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Abstract. We prove that for every subset A of a tame sym-
plectic manifold (W, ω) meeting a semi-positivity condition, the
π1-sensitive Hofer–Zehnder capacity of A is not greater than four
times the stable displacement energy of A,

c◦
HZ

(A, W ) ≤ 4 e
(

A × S1, W × T ∗S1
)

.

This estimate yields almost existence of periodic orbits near stably
displaceable energy levels of time-independent Hamiltonian sys-
tems. Our main applications are:

• The Weinstein conjecture holds true for every stably displace-
able hypersurface of contact type in (W, ω).

• The flow describing the motion of a charge on a closed Rie-
mannian manifold subject to a non-vanishing magnetic field
and a conservative force field has contractible periodic orbits
at almost all sufficiently small energies.

The proof of the above energy-capacity inequality combines a curve
shortening procedure in Hofer geometry with the following detec-
tion mechanism for periodic orbits: If the ray {ϕt

F
}, t ≥ 0, of

Hamiltonian diffeomorphisms generated by a compactly supported
time-independent Hamiltonian stops to be a minimal geodesic in
its homotopy class, then a non-constant contractible periodic orbit
must appear.

1. Introduction and Results

On their search for periodic orbits of autonomous Hamiltonian sys-
tems, Hofer and Zehnder [27, 28] associated to every open subset A
of a symplectic manifold (V, ω) a number, the Hofer–Zehnder capacity
cHZ(A) ∈ [0,∞], in such a way that cHZ(A) < ∞ implies almost ex-
istence of periodic orbits near any compact regular energy level of an
autonomous Hamiltonian system on A. Showing that cHZ(A) is finite
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is, however, often a difficult problem. Our main result is that if a sub-
set A of a tame symplectic manifold meeting a suitable semi-positivity
condition can be displaced from itself by a Hamiltonian isotopy in a
stabilized sense, then the Hofer–Zehnder capacity of A is indeed finite.

In order to set notations, we abbreviate I = [0, 1] and consider an
arbitrary smooth symplectic manifold (V, ω) without boundary. Denote
by Hc (I × V ) the set of smooth functions I × V → R with compact
support. The Hamiltonian vector field of H ∈ Hc(I × V ), defined by

ω (XHt
, ·) = −dHt (·) ,

generates a flow ht. The set of time-1-maps h form the group

Hamc(V, ω) := {h | H ∈ Hc(I × V )}

of compactly supported Hamiltonian diffeomorphisms of (V, ω). The
set of functions in Hc (I × V ) which do not depend on t ∈ I is denoted
by Hc(V ). We shall denote functions in Hc (I × V ) by H or K and
functions in Hc(V ) by F or G, and their flows by ht or kt and ft or gt.

The Hofer–Zehnder capacity we shall study is defined as follows. We
say that F ∈ Hc(V ) is slow if all non-constant contractible periodic
orbits of ft have period > 1. Following [27, 28] and [38, 53, 17] we define
for each subset A of (V, ω) the π1-sensitive Hofer–Zehnder capacity

c◦
HZ

(A, V, ω) = sup {max F − min F | F ∈ Hc (Int(A)) is slow} . (1)

We shall often suppress ω from the notation, and we shall write c◦
HZ

(V )
instead of c◦

HZ
(V, V ). The Hofer–Zehnder capacity cHZ(A) mentioned

above is obtained by taking the supremum over the smaller class of
functions F ∈ Hc (Int(A)) for which all non-constant periodic orbits
of ft have period > 1. Therefore, cHZ(A) ≤ c◦

HZ
(A, V ).

We shall compare the Hofer–Zehnder capacity c◦
HZ

(A, V ) with the
displacement energy defined in [21, 32]. The norm ‖H‖ of H ∈ Hc(I ×
V ) is defined as

‖H‖ =

∫

1

0

(

max
x∈V

H(t, x) − min
x∈V

H(t, x)

)

dt,

and the displacement energy e(A, V ) = e(A, V, ω) ∈ [0,∞] of a subset
A of V is defined as

e(A, V ) = inf {‖H‖ | H ∈ Hc(I × V ), h(A) ∩ A = ∅}

if A is compact and as

e(A, V ) = sup {e(K, V ) | K ⊂ A is compact}
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for a general subset A of V . In fact, we shall compare c◦
HZ

(A, V ) with
the stable displacement energy defined as

eS(A, V ) := e
(

A × S1, V × T ∗S1, ω ⊕ ω0

)

where ω0 = dp ∧ dq is the standard symplectic form on T ∗S1. We are
able to do this for the following class of symplectic manifolds.

Definition. [20, 56, 2] A symplectic manifold (W, ω) is tame if W
admits an almost complex structure J and a Riemannian metric g
such that

• J is uniformly tame, i.e., there are positive constant C1 and C2

such that

ω (X, JX) ≥ C1 ‖X‖2 and |ω (X, Y )| ≤ C2 ‖X‖ ‖Y ‖

for all X, Y ∈ TW .
• The sectional curvature of (W, g) is bounded from above and

the injectivity radius of (W, g) is bounded away from zero.

Examples of tame symplectic manifolds are closed symplectic mani-
folds, standard cotangent bundles (T ∗M, ω0) as well as twisted cotan-
gent bundles (T ∗M, ωσ) over a closed base M , and symplectic manifolds
which at infinity are isomorphic to the symplectization of a closed con-
tact manifold. The class of tame symplectic manifolds is closed under
taking products or coverings.

For technical reasons we also impose a semi-positivity condition on
(W, ω). The first Chern class c1 ∈ H2(W ;Z) is defined as the first
Chern class of the complex vector bundle (TW, J), where J is any
almost complex structure such that ω(·, J ·) is a Riemannian metric.
Recall from [43, 23, 54, 44] that a 2n-dimensional symplectic manifold
(W, ω) is strongly semi-positive if for all A ∈ π2(W ),

ω(A) > 0, c1(A) ≥ 2 − n =⇒ c1(A) ≥ 0.

Definition. A 2n-dimensional symplectic manifold (W, ω) is stably

strongly semi-positive if for all A ∈ π2(W ),

ω(A) > 0, c1(A) ≥ 1 − n =⇒ c1(A) ≥ 0.

Equivalently, (W, ω) satisfies one of the following conditions.

(i) ω(A) = λ c1(A) for every A ∈ π2(W ) and some λ ≥ 0;

(ii) c1(A) = 0 for every A ∈ π2(W );

(iii) The minimal Chern number N ≥ 0 defined by c1 (π2(W )) = NZ
is at least n.
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Since (T ∗S1, ω0) is exact and has vanishing first Chern class, (W, ω)
is stably strongly semi-positive if and only if (W × T ∗S1, ω ⊕ ω0) is
strongly semi-positive. This assumption guarantees that the evaluation
map used in the definition of the Gromov–Witten invariants relevant
for our arguments is a pseudo-cycle. If one is willing to use Liu-Tian’s
construction of the S1-invariant virtual moduli cycle, this assumption
can be dropped throughout the paper.

Our main result is the following energy-capacity inequality.

Theorem 1.1. Assume that A is a subset of a tame and stably strongly

semi-positive symplectic manifold (W, ω). Then

c◦
HZ

(A, W ) ≤ 4 eS (A, W ) .

We shall derive Theorem 1.1 from the following result by capitalizing
on the fact that the definition of c◦

HZ
involves only contractible periodic

orbits and by using a stabilization trick found in Macarini’s work [41].

Theorem 1.2. Assume that A is a subset of a tame and strongly semi-

positive symplectic manifold (W, ω). Then

c◦
HZ

(A, W ) ≤ 4 e (A, W ) .

Up to its slightly more restrictive hypothesis, Theorem 1.1 is stronger
than Theorem 1.2. Indeed, it is elementary to see that eS(A, V ) ≤
e(A, V ) in general, and in the dynamically relevant Example 1.5 below
we have eS(A, V ) < e(A, V ) = ∞.

The energy-capacity inequality

c◦
HZ

(A, V ) ≤ e (A, V ) (2)

is known for every subset A of a weakly exact symplectic manifold
(V, ω) which is closed or convex [22, 53, 12, 16, 11]. For the open ball
B2n(r) of radius r in (R2n, ω0) it holds that

c◦
HZ

(

B2n(r),R2n
)

= e
(

B2n(r),R2n
)

= πr2,

see [28], and so (2) is sharp. It is conceivable that the factor 4 in
Theorems 1.1 and 1.2 can be omitted.

Following Polterovich [50] we shall obtain Theorem 1.2 by combining
an elementary curve shortening technique in Hofer’s geometry with the
following detection mechanism for periodic orbits.

Theorem 1.3. Assume that (W, ω) is a tame and strongly semi-positive

symplectic manifold, and that the autonomous Hamiltonian F ∈ Hc(W )
is slow. Then the path ft, t ∈ [0, 1], is length minimizing in its homo-

topy class.
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Here, the length of ft is defined as ‖F‖. This result was discovered
by Hofer [22] for (R2n, ω0) and has been proved in [34] for weakly exact
tame symplectic manifolds; it removes an additional assumption on F
in [9, 44] and verifies Conjecture 1.2 in [44] for tame strongly semi-
positive symplectic manifolds.

Theorems 1.1 and 1.2 show that if eS(A, W ) or e(A, W ) is finite,
then so is c◦

HZ
(A, W ), and the finiteness of c◦

HZ
(A, W ) implies existence

of contractible periodic orbits on almost every compact regular energy
level of an autonomous Hamiltonian system on A. We thus want to
understand which compact subsets of a symplectic manifold V have
finite (stable) displacement energy. Every compact subset of a sym-
plectic manifold of the form (V ×R2, ω ⊕ ω0) has finite displacement
energy. Less obvious sufficient assumptions on A alone are collected
in the following proposition essentially due to Laudenbach [35] and to
Polterovich [49] and Laudenbach–Sikorav [36]. Recall that a middle-
dimensional submanifold L of a symplectic manifold (V, ω) is called
Lagrangian if ω vanishes on L.

Proposition 1.4. Let A be a compact subset of a 2n-dimensional sym-

plectic manifold (V, ω).

(i) If A is contained in an embedded finite CW-complex X of di-

mension < n, then eS(A, V ) < ∞.

(ii) If A is contained in an n-dimensional closed submanifold M
which is not Lagrangian, then eS(A, V ) = 0.

(iii) If A is strictly contained in a closed Lagrangian submanifold L,

then eS(A, V ) = 0.

The example S1 ⊂ (T ∗S1, ω0) shows that neither the dimension as-
sumption in (i) nor the assumption ω|M 6= 0 in (ii) nor the assumption
A ( L in (iii) can be omitted. The following example will play an
important role in our applications.

Example 1.5. Let σ be a non-vanishing closed 2-form on a closed
manifold M and let ωσ = ω0 + π∗σ be the twisted symplectic form
on its cotangent bundle π : T ∗M → M . Then eS(M, T ∗M, ωσ) = 0 by
Proposition 1.4 (ii). Note that if the Euler characteristic χ(M) does
not vanish, then e(M, T ∗M, ωσ) = ∞. 3

Theorems 1.1 and 1.2 and Proposition 1.4, which are proved in the
next section, have various applications to the existence problem of pe-
riodic orbits of time-independent Hamiltonian systems. Some of them
are given in Section 3 below. Further such applications as well as an
application the Lagrangian intersections can be found in [52].
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2. Proofs

2.1. Proof of Theorem 1.2. We follow Polterovich’s beautiful argu-
ment in [50, Section 9.A]. The proof consists of two steps.

Step 1. Curve shortening in Hofer’s geometry

Curve shortening in Hofer’s geometry was invented by Sikorav in [55]
and further developed in [33, Proposition 2.2]. Here, we closely follow
the proof of Theorem 8.3.A in [51], see also Theorem 3.3.A in [3].

We consider an arbitrary symplectic manifold (V, ω). Two Hamil-
tonians H, K ∈ Hc(I × V ) are equivalent, H ∼ K, if h = k and the
paths {ht}, {kt}, t ∈ [0, 1], are homotopic in Hamc(V, ω) with fixed end
points. In other words, there exists a smooth family {Hs}, s ∈ [0, 1],
in Hc(I ×V ) such that h0

t = ht and h1

t = kt for all t and hs = h = k for
all s. The group of equivalence classes Hc(I×V )/ ∼ form the universal

cover H̃amc(V, ω) of Hamc(V, ω). We denote the lift of the Hofer norm

to H̃amc(V, ω) by

ρ [ht] ≡ ρ[H ] := inf {‖K‖ | K ∼ H} .

Proposition 2.1. Consider a compact subset A of an arbitrary sym-

plectic manifold (V, ω) such that e(A, V ) < ∞. If F : V → R is sup-

ported in A and ‖F‖ > 4 e(A, V ), then ρ [F ] < ‖F‖.

Proof. Choose a path {ht}, t ∈ [0, 1], in Hamc(V, ω) such that h(A) ∩
A = ∅ and

ρ [ht] < 1

4
‖F‖ . (3)

For t ∈ [0, 1] we decompose the path ft as

ft =
(

ft/2 ◦ ht ◦ ft/2 ◦ h−1

t

)

◦
(

ht ◦ f−1

t/2
◦ h−1

t ◦ ft/2

)

≡ bt ◦ at.

As we shall see below,

ρ [at] < 1

2
‖F‖ and ρ [bt] ≤

1

2
‖F‖ . (4)
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Since {bt ◦ at} is equivalent to the juxtaposition of {at} and {bt ◦ a1}
and since ρ satisfies the triangle inequality, the estimates (4) imply
Proposition 2.1. In order to prove the first estimate in (4), notice that

the paths
{

f−1

t/2
◦ h−1

t ◦ ft/2

}

and
{

f−1

1/2
◦ h−1

t ◦ f1/2

}

are equivalent and

that

ρ
[

f−1

1/2
◦ h−1

t ◦ f1/2

]

= ρ
[

h−1

t

]

= ρ [ht] .

Together with the triangle inequality and the estimate (3) we can esti-
mate

ρ [at] = ρ
[

ht ◦ f−1

t/2
◦ h−1

t ◦ ft/2

]

≤ ρ [ht] + ρ
[

f−1

t/2
◦ h−1

t ◦ ft/2

]

= 2 ρ [ht]

< 1

2
‖F‖ .

In order to prove the second estimate in (4), notice that the path {bt} =
{

ft/2 ◦ ht ◦ ft/2 ◦ h−1

t

}

is equivalent to the path
{

ft/2 ◦ h ◦ ft/2 ◦ h−1
}

generated by the Hamiltonian

K(t, x) = 1

2
F (x) + 1

2
F

(

h−1f−1

t/2
x
)

, t ∈ [0, 1].

Since F is autonomous, F = F ◦ft/2, and since h displaces supp F ⊂ A,
so does h−1. Therefore,

‖Kt‖ = 1

2

∥

∥

∥
F + F ◦ h−1 ◦ f−1

t/2

∥

∥

∥

= 1

2

∥

∥F ◦ ft/2 + F ◦ h−1
∥

∥

= 1

2

∥

∥F + F ◦ h−1
∥

∥

= 1

2
‖F‖ ,

and so ρ [bt] ≤
1

2
‖F‖. The proof of Proposition 2.1 is complete. 2

Step 2. The cut point has a non-constant contractible periodic

orbit

Consider an arbitrary symplectic manifold (V, ω). We recall from the
introduction that F ∈ Hc(V ) is slow if all non-constant contractible
periodic orbits of ft have period > 1. We say that F ∈ Hc(V ) is flat if
all non-constant periodic orbits of the linearized flow of F at its critical
points have period > 1.

Lemma 2.2. Assume that (W, ω) is a tame strongly semi-positive sym-

plectic manifold, and that the autonomous Hamiltonian F ∈ Hc(W ) is
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slow and flat. Then the path ft, t ∈ [0, 1], is length minimizing in its

homotopy class.

Proof. If W is closed, this result is proved in [9, 44], see also [34].
If (W, ω) is not closed but tame, then the compactness theorems in
[20, 56] hold, and so the arguments in [44] establishing compactness of
the relevant Floer moduli space go through. 2

Following a suggestion by Viktor Ginzburg, we derive Theorem 1.3
from Lemma 2.2 by elementary means:

Proof of Theorem 1.3. Let F ∈ Hc(W ) be slow. Arguing by contradic-
tion, we assume that ρ[F ] < ‖F‖. Choose ǫ > 0 so small that

ρ[F ] + 2ǫ < ‖F‖.

Since F is smooth and compactly supported and by Sard’s theorem, the
set C of critical values of F is compact and has zero Lebesgue measure.
If F (W ) = [a, b], we thus find finitely many intervals [ai, bi] ⊂ [a, b] \C
such that

∑

i(bi−ai) ≥ (b−a)−ǫ. Choose a smooth function r : [a, b] →R such that r(a) = a and such that 0 ≤ r′(t) ≤ 1 for all t and

r′(t) = 1 if t ∈
⋃

i

[ai, bi] and r′(t) = 0 if t ∈ C.

The function G = r ◦ F belongs to Hc(W ) and is both slow and flat.
Moreover,

max G = r(b) ≥ r(a) + (b − a) − ǫ = maxF − ǫ.

Since the path {gt ◦ f−1

t } is generated by G−F = r ◦ F −F and since
‖r◦F −F‖ = maxF −max G ≤ ǫ, we have ρ

[

gt ◦ f−1

t

]

≤ ǫ. Therefore,

ρ [G] = ρ
[

gt ◦ f−1

t ◦ ft

]

≤ ρ
[

gt ◦ f−1

t

]

+ ρ [F ]

≤ ǫ + ρ [F ]

< ‖F‖ − ǫ

≤ ‖G‖.

We have constructed a slow and flat G ∈ Hc(W ) with ρ[G] < ‖G‖, in
contradiction to Lemma 2.2. 2

We would like to point out that the proof of Lemma 2.2 is the only
place were we use a semi-positivity assumption on (W, ω). As explained
in [44] the S1-invariant virtual moduli cycle can be used to establish
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Lemma 2.2 for arbitrary tame symplectic manifolds. The above argu-
ment then yields Theorem 1.3 and hence Conjecture 1.2 in [44] for all
tame symplectic manifolds.

End of the proof of Theorem 1.2. We can assume that e(A, W ) <
∞, and in view of the definitions of the capacity c◦

HZ
and the displace-

ment energy e we can assume that A is compact. Let F ∈ Hc (Int A)
be such that max F −min F = ‖F‖ > 4 e(A, W ). According to Propo-
sition 2.1 we have ρ [F ] < ‖F‖, and so Theorem 1.3 shows that F is
not slow. Therefore, c◦

HZ
(A, W ) ≤ 4 e(A, W ). 2

2.2. Proof of Theorem 1.1. We shall derive Theorem 1.1 from The-
orem 1.2 by a stabilization argument. Let G(q, p) = 1

2
p2 be the Hamil-

tonian generating the geodesic flow on T ∗S1, and abbreviate Gǫ =
{(q, p) | G(q, p) ≤ ǫ}.

Lemma 2.3. For any subset A of a symplectic manifold (V, ω) and

any ǫ > 0,

c◦
HZ

(A, V ) ≤ c◦
HZ

(

A × Gǫ, V × T ∗S1
)

.

Proof. We can assume that Int A 6= ∅. Let F ∈ Hc (Int A) be slow.
We choose a smooth function a : R→ [0, 1] such that

a(t) = 1 if t ≤ 1

3
ǫ and a(t) = 0 if t ≥ 2

3
ǫ.

The function FS : V × T ∗S1 → R, (v, w) 7→ F (v) a(G(w)) belongs to
Hc (Int (A × Gǫ)). In order to see that FS is slow, assume that x(t)
is a contractible periodic orbit of its Hamiltonian flow. Then x(t) =
(x1(t), x2(t)) ⊂ V × T ∗S1, where both x1(t) and x2(t) are contractible
periodic orbits. Denoting the Hamiltonian vector fields of F and G by
XF and XG, we find

ẋ1(t) = a
(

G(x2(t))
)

XF (x1(t)) ,

ẋ2(t) = F (x1(t)) a′
(

G(x2(t))
)

XG (x2(t)) .

Therefore, the orbits x1(t) and x2(t) are, up to reparametrization, or-
bits of XF and XG. Since F and G are autonomous, we conclude
that the functions a

(

G(x2(t))
)

and F (x1(t)) a′
(

G(x2(t))
)

are constant.

Since
∣

∣a
(

G(x2)
)
∣

∣ ∈ [0, 1] and F is slow, the orbit x1(t) is constant or
has period > 1, and since all contractible periodic orbits of the flow
of G are constant, the orbit x2(t) is constant. We have constructed
for every slow F ∈ Hc (Int A) a slow FS ∈ Hc (Int (A × Gǫ)) with
max F = maxFS. Lemma 2.3 thus follows. 2
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In order to prove Theorem 1.1 we need to show that for every com-
pact subset A of W ,

c◦
HZ

(A, W ) ≤ 4 e
(

A × S1, W × T ∗S1
)

. (5)

We can assume that e (A × S1, W × T ∗S1) is finite. Fix δ > 0, and
choose H ∈ Hc (I × W × T ∗S1) such that h displaces A × S1 and

‖H‖ ≤ e
(

A × S1, W × T ∗S1
)

+ δ.

We then find ǫ > 0 such that h displaces A × Gǫ. It follows that

e
(

A × Gǫ, W × T ∗S1
)

≤ ‖H‖ ≤ e
(

A × S1, W × T ∗S1
)

+ δ.

Since both (W, ω) and (T ∗S1, ω0) are tame, so is their product, and
since (W, ω) is stably strongly semi-positive, (W × T ∗S1, ω ⊕ ω0) is
strongly semi-positive. Together with Lemma 2.3 and Theorem 1.2
we can thus estimate

c◦
HZ

(A, W ) ≤ c◦
HZ

(

A × Gǫ, W × T ∗S1
)

≤ 4 e
(

A × Gǫ, W × T ∗S1
)

≤ 4 e
(

A × S1, W × T ∗S1
)

+ 4 δ.

Since δ > 0 was arbitrary, inequality (5) follows, and so Theorem 1.1
is proved. 2

2.3. Proof of Proposition 1.4. (i) By assumption, the set A × S1

is contained in the finite CW-complex X × S1 of dimension < n + 1
in the (2n + 2)-dimensional symplectic manifold (V × T ∗S1, ω ⊕ ω0).
Since X × S1 can be displaced from itself in V × T ∗S1 by a smooth
isotopy, a result of Laudenbach [35] implies that X×S1 can be displaced
from itself in (V × T ∗S1, ω ⊕ ω0) by a Hamiltonian isotopy. It follows
that eS(A, V ) ≤ eS(X, V ) < ∞.

(ii) Consider the closed submanifold M×S1 of V ×T ∗S1. Since ω|M 6= 0
we have ω⊕ω0|M×S1 6= 0. Moreover, the Euler characteristic of M×S1

vanishes. A result of Polterovich [49] and Laudenbach–Sikorav [36] thus
implies that e (M × S1, V × T ∗S1) = 0, and so eS(A, V ) = 0.

(iii) The proof of the case n = 1 is elementary and omitted. So assume
that n ≥ 2. Since A is compact, L \ A is open. Using the Lagrangian
Neighbourhood Theorem we easily find a closed submanifold L′ of V
which is not Lagrangian and such that A ⊂ L′. By assertion (ii) we
have eS(L′, V ) = 0, and so eS(A, V ) = 0. 2
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3. Applications

Throughout this section, (V, ω) denotes an arbitrary symplectic man-
ifold, while (W, ω) denotes a tame and stably strongly semi-positive
symplectic manifold. We say that a compact subset A of (V, ω) is
displaceable if there exists h ∈ Hamc(V, ω) such that h(A) ∩ A = ∅,
and we say that A is stably displaceable if A × S1 is displaceable in
(V × T ∗S1, ω ⊕ ω0). Thus A ⊂ V is (stably) displaceable if and only
if e(A, V ) < ∞ (resp. eS(A, V ) < ∞). Note that if A is (stably) dis-
placeable, then an entire neighbourhood of A is (stably) displaceable.

3.1. Almost existence of closed characteristics and the Wein-

stein conjecture. A hypersurface S in a symplectic manifold (V, ω)
is a smooth compact connected orientable codimension 1 submanifold
of V without boundary. A closed characteristic on S is an embedded
circle in S all of whose tangent lines belong to the distinguished line
bundle

LS = {(x, ξ) ∈ TS | ω(ξ, η) = 0 for all η ∈ TxS} .

Examples show that LS might not carry any closed characteristic, see
[15, 17]. We therefore follow [26] and consider parametrized neighbour-
hoods of S. Since S is orientable, there exists an open neighbourhood
I of 0 and a smooth diffeomorphism

ϑ : S × I → U ⊂ V

such that ϑ(x, 0) = x for x ∈ S. We call ϑ a thickening of S, and
we abbreviate Sǫ = ϑ (S × {ǫ}). Denote by P◦ (Sǫ) the set of closed
characteristics on Sǫ which are contractible in V . The refinement of
the Hofer–Zehnder argument [28, Sections 4.1 and 4.2] in [42] shows

Proposition 3.1. For any thickening ϑ : S × I → U ⊂ V of a hyper-

surface S in (V, ω) with c◦
HZ

(U, V ) < ∞ it holds that P◦ (Sǫ) 6= ∅ for

almost all ǫ ∈ I.

Together with Theorem 1.2 we obtain

Corollary 3.2. Assume that S is a stably displaceable hypersurface in

(W, ω). Then for any stably displaceable thickening ϑ : S×I → U ⊂ W
it holds that P◦ (Sǫ) 6= ∅ for almost all ǫ ∈ I.

In [61], Zehnder constructed a symplectic form on the 4-torus T 4 =
(R/Z)4 such that none of the hypersurfaces {x4 = const} carries a
closed characteristic. The assumption in Corollary 3.2 that S is stably
displaceable thus cannot be omitted.
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A hypersurface S in a symplectic manifold (V, ω) is called of contact

type if there exists a Liouville vector field X (i.e., LXω = dιXω = ω)
which is defined in a neighbourhood of S and is everywhere transverse
to S. Weinstein conjectured in [60] that every hypersurface S of contact
type with H1(S;R) = 0 carries a closed characteristic.

Corollary 3.3. Assume that S is a stably displaceable hypersurface of

contact type in (W, ω). Then P◦(S) 6= ∅. In particular, the Weinstein

conjecture holds true for S.

The Weinstein conjecture has been proved for various classes of hy-
persurfaces of contact type in various classes of symplectic manifolds,
[57, 26, 24, 10, 25, 29, 40, 58, 38, 59, 4, 37, 39, 46]. Corollary 3.3
generalizes or complements the results in [57, 26, 10, 59, 37], where
the ambient symplectic manifold is of the form (V ×R2, ω ⊕ ω0). Un-
der the additional assumption that (W, ω) is weakly exact and convex,
Corollary 3.3 has been proved in [12].

3.2. Periodic orbits of autonomous Hamiltonian systems. We
consider a smooth proper Hamiltonian F on (V, ω) which attains its
minimum at 0. We abbreviate the sublevel set F−1 ([0, r]) by F r, and
define d1(F ) ∈ [0,∞] by

d1(F ) = sup {r ∈ R | F r is stably displaceable} .

Thus d1(F ) > 0 if and only if F−1(0) is stably displaceable. Denote
by P◦ (F−1(r)) the set of non-constant periodic orbits on F−1(r) which
are contractible in V . Since the set of critical values of F is closed and,
by Sard’s theorem, of Lebesgue measure zero, Corollary 3.2 yields

Corollary 3.4. Consider a proper Hamiltonian F on (W, ω) with min-

imum 0, and assume that d1(F ) > 0. Then P◦ (F−1(r)) 6= ∅ for almost

all r ∈ ]0, d1(F )].

Discussion. 1. Recall that Corollary 3.4 becomes relevant in conjunc-
tion with Proposition 1.4 applied to A = F−1(0).

2. According to [17], every symplectic manifold (V, ω) of dimension
2n ≥ 4 admits a proper C2-smooth Hamiltonian F with minimum 0
and d1(F ) > 0 such that for a sequence rk → 0 of regular values the
levels F−1(rk) carry no periodic orbit, and if 2n ≥ 6, then F can be
chosen C∞-smooth.

3. Consider a tame symplectic manifold (W 2n, ω) for which [ω] and
c1 vanish on π2(W ), and assume that the proper function F : W → R
attains its minimum 0 along a closed symplectic submanifold M2k of
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(W, ω). It has been shown in [17, Corollary 2.16] that P◦ (F−1(r)) 6= ∅
for almost all r ∈ ]0, b(F )], where

b(F ) = sup {r ∈ R | F r ⊂ B(M, F )} ∈ ]0,∞] (6)

and B(M, F ) is “the F -maximal symplectic ball neighbourhood of M in
(W, ω)”, see [17, Section 4.1] for details. For k ∈ {0, 1, . . . , ⌊n/2⌋}, this
result is covered by Proposition 1.4 and Corollary 3.4 with d1(F ) > 0
instead of b(F ). It would be interesting to compare these two constants.

3.3. Closed trajectories of a charge in a magnetic field and a

potential. Consider a closed Riemannian manifold (M, g) of dimen-
sion at least 2, and let ω0 =

∑

i dpi ∧ dqi be the standard symplectic
form on the cotangent bundle T ∗M . We fix a closed 2-form σ on
M and define the twisted symplectic form ωσ on π : T ∗M → M by
ωσ = ω0 + π∗σ. We also fix a function V on M with minimum 0. The
flow of the Hamiltonian system

FV : (T ∗M, ωσ) → R, FV (q, p) 7→ 1

2
|p|2 + V (q),

describes (for example) the motion of a unit charge on (M, g) subject
to the magnetic field σ and the potential V , cf. [45, 31, 14]. As before
we denote by P◦

(

F−1

V (r)
)

the set of periodic orbits on the level F−1

V (r)
which are contractible in T ∗M and hence project to contractible closed
trajectories on M .

Corollary 3.5. Consider a closed Riemannian manifold (M, g) en-

dowed with a closed 2-form σ which does not vanish identically, and

let V be a potential on M with minimum 0. Then d1(FV ) > 0 and

P◦
(

F−1

V (r)
)

6= ∅ for almost all r ∈ ]0, d1(FV )].

Proof. It is shown in [5] that for any closed 2-form σ on a closed man-
ifold M the symplectic manifold (T ∗M, ωσ) is tame. Since the kernel
of the differential of the projection π : T ∗M → M defines a Lagrangian
distribution in the tangent bundle of (T ∗M, ωσ), the first Chern class
vanishes, so that (T ∗M, ωσ) is stably strongly semi-positive. More-
over, FV is proper, has minimum 0, and F−1

V (0) ⊂ M ; and since σ
does not vanish, M is not Lagrangian. Proposition 1.4 (ii) thus yields
d1(FV ) > 0, and so Corollary 3.5 follows from Corollary 3.4. 2

Specializing to the case V = 0, we set d1(g, σ) = d1(F0) and denote
the sphere bundle F−1

0
(r) by Er.

Corollary 3.6. Consider a closed Riemannian manifold (M, g) en-

dowed with a closed 2-form σ which does not vanish identically. Then

d1(g, σ) > 0 and P◦ (Er) 6= ∅ for almost all r ∈ ]0, d1(g, σ)].
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Discussion. 1. There has been much recent progress in the existence
problem for periodic orbits of a charge in a magnetic field, [45, 31, 1,
13, 24, 14, 38, 50, 18, 30, 7, 19, 5, 17, 41, 8, 6, 12, 47]. Corollary 3.6
solves the almost existence problem at small energies. Under additional
assumptions on M , g or σ, stronger results are known. We refer to
[14, 52, 47] for the state of the art.

2. If σ is exact, d1(g, σ) ≤ 1

2
maxx∈M |α(x)|2 for all α with dα = σ, see

[12]. If σ is non-exact, d1(g, σ) can be infinite; examples with infinite
d1(g, σ) are non-exact closed 2-forms σ on tori, see [18, 52].

3. One cannot expect that P◦ (Er) 6= ∅ for almost all r > 0 in general.
Indeed, let M be a closed oriented surface of genus 2, and let g and σ
either be a Riemannian metric of constant curvature −1 and its area
form or the Riemannian metric and the exact 2-form constructed in
[48]. Then P◦ (Er) = ∅ for all r ≥ 1

2
, see [14, Example 3.7] and [48].

4. Assume that M is neither a 2-sphere nor an orientable surface
of genus ≥ 2. If σ is non-exact, then none of the hypersurfaces Er in
(T ∗M, ωσ) is of contact type, see e.g. [52]. Therefore, Corollary 3.6 does
not follow from existence results of closed characteristics on contact
type hypersurfaces.
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[50] L. Polterovich. Geometry on the group of Hamiltonian diffeomorphisms. Pro-

ceedings of the International Congress of Mathematicians, Vol. II (Berlin,
1998). Doc. Math. 1998, Extra Vol. II, 401–410.

[51] L. Polterovich. The geometry of the group of symplectic diffeomorphisms. Lec-
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