iii) now imply that M̃ has the same integral
cohomology ring as a CROSS.

In this section we use Rabinowitz–Floer homology to reprove assertion (i) of
Theorem 5.1 and to prove assertion (ii). This proof is quite close to the original
proof of the Bott–Samelson theorem in [11], but replaces Morse theory on the based
loop space by Lagrangian Rabinowitz–Floer homology. Rabinowitz–Floer homology
is a version of Floer homology built from the Hamiltonian orbits on a given contact
hypersurface (such as Σ) and is therefore particularly suited to study Hamiltonian
dynamics restricted to a hypersurface. While Rabinowitz–Floer homology for the
periodic orbit problem was introduced in [21], a version for Lagrangian intersections
was constructed by Merry in [68].

5.1. Preliminaries on Lagrangian Rabinowitz–Floer homology

In this section we describe two versions of Lagrangian Rabinowitz–Floer homology,
a Morse type version over �-coefficients and a Morse–Bott type version over �2-
coefficients. We shall use the first version to reprove assertion (i) and the second
version to prove assertion (ii) of Theorem 5.1.

Consider a smooth closed fiberwise starshaped hypersurface Σ in T ∗M . This
time we chooseH : T ∗M → � homogeneous of degree 1, and such thatH−1(0) = Σ.
More precisely, let Ĥ be as in (8) with µ = 1. Choose a smooth function f : �→ �

such that

f(r) = r for r ∈
(
−1

4
,
1
4

)
, f(r) = −1

2
for r ≤ −3

4
, f(r) =

1
2

for r ≥ 3
4
.

(19)

Then H = f ◦(Ĥ−1) is a smooth Hamiltonian function on T ∗M with H−1(0) = Σ,
and XH is the Reeb vector field on Σ in view of Lemma 4.2. As in the theorem we
assume that there exists a point q ∈M and T > 0 such that ϕTΣ(Σq) = Σq.
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As before, λ = p dq is the Liouville form on T ∗M . Let q′ ∈M be another point
(where the possibility q′ = q is not excluded). Denote by Pq′ the space of smooth
paths γ : [0, 1] → T ∗M with γ(0) ∈ T ∗

qM and γ(1) ∈ T ∗
q′M . The critical points of

the action functional

AH : Pq′ ×�→ �, (γ, η) �→
∫ 1

0

(λ(γ(t))(γ̇(t)) − ηH(γ(t)))dt

are the solutions (γ, η) of the problem

γ̇(t) = ηXH(γ(t)), γ(0) ∈ T ∗
qM, γ(1) ∈ T ∗

q′M,

∫ 1

0

H(γ(t))dt = 0. (20)

Since H is autonomous, H(γ(t)) = 0 for all t, i.e. γ ⊂ Σ. The solutions with η = 0
are the constant paths γ(t) ≡ v ∈ Σq (they exist only if q′ = q). The solutions
with η > 0 are the Hamiltonian chords on Σ from Σq to Σq′ with “period” η.
The solutions with η < 0 are the Hamiltonian chords on Σ from Σq to Σq′ with
“period” −η, traversed backwards.

At a critical point (γ, η), the action AH evaluates to

AH(γ, η) =
∫ 1

0

γ∗λ = η

∫ 1

0

λ(γ(t))(XH(γ(t)))dt = η, (21)

where for the first and second equality we have used (20) and for the third equality
that XH is the Reeb vector field. If q′ = q, we can identify the spheres (Σq, kT ) with
connected components of CritAH by the map (γ(0), kT ) �→ (γ, kT ). If in addition
ϕtΣ(Σq) ∩ Σq = ∅ for t ∈ (0, T ), then these spheres form all of CritAH,

CritAH =
∐
k∈�

(Σq, kT ).

Lemma 5.2. Suppose that ϕtΣ(Σq) ∩ Σq = ∅ for all t ∈ (0, T ). Then CritAH ⊂
Pq ×� is a Morse–Bott submanifold for AH .

Proof. Assume that (v̂, η̂) lies in the kernel of the Hessian of AH at the point
(γ, η) ∈ CritAH . Then η = kT for some k ∈ �. Define the path w : [0, 1] →
Tγ(0)T

∗M by

w(t) = dϕ−ηt
H (γ(t))v̂(t).

Since v̂(j) ∈ Tγ(j)T
∗
qM for j ∈ {0, 1},

w(0) ∈ Tγ(0)T
∗
qM, w(1) ∈ dϕ−η

H (γ(1))Tγ(1)T
∗
qM = Tγ(0)T

∗
qM. (22)

The assumption that (v̂, η̂) ∈ ker(HessAH(γ, η)) is equivalent to the system of
equations 

d

dt
w(t) = η̂XH(γ(0)), t ∈ [0, 1];∫ 1

0

dH(γ(0))w(t)dt = 0.

(23)
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Integrating the first equation, we obtain

w(1) = w(0) + η̂XH(γ(0)).

In view of (22) we conclude that η̂XH(γ(0))∈Tγ(0)T
∗
qM . Since XH(γ(0)) /∈

Tγ(0)T
∗
qM , we find that

η̂ = 0. (24)

In view of the first equation in (23) we deduce that w is constant. Combining this
with the second equation in (23) and with (22) we see that

w ∈ Tγ(0)Σq. (25)

From (24) and (25) we obtain the identification

ker Hess(AH(γ, η)) ∼= Tγ(0)Σq ∼= T(γ,η) CritAH .

This proves that AH is Morse–Bott.

The grading. We next discuss the grading of critical points. For a generic q′ �= q the
functional AH is Morse, and its critical set CritAH consists of isolated points (γ, η).
The index of (γ, η) is then the usual nondegenerate Maslov (or Conley–Zehnder, or
Robbin–Salamon) index of γ.

Assume now that q′ = q. As before, ξ= ker(λ|Σ) is the canonical contact distri-
bution. Define the Lagrangian distribution L along Σ by

Lv = ξv ∩ Vv, v ∈ Σ,

where Vv is the kernel of the projection dπ : TvT ∗M→Tπ(v)M . Given a chord
γ(t) = ϕtΣ(v), 0 ≤ t ≤ η, let µRS(γ, η) be the Robbin–Salamon index of the path
dϕtΣ(v)Lv , 0 ≤ t ≤ η, with respect to the Lagrangian distribution L|γ, see [81].
Assume now that CritAH ⊂ Pq ×� is a finite dimensional Morse–Bott submanifold
for AH . Fix a Morse function h : CritAH → �. Define the index of (γ, η) ∈ Crith as

ind(γ, η) = µRS(γ, η) − d− 1
2

+ σh(γ, η), (26)

where σh(γ, η) is the signature of h at (γ, η), namely half the difference of the
number of negative and positive eigenvalues of the Hessian of h at (γ, η). The
global shift − d−1

2 has been chosen to make this index agree with the Morse index
of a nondegenerate geodesic, or, more generally, of a Finsler chord on a fiberwise
convex hypersurface Σ, see [82, Proposition 6.3] and [2, Theorem 2.1]. Moreover,
we have added the signature index σh (and not the Morse index of h at (γ, η))
because in the definition of µRS(γ, η) half of the crossing number of the Lagrangian
path with L at the end point, namely 1

2 dim dϕηΣ(γ(0))Vγ(0) ∩ Lγ(η), is added. For
a thorough discussion we refer to [68]. Recall that

∐
k∈�(Σq, kT ) ⊂ CritAH .

Lemma 5.3. The Robbin–Salamon index µRS is constant along the connected com-
ponents (Σq, kT ) ⊂ CritAH .
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Proof. Let γ0, γ1 be two chords in CritAH of period kT . Since Σq is connected,
we find a smooth path v : [0, 1] → Σq from γ0(0) to γ1(0). The family of curves
γv(s) defined by γv(s)(t) = ϕtΣ(v(s)) is a homotopy from γ0 to γ1 in CritAH .

The map ϕkTΣ preserves ξ and maps Σq to itself. Hence its differential dϕkTΣ maps
the Maslov cycle L|Σq to itself: For each s the path dϕtΣ(v(s))Lv(s), 0 ≤ t ≤ kT ,
is a loop in the Lagrangian Grassmannian. It follows that γ0 and γ1 are “stratum
homotopic”, and hence µRS(γ0) = µRS(γ1) according to [81, Theorem 2.4].

Definition of RFH>0
∗ . First choose a point q′ �= q in M such that the functional

AH is Morse. The Rabinowitz–Floer chain group RFC>0
∗ (AH) is the graded free

�-module generated by the critical points of AH of positive action, and the bound-
ary operator is defined by an oriented count of smooth solutions (u, η) : �→ Pq′×�
of the problem {

∂su+ Jt(u)(∂tu− ηXH(u)) = 0,

∂sη +
∫ 1
0 H(u)dt = 0,

(27)

between critical points of index difference one. Here Jt, t ∈ [0, 1], is a dλ-
compatible family of almost complex structures on T ∗M , and the solutions
of (27) are oriented as for Lagrangian Floer homology [2]. The resulting homo-
logy, called the Rabinowitz–Floer homology of (Σ, T ∗

qM,T ∗
q′M), is denoted by

RFH>0
∗ (Σ, T ∗

qM,T ∗
q′M ;�). Details of the construction can be found in [21, 68].

We shall use the following result of Merry.

Lemma 5.4. RFH>0
∗ (Σ, T ∗

qM,T ∗
q′M ;�) ∼= H∗(ΩM ;�).

Proof. This isomorphism can be extracted from Merry’s work [68] in which he
considers the Morse–Bott situation q = q′ (see Lemma 5.5 below). In the Morse
situation at hand, substantial parts of Merry’s analysis can be omitted. We sketch
the line of arguments.

Recall that RFH>0
∗ (Σ, T ∗

qM,T ∗
q′M ;�) is defined as the Floer homology

HF∗(AH) of the action functional AH, where H :T ∗M→� is the function with
H−1(0) = Σ and with compactly supported differential constructed at the begin-
ning of this section. Also recall from (21) that at a critical point (γ, η) of AH ,

AH(γ, η) = η and |η| is the time that γ takes from Σq to Σq′ . (28)

Since q �= q′ we see that there is no (γ, η) ∈ CritAH with η = 0, that is, 0 is not a
critical value of AH .

Now choose a Riemannian metric g on M such that q and q′ are non-conjugate
along any geodesic from q to q′. Define Hg = f ◦ (|p| − 1), where f is the func-
tion defined in (19) and |p| is the norm on the fibers T ∗

qM induced by g, and set
Σg = H−1

g (0). The Rabinowitz–Floer homology RFH>0
∗ (Σg, T ∗

qM,T ∗
q′M ;�), which

is defined as the Floer homology HF>0
∗ (AHg ), is isomorphic to HF>0

∗ (AH),

RFH>0
∗ (Σ, T ∗

qM,T ∗
q′M ;�) := HF>0

∗ (AH) ∼= HF>0
∗ (AHg ). (29)
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Indeed, consider the smooth path of Hamiltonians Ht = (1 − t)H + tHg, t ∈ [0, 1],
from H to Hg. Their differentials have compact support. If Σ and Σg = H−1

g (0)
are sufficiently close, then each Ht is homogeneous of degree 1 in p near Σt :=
H−1
t (0). Then (28) holds for all functionals AHt , and hence 0 is not a critical value

of AHt , t ∈ [0, 1]. Therefore HF>0
∗ (AH) ∼= HF>0

∗ (AHg ) by the standard continuation
argument. In general, we choose a sequence 0 = t0 < t1 < · · · < tk = 1 such
that Σtj , Σtj+1 are sufficiently close, and repeat the above argument to show that
HF>0

∗ (AHtj+1 ) ∼= HF>0
∗ (AHtj ) for each j. Notice that the isomorphism (29) implies

that RFH>0
∗ (Σ, T ∗

qM,T ∗
q′M ;�) = 0 for ∗ < 0. Indeed, the chain group CF>0

∗ (AHg )
is generated by the critical points of AHg of positive action, which correspond to
geodesics, and the grading is given by the Maslov index, which for geodesics is equal
to the Morse index of geodesics, hence non-negative.

Next, consider the truly geodesic Hamiltonian G(q, p)= 1
2 |p|2 − 1

2 . The
Rabinowitz–Floer homology HF>0

∗ (AG) can still be defined, even though dG is
not compactly supported, [67], and it holds true that

HF>0
∗ (AHg ) ∼= HF>0

∗ (AG). (30)

This was shown in [67] for the non-filtered homologies, HF∗(AHg ) ∼= HF∗(AG).
To see that the filtered version (30) also holds, consider the path of Hamiltonians
Gt = (1 − t)Hg + tG. Then G−1

t (0) = ΣG does not depend on t, and along ΣG
the Hamiltonian vector field XGt =XG is the geodesic vector field for all t ∈ [0, 1].
Since the Hamiltonian chords γt of critical points (γt, ηt) of AGt lie on ΣG, the set
of critical values of AGt does not depend on t, and in particular stays away from 0.
Hence (30) follows.

Finally, there are isomorphisms

HF>0
∗ (AG) ∼= HM>0

∗ (SL) ∼= H∗(ΩM ;�). (31)

Here, HM>0
∗ (SL) is the positive action part of the Morse homology of the free

time action functional SL associated with the Legendre transform L of G. The
isomorphisms in (31) are clear by now for ∗ < 0, since then the three groups
vanish. (The generators of the chain group CM>0

∗ (L) underlying HM>0
∗ (SL) are also

geodesics, and the grading is also by the Morse index.) For general degree ∗, the
first isomorphism in (31) is analogous to the Abbondandolo–Schwarz isomorphism
from [2], and is proven in Theorem 3.16 of [68]: With S = q ∈ M and d = 0, and
with a = 0 and b = ∞, this theorem provides an isomorphism of chain complexes

(ΦSA)∞0 : CM>0
∗ (L) ∼= CF>0

∗ (AG)

and therefore HM>0
∗ (SL) ∼= HF>0

∗ (AG). The second isomorphism in (31) is ana-
logous to the Abbondandolo–Majer isomorphism from [1], and is proven in Theo-
rem 3.12 of [68]. Strictly speaking, Merry worked with �2-coefficients. With coherent
orientations of the solutions of (27) chosen as in [2], the isomorphisms (31) hold
over �-coefficients, however.
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Composing the isomorphisms (29), (30) and (31) we find the isomorphism
claimed in the lemma.

Now take q = q′ and assume that ϕtΣ(Σq) ∩ Σq = ∅ for all t ∈ (0, T ). By
Lemma 5.2 the functional AH is Morse–Bott. In this case, the Rabinowitz–Floer
chain complex can be defined as follows. Each component (Σq, kT ) is diffeomorphic
to a sphere of dimension d− 1. We can therefore choose a Morse function h : Σq → �

with exactly two critical points, a minimum c− and a maximum c+. Their Morse
indices iMorse are 0 and d− 1. The Rabinowitz–Floer chain complex RFC>0

∗ (AH , h)
is the graded free �2-module generated by c−k and c+k , where c−k (respectively, c+k )
corresponds to the chord γ of period kT > 0 starting at c−k (respectively, c+k ).
Denote by µ0 the Robbin–Salamon index of one (and hence, by Lemma 5.3, of any)
Reeb chord (γ, T ) of period T starting at Σq. By the concatenation property of the
Robbin–Salamon index, µRS(c±k ) = kµ0. Since σh(c−k ) = − d−1

2 and σh(c+k ) = d−1
2 ,

definition (26) shows that the indices of c±k are

ind(c−k ) = kµ0 − d+ 1, ind(c+k ) = kµ0, k ≥ 1. (32)

The boundary operator ∂ of degree −1 is defined by an un-oriented count of gradient
flow lines with cascades, consisting of gradient flow lines of −h on CritAH and of
solutions to (27), see [21, 68]. It holds true that ∂2 = 0. This can be proven either
by working with generic families of almost complex structures Jt, see [3], or by
interpreting the space of broken flow lines as the 0-set of a Fredholm section from
an M -polyfold to an M -polyfold bundle, and by applying a generic perturbation in
this set-up, [21]. The resulting homology is denoted by RFH>0

∗ (Σ, T ∗
qM ;�2). We

refer again to [21, 68] for details of the construction. The following isomorphism is
a special case of Merry’s work [68].

Lemma 5.5. RFH>0
∗ (Σ, T ∗

qM ;�2) ∼= H∗(ΩM, q;�2).

Here, q ⊂ ΩqM =ΩM stands for the subset formed by the constant path at q.
The proof is along the same lines as the proof of Lemma 5.4. This time, however,
0 is a critical value of the functionals AH , AHg , AG and SL, since q = q′. But
there exists ε > 0 such that the interval (0, ε] is disjoint from the set of critical
values of these functionals and of the functionals interpolating between them. Hence
Lemma 5.5 follows from Theorem 3.16 (with S = q ∈M and d = 0, and with a = ε

and b = ∞) and from Theorem 3.12 in [68].

5.2. Proof of Theorem 5.1(i)

Recall that we have already proved Theorem 5.1(i) with the help of Theorem 4.1,
which was proved by Lagrangian Floer homology. We now give another proof using
Rabinowitz–Floer homology.

The family Lt = ϕtΣ(Σq), 0 ≤ t ≤ T , forms a positive Legendrian loop. Corol-
lary 8.1 in [20] and our assumption d ≥ 2 imply that π1(M) is finite.
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Choose a point q′ ∈ M such that AH : Pq′ ×� → � is Morse. Then there are
only finitely many, say N , critical points in CritAH with η ∈ [0, T ]. Choose k0 such
that

|µRS(γ, η)| ≤ k0 for all chords (γ, η) from q to q′ with η ∈ [0, T ]. (33)

Recall that µ0 is the Robbin–Salamon index of one (and hence, by Lemma 5.3, of
any) Reeb chord (γ, T ) of period T starting at Σq.

We first rule out the case µ0 ≤ 0. In this case, (26), (33) and the concatenation
property of the Robbin–Salamon index imply that RFH>0

k (Σ, T ∗
qM,T ∗

q′M ;�) = {0}
for every k ≥ k0. By Merry’s isomorphism in Lemma 5.4,

Hk(ΩM ;�) = {0}, k ≥ k0.

In particular, Hk(ΩM̃ ; Z)=Hk(Ω0M ; Z)= {0} for all k≥ k0. Hence Hk(ΩM̃ ;�)=
{0} for k ≥ k0 + 1 and every field �, by the universal coefficient theorem. Now
Proposition 11 on p. 483 of [86] shows that Hk(M̃ ;�) = {0} for k ≥ 1 and every
field �. Hence Hk(M̃ ;�) = {0} for k ≥ 1 (see [44, Corollary 3A.7(a)]). Therefore,
M̃ is contractible and π1(M) is infinite, a contradiction. This proves that µ0 > 0.

If µ0> 0, the fact that ϕTΣ(Σq)= Σq, (26), (33) and the concatenation property of
the Robbin–Salamon index imply that the numbers dim RFH>0

k (Σ, T ∗
qM,T ∗

q′M ;�)
are uniformly bounded. (An upper bound is (2k0 +1)N .) Together with Lemma 5.4
it follows that the sequence dimHk(ΩM ;�) is uniformly bounded. (In particu-
lar, dimH0(ΩM ;�) and hence, again, π1(M) is finite.) Now McCleary’s theorem
from [65] implies that the integral cohomology ring of M̃ is generated by one
element.

5.3. Proof of Theorem 5.1(ii)

By assumption, ϕtΣ(Σq)∩Σq = ∅ for every t ∈ (0, T ). Recall from Sec. 5.1 that the
chain group of RFH>0

∗ (Σ, T ∗
qM ;�2) is generated by the critical points c±k , k ≥ 1,

with indices

ind(c−k ) = kµ0 − d+ 1, ind(c+k ) = kµ0, k ≥ 1.

By the previous proof, µ0 ≥ 1. Hence there is at most one critical point of index
zero. Together with Merry’s isomorphism in Lemma 5.5 and the reduced long exact
�2-homology sequence of the pair (ΩM, q) we find that

RFH>0
0 (Σ, T ∗

qM ;�2) ∼= H0(ΩM, q;�2) ∼= H̃0(ΩM ;�2)

is 0 or �2. Hence H0(ΩM ;�2) is �2 or isomorphic to �2 ⊕�2. Hence ΩM has one
or two components, i.e. π1(M) is trivial or �2.

Assume that M is a closed manifold with π1(M) = �2 and such that the
ring H∗(M̃ ;�) is generated by one element. Then either M is homotopy equiv-
alent to �Pd or M̃ is homotopy equivalent to �P2n+1 (see Corollary 3.8 of [34]
and the references therein). We must exclude the latter possibility. Write d =
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2(2n + 1) ≥ 6. Assume first that µ0 ≥ 2. Then ind(c−1 )=µ0 − d+1 < ind(c)− 1
for all other critical points c. Hence c−1 is a generator of RFH>0

∗ (Σ, T ∗
qM ;�2). Since

H0(ΩM, q;�2) = �2, the isomorphism in Lemma 5.5 implies that ind(c−1 ) = 0, i.e.
µ0 = d− 1. Recall that

H∗(Ω�P2n+1;�2) =

{
�2 if ∗ = 0, 1, d, d+ 1, 2d, 2d+ 1, . . . ,

0 otherwise.

Since H∗(ΩM ;�2)=H∗(Ω�P2n+1;�2)⊕H∗(Ω�P2n+1;�2), we in particular have
H2d(ΩM ;�2)=�2 ⊕�2. Moreover, H2d(Md;�2)= 0, and so RFH>0

2d (Σ, T ∗
qM ;�2)

= H2d(ΩM, q;�2) = �2 ⊕ �2. In order to generate this homology, we need an
integral solution (k1, k2) of the system

k1µ0 − (d− 1) = 2d, k2µ0 = 2d.

Since µ0 = d− 1, there is no such solution, however.
Assume now that µ0 = 1. By (32) and since d ≥ 6, the indices of the critical

points form the increasing sequence

ind(c−1 ) = −d+ 2, ind(c−2 ) = −d+ 3,−d+ 4, . . . . (34)

If the chord (γ, T ) underlying c−1 were contractible, then the chords (γ, kT )
underlying any other critical point were contractible too. This contradicts the
isomorphism in Lemma 5.5, according to which these critical points must also
generate the �2-homology of the non-contractible component of (ΩM, q). Hence
(γ, T ) is not contractible. Since π1(M)=�2, the chord (γ, 2T ) is then contractible.
Since the connecting orbits used to define the boundary operator are cascades of
Morse flow lines and Floer strips, the boundary operator preserves the compo-
nents of ΩM . It follows that c−1 cannot be the boundary of c−2 . In view of (34) we
conclude that RFH>0

−d+2(Σ, T
∗
qM ;�2) = �2. This contradicts Lemma 5.5 because

−d+ 2 < 0.

Remark 5.6. The classical proof of the Bott–Samelson theorem for geodesic flows
in [16] and [11, Theorems 7.23 and 7.37] uses (apart from results of rational homo-
topy theory) classical Morse theory for the energy functional and the reversibility
of the flow. This proof also applies to symmetric Finsler flows. For (non-reversible)
Finsler flows, it suffices to use Morse homology. For (non-convex) Reeb flows, a
Floer homology is needed.

The classical proof also uses several other properties specific to geodesic flows.
We find that, once a tool such as Rabinowitz–Floer homology with its basic prop-
erties is at disposal, the proof becomes more conceptual than the original proof
in [11, 16]. One reason for the simplification is Arnold’s geometric description of
the Maslov index and the handy properties of its generalization by Robbin and
Salamon.
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6. Proof of Theorem 2.13

In this section we prove Theorem 2.13, restated as:

Theorem 6.1. Let M be a closed manifold of dimension d ≥ 2, and let {Lt}t∈[0,1]

be a positive Legendrian isotopy in the spherization (S∗M, ξ) with L0 = L1 = S∗
qM .

Then the fundamental group of M is finite and the integral cohomology ring of the
universal cover of M is the one of a CROSS.

Proof. Consider a co-oriented contact manifold (V, α). Recall that there is a bijec-
tion between time-dependent functions on (V, α) and contact isotopies, see [37, §2.3].
The contact Hamiltonian h : �×V → � of the contact isotopy {ϕt}t∈� is given by

h(t, ϕt(x)) = αϕt(x)

(
d

dt
ϕt(x)
)
. (35)

The contact isotopy {ϕt} is called positive if h is positive, and {ϕt} is called twisted
periodic if h is periodic in t.

Proposition 6.2. Let L be a closed Legendrian submanifold of the co-oriented
contact manifold (V, α). Given a positive Legendrian isotopy {Lt}t∈[0,1] from L to L,
there exists a positive and twisted periodic contact isotopy {ϕt}t∈� with ϕ1(L) = L.

Proof. By the Legendrian isotopy extension theorem (see e.g. [37, Theorem 2.6.2])
there exists a contact isotopy {ψt}t∈[0,1] of (V, α) such that ψt(L) = Lt. Since Lt
is positive, the contact Hamiltonian h of ψt, which is given by (35), is positive
along Lt. After changing h outside a neighborhood of the orbit Lt, we can assume
that h ≥ ∆ > 0 on all of [0, 1]× V .

The idea of the proof is simple: Instead of moving along the contact isotopy ϕth
generated by h, we move along the Reeb flow ϕtR for times t ∈ [0, ε]∪ [1− ε, 1], and
for t ∈ (ε, 1 − ε) we move along ϕ−1

ε′R ◦ ϕth, where ε′ > 0 is chosen such that the
total contribution of the Reeb flow vanishes. The composite flow is then 1-periodic.
Moreover, for ε small, ε′ will be small too, and hence the flow is positive.

Fix ε > 0. Choose a smooth function σ : [0, 1] → [0, 1] with non-negative
derivative such that σ(t) = 0 for t ∈ [0, ε], σ(t) = 1 for t ∈ [1−ε, 1] and σ′(t) = 1 for
t ∈ [2ε, 1 − 2ε], see Fig. 1. Then the contact Hamiltonian hσ(t, x) = σ′(t)h(σ(t), x)
is non-negative, vanishes for t ∈ [0, ε] ∪ [1 − ε, 1] and

hσ(t, ·) ≥ ∆ for t ∈ [2ε, 1 − 2ε]. (36)

The contact isotopy ϕthσ
is the time-reparametrization of ϕth by σ.

The contact Hamiltonian of the Reeb vector field R is the constant function
r(x) = 1. Choose a smooth function τ : [0, 1] → � such that τ ′(t) = 1 for t ∈
[0, 2ε] ∪ [1 − 2ε, 1], τ ′(t) = −δ for t ∈ [3ε, 1 − 3ε], τ ′(t) ∈ [−δ, 1] for all t, and such
that
∫ 1
0
τ ′(t)dt = 0, see Fig. 1. The flow ϕtrτ

of rτ (t, x) := τ ′(t)r(τ(t), x) = τ ′(t)
is a reparametrized Reeb flow with ϕ1

rτ
= id. Moreover, ϕ1

rτ
extends to a smooth

1-periodic flow {ϕtrτ
}t∈�.
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Fig. 1. The graphs of σ and τ ′.

The contact Hamiltonian

h̃(t, x) := (rτ#hσ)(t, x) := τ ′(t) + hσ(t, ϕ−t
rτ

(x))

generates the contact isotopy ϕt
eh

= ϕtrτ
◦ ϕthσ

. Since ϕ1
rτ

= id we have ϕ1
eh
(L) =

ϕ1
hσ

(L) = L. Since hσ vanishes for t near 0 and 1, h̃ is 1-periodic in t. Clearly, h̃ is
positive for t ∈ [0, 2ε] ∪ [1 − 2ε, 1]. For t ∈ [2ε, 1 − 2ε] we have in view of (36) that
h̃(t, ·) ≥ −δ + ∆. Now choose ε > 0 so small that δ < ∆.

Applying Proposition 6.2 in the situation of Theorem 6.1 we obtain a positive
and twisted periodic contact isotopy {ϕt}t∈� of (S∗M, ξ) with ϕ1(S∗

qM) = S∗
qM .

Theorem 2.13 now follows from Theorem 7.1 in [5]. (To obtain the result over
integral coefficients, one should apply Proposition 3.5(iii), that we deduced from
McCleary’s theorem, instead of Sullivan’s minimal models.) For the reader’s con-
venience we outline the proof, working in the framework of Sec. 5.

Let q be as in Theorem 6.1. Choose q′ �= q in M such that
⋃
t∈� ϕ

t(S∗
qM) and

S∗
q′M intersect transversally. Choose a Riemannian metric g on M such that q′ is

not conjugate to q along any geodesic. Let Σ ⊂ T ∗M be the unit cosphere bundle
of g. As in Sec. 2.1 we identify (S∗M, ξ) with (Σ, kerλΣ) where λΣ = p dq|Σ.

More generally, let h : � × Σ → � be a positive and 1-periodic function, let
{φth} be the positive and twisted periodic contact isotopy on (Σ, λΣ) generated
by h, as in (35), and assume that

⋃
t∈� φ

t
h(Σq) and Σq′ intersect transversally. In

this situation, Albers and Frauenfelder [5, §6] constructed a Morse type Rabinowitz–
Floer homology RFH>0

∗ ({φth}, T ∗
qM,T ∗

q′M ;�) with the following properties.

(1) The chain groups of RFH>0
∗ ({φth}, T ∗

qM,T ∗
q′M ;�) are generated by chords

{φth(v)}0≤t≤η from Σq to Σq′ of action η > 0.
(2) If {φth′} is another contact isotopy as above, then

RFH>0
∗ ({φth′}, T ∗

qM,T ∗
q′M ;�) ∼= RFH>0

∗ ({φth}, T ∗
qM,T ∗

q′M ;�).
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(3) If h ≡ 1, then RFH>0
∗ ({φth}, T ∗

qM,Tq′M ;�) is the Rabinowitz–Floer homology
RFH>0

∗ (Σ, T ∗
qM,Tq′M ;�) described in Sec. 5.1.

Property 2 is proven exactly as the invariance (29) in the proof of Lemma 5.4:
The functions hs := (1 − s)h′ + sh, s ∈ [0, 1], are positive and 1-periodic. This and
q′ �= q imply that for every s there is no chord of φths

from Σq to Σq′ of action zero.
Let now ϕt be the positive and twisted periodic contact isotopy with ϕ1(Σq)=Σq

guaranteed by Proposition 6.2, and let φth′ be the co-geodesic flow of g on Σ, which
is generated by h′ ≡ 1. By Properties 2 and 3 and by Lemma 5.4,

RFH>0
∗ ({ϕt}, T ∗

qM,T ∗
q′M ;�) ∼= H∗(ΩM ;�).

Lemma 5.3 continues to hold for ϕt with the same proof: Given k ∈ � the Robbin–
Salamon index is the same for all chords {ϕt(v)}0≤t≤k, v ∈ Σq, from Σq to Σq.
Theorem 6.1 now follows exactly as in the proof of Theorem 5.1(i) in Sec. 5.2.

Remark 6.3. The Morse–Bott type Rabinowitz–Floer homology constructed in
Sec. 5.1 can be generalized to positive and twisted periodic contact isotopies {ϕt}
of (S∗M, ξ) with ϕ1(S∗

qM) = S∗
qM and ϕt(S∗

qM) ∩ S∗
qM = ∅ for all t ∈ (0, 1). It

then follows as in Sec. 5.3 that either M is simply connected or M is homotopy
equivalent to �Pd. The missing ingredient for the proof is the generalization of
Lemma 5.2. It can be achieved along the lines of the proof of Lemma 5.2 in [35],
see [23].

7. Conjectures, Questions, and the Minimal Slow
Entropy Problem

7.1. A conjecture on Reeb flows on fast manifolds, and its

relation to other conjectures

In Theorem 2.6 we have only considered slow manifolds. The reason is that we
expect that for all other manifolds, any Reeb flow has positive topological entropy.
Recall that a closed manifold is fast if it is not slow, that is, γ(M) = γ(π1(M)) +
γ(Ω0M) = ∞.

Conjecture 7.1. If M is fast, then every Reeb flow on (S∗M, ξ) has positive topo-
logical entropy.

This conjecture is motivated by several partial results and by other conjectures.

C1 (No intermediate growth) A finitely presented group either has polynomial
or exponential growth.

This was asked by Milnor [72] and Wolf [91] for all finitely generated groups. Coun-
terexamples were found by Grigorchuk [38], but it is still believed that there are no
finitely presented counterexamples, cf. [62, Problem 6].
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C2 (Dichotomy over finite fields) For every finite simply connected CW com-
plex K and every prime number p, the homology H∗(ΩK;�p) is either finite or
grows exponentially.

Over the rational numbers, this is the dichotomy of rational homotopy theory,
[31, 32]. A positive answer is known for primes p > dimK, see [31].

C3 (Non-finite type implies positive topological entropy) If M is not of
finite type, then every Reeb flow on (S∗M, ξ) has positive topological entropy.

Lemma 7.2. Conjecture 7.1 follows from Conjectures C1, C2, C3.

Proof. In view of C3 we can assume that M is of finite type. Since M is fast,
γ(π1(M)) = ∞ or γ(Ω0M) = ∞. In the first case, π1(M) has exponential growth
by C1. In the second case, Lemma 3.4 and the McGibbon–Wilkerson Theorem used
in its proof show that γ(Ω0M ;�p) = ∞ for some prime number p. Hence C2 implies
that H∗(Ω0M ;�p) grows exponentially. In both cases, Conjecture 7.1 follows from
the main result of [59].

One way of proving C3 is to prove the following conjecture, which is motivated
by the Question in [78, p. 289].

C3′ For every manifold M not of finite type, there exists a simply connected
finite CW-complex K and a map f :K→M such that, with Ωf∗ :H∗(ΩK;�)→
H∗(ΩM ;�) the induced map, dim(Ωf∗(H∗(ΩK;�))) grows exponentially.

Indeed, by [59], C3′ would imply that every Reeb flow on (S∗M, ξ) has posi-
tive topological entropy. Notice that by Proposition A.1, Conjecture 7.1 holds for
dimM ≤ 3.

7.2. The minimal slow entropy problem

Given a closed orientable manifold M , define the minimal entropy of M by

h(M) := inf{htop(ϕg) | g is a Riemannian metric on M with Vol(M, g) = 1}.
Here, ϕg is the time-1-map of the geodesic flow of g, and Vol(M, g) is the volume
of M calculated with respect to g.

Problem I. Compute h(M).

Problem II. Is the infimum h(M) attained?

Problem III. If h(M) is attained, characterize the minimizing Riemannian
metrics.

The minimizing metrics can be seen as the “dynamically best” metrics on M .
Important results on Problem I are due to Dinaburg, Švarc and Milnor, Man-
ning, Gromov, Paternain and others, see [75]. Problems II and III were solved by
Katok [53] for surfaces, and Problem III was solved by Besson–Courtois–Gallot [13]
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for manifolds that admit a locally symmetric Riemannian metric of negative curva-
ture. Problem II was studied in [6] for 3-manifolds and in [77] for complex surfaces.

Consider now the class of manifolds with h(M) = 0. Complete lists of such
manifolds are known for 3-dimensional manifolds [6], for simply connected 4-and 5-
manifolds [76] and for complex surfaces [77]. For these manifolds we can reconsider
the above problems at a finer scale, say for slow entropy, or, as we do here, for the
slow volume growth: Define the minimal slow volume growth of M by

slow-vol(M) := inf{slow-vol(ϕg) | g is a Riemannian metric on M}.
Note that here it is not necessary to scale the metrics to have volume equal to 1.
Also note that this number may be infinite even if h(M) vanishes and is attained.
(We do not know an example for this, however.)

Problem i. Compute slow-vol(M).

Problem ii. Is the infimum slow-vol(M) finite and attained?

Problem iii. If slow-vol(M) is finite and attained, characterize the minimizing
Riemannian metrics.

The estimate slow-vol(M) ≥ γ(M) − 1, that follows from Theorem 2.6, is
useful to attack Problems i and ii. In dimension 3 this estimate turned out to be
sharp, and Proposition A.1(ii) solves Problems i and ii. In view of the lists in [76]
and [78, Theorem B] it seems possible to solve Problems i and ii also for simply
connected 4- and 5-manifolds and for complex surfaces.

Question 7.3. Is it true that slow-vol(M) = γ(M) − 1 for all orientable closed
manifolds?

While the answer to Problem II is no for most manifolds, we do not know of an
example where the answer to Problem ii is no.

Question 7.4. If h(M) = 0, is it true that slow-vol(M) is finite and attained?

Problem iii looks harder. For instance, on spheres there are infinite-dimensional
families of Riemannian metrics with periodic geodesic flows (the Zoll metrics),
see [11]. Recall from Proposition 2.9 that slow-vol(M) = 0 implies that M = S1

or that M has the integral cohomology ring of a CROSS.

Question 7.5. Is it true that slow-vol(ϕg) = 0 only if ϕg is periodic?

For tori, Problem iii looks more accessible. The following question is suggested
by [57] where it is shown that flat metrics on 2-tori are local minimizers of slow
entropy. Notice that on tori, slow-vol(ϕg) = slow-vol(T d) = d − 1 for all flat
metrics.

Question 7.6. Is it true that on the torus T d, slow-vol(ϕg) = d − 1 only if g is
flat?
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While slow-vol(M) is a diffeomorphism invariant, γ(M) is only a homotopy
invariant.

Question 7.7. Can slow-vol distinguish smooth structures? In particular, are
there exotic spheres with slow-vol(M) > 0?

All the above problems can be posed equally well for the larger class of Reeb
flows on spherizations (S∗M, ξ) (where for Problems I–III one should normalize the
contact forms by

∫
S∗M α ∧ (dα)d−1 = 1). Here we only consider the slow volume

growth and define

slow-vol(M, ξ) := inf{slow-vol(ϕα) |ϕα is a Reeb flow on (S∗M, ξ)}.
Of course, slow-vol(M, ξ) ≤ slow-vol(M). Our impression is that geodesic flows
are less complicated than general Reeb flows. We therefore ask

Question 7.8. Is it always true that slow-vol(M, ξ) = slow-vol(M)?

Note that a positive answer to Question 7.3 implies a positive answer to Ques-
tion 7.8. In view of Remark 2.12(3) there exist Reeb flows ϕα on (S∗S2, ξ) that are
periodic (and hence minimize slow-vol(M, ξ)) but are not geodesic flows.

Question 7.9. Are there Reeb flows ϕα on spherizations with slow-vol(ϕα) = 0,
or that are even periodic, but are not conjugate to a Finsler flow?

Appendix A. Computation of γ(M) for 3-Manifolds

For surfaces, γ(M) is easy to compute: γ(M) = 1 for the 2-sphere and the projective
plane, γ(M) = 2 for the torus and the Klein bottle, and γ(M) is infinite for all
other closed surfaces. It turns out that γ(M) can be computed also for all closed
3-manifolds.

We recall that a finitely generated group is said to have exponential growth if
for some (and hence any) set of generators S,

lim sup
m→∞

log γS(m)
m

> 0,

compare with Definition (2).

Proposition A.1. Let M be a closed 3-manifold.

(i) The fundamental group of M has either exponential or polynomial growth.
(ii) γ(M) < ∞ if and only if π1(M) has polynomial growth. The manifolds with

this property are, up to diffeomorphism:

(1) the quotients of S3, for which γ(M) = 1;
(2) the four compact quotients of S2 ×�, for which γ(M) = 2;
(3) the finite quotients of T 3, for which γ(M) = 3;
(4) the nontrivial circle bundles over T 2, for which γ(M) = 4.
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Remark A.2. (1) It is conceivable that every finitely presented group has either
exponential or polynomial growth, cf. the discussion in Sec. 7. That this is so for
3-manifold groups does not follow without using the solution of the geometrization
conjecture.a

(2) The manifolds in (ii) are completely understood:
(1) The compact quotients of S3 of constant curvature were classified by H. Hopf

in 1925, and de Rham showed that this classification agrees, up to isometry, with
the one up to diffeomorphism. By the proof of Thurston’s Elliptization Conjecture,
all compact 3-manifolds with finite fundamental group are diffeomorphic to such
a quotient. The 3-dimensional lens spaces (with cyclic fundamental group) form
an infinite family of examples; an example with non-cyclic fundamental group is
the Poincaré icosahedral manifold. For the complete list we refer to [92, Sec. 7.4]
or [85, 88].

(2) The manifold S2 × � has only four compact quotients, namely the two
S2-bundles over S1 and �P2 ×S1 and �P3 #�P3, see [85].

(3) The compact quotients of Euclidean space �n by discrete isometry groups
were classified by Bieberbach. These manifolds are determined, up to diffeomor-
phism, by their fundamental group. They are finite quotients of T n. In dimension
three, there are ten such manifolds, up to diffeomorphism. The six orientable ones
are of the form T 3/Φ, where Φ ⊂ GL(3,�) is either cyclic of order 1, 2, 3, 4, or 6,
or is isomorphic to �2 ⊕�2, see [92, Sec. 3.5] or [85, 88]. If a closed manifold M is
finitely covered by T 3, then M is diffeomorphic to a flat manifold, ([85, p. 448]).

(4) The circle bundles in (4) can also be described as quotients of the Heisenberg
manifold H/H1 (see the end of the subsequent proof).

The examples in (1) and (4) are orientable. (For (1) this follows from the Lef-
schetz Fixed Point Theorem, and for (4) from the fact that the elements of the
Heisenberg group have determinant 1.) Thus only six of the manifolds in Proposi-
tion A.1 are non-orientable.

Proof of Proposition A.1. We shall use some 3-manifold basics as pre-
sented in [46, 49], as well as Thurston’s classification of geometric structures on
3-manifolds, for which we refer to [15, 85, 88]. We shall also have the opportu-
nity to use Perelman’s proof of the geometrization conjecture, for which we refer
to [12, 19, 55, 69]. Short and very nice surveys on some of these topics are [47, 73].

Proof of (i). We will see in the proof of (ii) that if π1(M) has subexponential
growth, then M belongs to the list in (ii), and π1(M) has polynomial growth of
order 0, 1, 3, or 4.

Proof of (ii). A main ingredient of the proof is the following:

aWe thank Michel Boileau for explaining this to us.
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Lemma A.3. Consider a closed orientable 3-manifold M . If π1(M) has subexpo-
nential growth, then M admits a geometric structure modeled on one of the four
geometries


3, 
2 ×�, �3, Nil .

Proof. The proof can be extracted from [6], and is repeated here for the reader’s
convenience. We distinguish several cases.

Case 1. M is not prime. This means that M can be written as a connected sum
M = M1#M2 with both π1(M1) and π1(M2) nontrivial. By the Seifert–Van Kam-
pen Theorem, π1(M) is the free product π1(M1) ∗ π1(M2). It follows from the
existence of normal forms for free products that π1(M1) ∗ π1(M2) contains a free
subgroup of rank 2 unless π1(M1) = π1(M2) = �2, see Exercise-with-hints 19 in
Sec. 4.1 of [60]. Our hypothesis on π1(M) thus implies π1(M1) = π1(M2) = �2,
and so M = �P3 #�P3. This manifold has a geometric structure modeled on the
geometry 
2 ×�, see [85, p. 457].

Case 2.M is prime, but not irreducible. ThenM = S2×S1, see [46, Proposition 1.4]
or [49, Lemma 3.13]. In particular, M has a geometric structure modeled on 
2×�.

Case 3. M is irreducible. We distinguish two subcases:

Subcase 3.A. The torus decomposition of M is nontrivial. This means thatM con-
tains an incompressible embedded 2-torus. Since M is irreducible and orientable,
the Sphere Theorem implies π2(M) = 0, see [46, Theorem 3.8] or [49, Theorem 4.3].
Theorem 4.5, Lemma 4.7 and Corollary 4.10 of [28] now imply that either π1(M)
contains a free subgroup of rank 2 or M is finitely covered by a T 2-bundle over
S1. In the first case, π1(M) has exponential growth, contrary to our assumption.
In the second case, M admits a geometric structure modeled on �3 or Nil or Sol,
cf. [85, Theorem 5.5]. If M admits a geometric structure modeled on Sol, then
π1(M) grows exponentially (see [6, Lemma 3.2], or use that then π1(M) is vir-
tually solvable but not virtually nilpotent and hence by [91, Theorem 4.8] grows
exponentially).

Subcase 3.B. The torus decomposition of M is trivial. We now use that M is
geometrizable. This means that M is modeled on one of the eight geometries


3, 
2 ×�, �3, Nil, �3, �2 ×�, Sol, S̃L2.

If M is modeled on �3, then M carries a Riemannian metric of negative sectional
curvature, and so π1(M) has exponential growth by the Švarc–Milnor Lemma, [71].
If M is modeled on �2 ×�, Sol or S̃L2, then π1(M) also has exponential growth,
see [6, Lemma 3.2]. Therefore, M is modeled on 
3, 
2 ×�, �3, or Nil.

Suppose that π1(M) has subexponential growth. (This in particular is the case
if γ(M) < ∞ or if π1(M) has polynomial growth.) We first assume that M is
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orientable. By Lemma A.3, M has a geometric structure modeled on one of 
3,

2×�, �3, Nil. If M is modeled on 
3, 
2×�, �3, then M is one of the manifolds
in (1), (2), (3). (Isometric quotients of �3 are finitely covered by T 3, see (3) of
Remark A.2(2).) The compact quotients of Nil are also known: The geometry Nil
is the Heisenberg group

H :=


1 x z

0 1 y

0 0 1

∣∣∣∣∣x, y, z ∈ �
 ⊂ SL(3,�)

endowed with the left-invariant metric ds2 = dx2 + dy2 + (dz − xdy)2. For every
n ∈ � let Hn be the lattice in H with x, y ∈ � and z ∈ 1

n�. These lattices are
mutually non-isomorphic, since the commutator subgroup [Hn, Hn] has index n in
the center Z(Hn). Every lattice in H is isomorphic to some Hn (see [80, 3.4.2]). Up
to diffeomorphism, the compact quotients of H are therefore the manifolds H/Hn.
Since H1 has index n in Hn, the manifold H/Hn is a finite quotient of H/H1. The
groups Hn are the central extensions of �2 by � classified by the Euler class n ∈
� ∼= H2(�2;�). The quotients H/Hn are therefore diffeomorphic to the nontrivial
orientable circle bundles over the torus with Euler number n. (Euler class n = 0
corresponds to the 3-torus.)

Assume now that M is non-orientable. By Remark A.2(2), its orientation cover
appears in (2) or (3), and so M also appears in (2) or (3).

We finally check that the manifolds in (1)–(4) have γ(M) as stated. The numbers
γ(M) = γ(π1(M))+ γ(Ω0M) are readily computed with the help of Lemma 3.1,
and using Remark A.2(2): For (1) we use that γ(S3) = γ(Ω0S

3) = 1. For the
quotients of S2×� in (2) we have γ(π1(M)) = 1 and γ(Ω0M) = 1. (The nontrivial
S2-bundle over S1 is the mapping torus (S2 × �)/Γ, where Γ ∼= � is generated
by α × β, with α the antipode and β a translation. Moreover, the fundamental
group of �P3 #�P3 is �2 ∗�2, which grows linearly.) The spaces in (3) and (4) are
aspherical, so that γ(Ω0M) = 0. Of course, γ(π1(T 3)) = 3. We have already seen
at the beginning of Sec. 3 that γ(H1) = 4, and we just saw that the spaces in (4)
are finitely covered by H/H1.

Remark A.4. Assertion (ii) can be used to show that Theorem 2.6 is sharp in
dimension d ≤ 3. This is easy to see for d ≤ 2. For d = 3, let M be one of the
manifolds in (ii). Then M is modeled on one of 
3, 
2 ×�, �3, Nil. Let g and g̃ be
the Riemannian metrics on M and M̃ of this geometry, and let ϕtg and ϕtg̃ be their
geodesic flows. Observe that in the definition of the slow volume growth one can
work with simplices instead of submanifolds. Hence slow-vol(ϕtg) = slow-vol(ϕtg̃).
It thus suffices to prove the inequality slow-vol(ϕtg̃) ≤ γ(M) − 1. This is clear for
the periodic geodesic flow on 
3, and not hard to check for the geodesic flows on

2 ×� and �3. To show that slow-vol(ϕtg̃) ≤ 3 for the geodesic flow on Nil one can
use the explicit description of this flow in [64]. Details will be given elsewhere.
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42. Y. Guivarc’h, Groupes de Lie à croissance polynomiale, C. R. Acad. Sci. Paris Sér.

A-B 271 (1970) 237–239; 272 (1971) 1695–1696.



May 11, 2015 6:30 WSPC/243-JTA 1550016

450 U. Frauenfelder, C. Labrousse & F. Schlenk

43. B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Sys-
tems, Encyclopedia of Mathematics and its Applications, Vol. 54 (Cambridge Univ.
Press, 1995).

44. A. Hatcher, Algebraic Topology (Cambridge Univ. Press, 2002).
45. A. Hatcher, Spectral sequences in algebraic topology, www.math.cornell.edu/

∼hatcher.
46. A. Hatcher, Basic topology of 3-manifolds, www.math.cornell.edu/∼hatcher.
47. A. Hatcher, The classification of 3-manifolds — a brief overview, www.math.cornell.

edu/∼hatcher/Papers/3Msurvey.pdf.
48. M. Heistercamp, L. Macarini and F. Schlenk, Energy surfaces in �2n and in cotangent

bundles — convex versus starshaped. In preparation.
49. J. Hempel, 3-Manifolds, Ann. of Math. Studies, Vol. 86 (Princeton Univ. Press, Uni-

versity of Tokyo Press, 1976).
50. P. Hilton, Nilpotente Gruppen und Nilpotente Räume, Notes taken by Markus Pfen-
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