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CHAPTER 1

Symplectic geometry and Hamiltonian mechanics

1. Symplectic manifolds

The archetypical example of a symplectic manifold is the cotangent bundle of
a smooth manifold. Assume that N is a manifold, by physicists also referred to
as the configuration space. The phase space is the cotangent bundle T ∗N . The
cotangent bundle comes endowed with a canonical one-form λ ∈ Ω1(T ∗N) called
the Liouville one-form. It is defined as follows. Abbreviate by π : T ∗N → N the
footpoint projection. If e ∈ T ∗N and ξ ∈ TeT ∗N , the tangent space of T ∗N at e,
the differential of the footpoint projection at e is a linear map

dπ(e) : TeT
∗N → Tπ(e)N.

Interpreting e as a vector in T ∗π(e)N the dual space of Tπ(e)N , we can pair it with

the vector dπ(e)ξ ∈ Tπ(e)N and define

λe(ξ) := e
(
dπ(e)ξ

)
.

In canonical coordinates (q, p) = {q1, . . . , qn, p1, . . . , pn} of T ∗N where n = dimN
the Liouville one-form becomes

λ(q, p) =

n∑
i=1

pidqi.

The canonical symplectic form on T ∗N is the exterior derivative of the Liouville
one-form

ω = dλ.

In canonical coordinates it has the form

ω =

n∑
i=1

dpi ∧ dqi.

The symplectic form ω has the following properties. It is closed, i.e., dω = 0. This
is immediate because dω = d2λ = 0. Further it is non-degenerate in the sense that
if e ∈ T ∗N and ξ 6= 0 ∈ TeT ∗N , then there exists η ∈ TeT ∗N such that ω(ξ, η) 6= 0.
These two properties become the defining properties of a symplectic structure on a
general manifold M , which does not need to be a cotangent bundle. Namely

Definition 1.1. A symplectic manifold is a tuple (M,ω) where M is a manifold
and ω ∈ Ω2(M) is a two-form satisfying the following two conditions

(i): ω is closed.
(ii): ω is non-degenerate.

The two-form ω is called the symplectic structure on M .

5



6 1. SYMPLECTIC GEOMETRY AND HAMILTONIAN MECHANICS

The assumption that ω is non-degenerate immediately implies that a symplectic
manifold is even dimensional. In other words an odd dimensional manifold never
admits a symplectic structure.

2. Symplectomorphisms

Symplectic manifolds become a category with morphisms given by symplecto-
morphisms defined as follows.

Definition 2.1. Assume that (M1, ω1) and (M2, ω2) are two symplectic mani-
folds. A symplectomorphism φ : M1 → M2 is a diffeomorphism satisfying φ∗ω2 =
ω1.

We discuss three examples of symplectomorphisms.

2.1. Physical transformations. Suppose that N1 and N2 are manifolds and
φ : N1 → N2 is a diffeomorphism, for example a change of coordinates of the con-
figuration space. If x ∈ N1 the differential

dφ(x) : TxN1 → Tφ(x)N2

is a vector space isomorphism. Dualizing we get a vector space isomorphism

dφ(x)∗ : T ∗φ(x)N2 → T ∗xN1.

We now define

d∗φ : T ∗N1 → T ∗N2

as follows. If π1 : T ∗N1 → N1 is the footpoint projection and e ∈ T ∗N1, then

(1) d∗φ(e) := (dφ(π1(e))∗)−1e.

If λ1 is the Liouville one-form on T ∗N1 and λ2 is the Liouville one-form on T ∗N2

one checks that

(2) (d∗φ)∗λ2 = λ1.

Because exterior derivative commutes with pullback we obtain

(d∗φ)∗ω2 = (d∗φ)∗dλ2 = d(d∗φ)∗λ2 = dλ1 = ω1

which shows that d∗φ is a symplectomorphism.
Equation (2) might be rephrased in saying that d∗φ is an exact symplectomor-

phism, i.e., a symplectomorphism which preserves the primitives of the symplectic
forms. The notion of exact symplectomorphism in a general symplectic manifold
however does not make sense, since usually the symplectic form ω has no prim-
itive. In fact if the symplectic manifold (M,ω) is closed, the non-degeneracy of
the symplectic form ω implies that the closed form ω induces a non-vanishing class
[ω] ∈ H2

dR(M), the second de Rham cohomology group of M . In particular, ω
cannot be exact.
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2.2. The switch map. The second example of a symplectomorphism is the
switch map

σ : T ∗Rn → T ∗Rn.
Namely, if we identify the cotangent bundle T ∗Rn with R2n with global coordinates
(q, p) = (q1, . . . , qn, p1, . . . , pn) and symplectic form ω =

∑n
i=1 dpi ∧ dqi then the

switch map is given by

σ(q, p) = (−p, q)
which is actually a linear symplectomorphism on R2n. Note that the switch map is
not a physical transformation. In physical terms the q variables, i.e., the variables
on the configuration space are referred to as the position variables, while the p
variables are referred to as the momenta. Hence the switch map interchanges the
roles of the momenta and the positions. We will see, that the switch map plays a
major role in Moser’s regularization of two body collisions. Note that to define the
switch map it is important to have global coordinates on the configuration space.
There is no way to define the switch map on the cotangent bundle T ∗N of a general
manifold N .

2.3. Hamiltonian transformations. The third example of symplectomor-
phisms we discuss are Hamiltonian transformations. Suppose that (M,ω) is a sym-
plectic manifold and H ∈ C∞(M,R). Smooth functions on a symplectic manifold
are referred by physicists as Hamiltonians. The interesting point about Hamiltoni-
ans is that we can associate to them a vector field XH ∈ Γ(TM) which is implicitly
defined by the condition

dH = ω(·, XH).

Note that the assumption that the symplectic form is non-degenerate guarantees
that XH is well defined. The vector field XH is called Hamiltonian vector field. Let
us assume for simplicity in the following that M is closed. Under this assumption
the flow of the Hamiltonian vector field exists for all times, i.e., we get a smooth
family of diffeomorphisms

φtH : M →M, t ∈ R

defined by the conditions

φ0
H = idM ,

d

dt
φtH(x) = XH(φtH(x)), t ∈ R, x ∈M.

An important property of the Hamiltonian flow is that the Hamiltonian H is pre-
served under it. If one interprets the Hamiltonian as the energy then this means
the the energy is conserved.

Theorem 2.2 (Preservation of energy). For x ∈ M it holds that H(φt(x)) is
constant, i.e., independent of t ∈ R.

Proof: Differentiating we obtain

d

dt
H(φtH(x)) = dH(φtH(x))

d

dt
φtH(x)

= dH(φtH(x))XH(φtH(x))

= ω(XH , XH)(φtH(x))

= 0
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where the last equality follows from antisymmetry of the two-form ω. �

The next theorem tells us that the diffeomorphisms φtH are symplectomorphisms.
The intuition from physics might be that a Hamiltonian system has no friction.

Theorem 2.3. For every t ∈ R it holds that (φtH)∗ω = ω.

Proof: Note that
d

dt
(φtH)∗ω = (φtH)∗LXHω

where LXHω is the Lie derivative of the symplectic form with respect to the Hamil-
tonian vector field. Using Cartan’s formula we obtain by taking advantage of the
assumption that ω is closed and the definition of XH

LXHω = ιXHdω + dιXHω = −d2H = 0.

This proves the theorem. �

3. Examples of Hamiltonians

3.1. The free particle and the geodesic flow. Assume that (N, g) is a
Riemannian manifold. Define

Hg : T ∗N → R, (q, p) 7→ 1

2
|p|2g

where | · |g denotes the norm induced from the metric g on the cotangent bundle of
N . In terms of physics this is just the kinetic energy.

The flow of this Hamiltonian is basically given by the geodesic flow of the metric
g on N . To describe this relation we assume for simplicity that N is compact, in
order to ensure that the flows exist for all times. If q ∈ N and v ∈ TqN we denote
by

qv : R→ N

the unique geodesic meeting the initial conditions

qv(0) = q, ∂tqv(0) = v.

The geodesic flow

Ψt
g : TN → TN

is the map

(q, v) 7→ (qv(t), ∂tqv(t)).

The metric g gives rise to a bundle isomorphism

Φg : TN → T ∗N, (q, v) 7→ (q, gq(v, ·)).

This allows us to interpret the geodesic flow as a map from the cotangent bundle
to itself

φtg := ΦgΨ
t
gΦ
−1
g : T ∗N → T ∗N.

Theorem 3.1. The Hamiltonian flow of kinetic energy Hg equals to geodesic
flow in the sense that φtHg = φtg for every t ∈ R.
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Proof: Recall that if q ∈ C∞([0, 1], N) is a geodesic, then in local coordinates
it satisfies the geodesic equation which is the second order ODE

(3) ∂2
t q
` + Γ`ij(q)∂tq

i∂tq
j = 0.

Here we use Einstein summation convention. Moreover, the Γ`ij are the Christoffel
symbols which are determined by the Riemannian metric by the formula

(4) Γ`ij =
1

2
g`k(gki,j + gjk,i − gij,k).

If we interpret the geodesic equation as a first order ODE on the tangent bundle
of N , i.e., if we consider (q, v) ∈ C∞([0, 1], TN) with q(t) ∈ N and v(t) ∈ Tq(t)N ,
then (3) becomes

(5)

{
∂tv

` + Γ`ij(q)v
ivj = 0

∂tq = v.

We next rewrite (5) as an equation on the cotangent bundle instead of the tangent
bundle. For this purpose we introduce

pi = gijv
j .

Using the p’s instead of the v’s and the formula (4) for the Christoffel symbols
equation (5) translates to

(6)

{
∂tg

`ipi + 1
2g
`k(gki,j + gjk,i − gij,k)gimpmg

jnpn = 0
∂tq

i = gijpj .

In view of the identity
gijgj` = δi`

where δi` is the Kronecker Delta we obtain the relation

gijk gj` + gijgj`,k = 0

from which we deduce
gij,k = −gi`gjmg`m,k.

Plugging this formula in the first equation in (6) we obtain

0 = g`ik ∂tq
kpi + g`i∂tpi −

1

2

(
g`m,j g

jn + g`n,i g
im − gmn,k gk`

)
pmpn

= g`i,kg
kjpjpi + g`i∂tpi −

1

2
g`i,kg

kjpjpi

= g`i∂tpi +
1

2
g`i,kg

kjpjpi

from which we get

∂tpr = gr`g
`i∂tpi

= −1

2
gr`g

`kgmn,k pmpn

= −1

2
δkr g

mn
,k pmpn

= −1

2
gmn,r pmpn.

Therefore the geodesic equation (6) on the cotangent bundle becomes

(7)

{
∂tpi = − 1

2g
mn
,i pmpn

∂tq
i = gijpj .
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It remains to check that the right-hand side coincides with the Hamiltonian vector
field of Hg. In local canonical coordinates the Hamiltonian Hg is given by

Hg(q, p) =
1

2
gij(q)pipj .

Its differential reads

dHg =
1

2
gij,kpipjdq

k + gijpjdpi.

Hence the Hamiltonian vector field of Hg with respect to the symplectic form ω =
dqi ∧ dpi equals

XHg = −1

2
gij,kpipj

∂

∂pk
+ gijpj

∂

∂qi
.

In particular, the flow of XHg is given by the solution of (7). This finishes the proof
of the Theorem. �

3.2. Mechanical Hamiltonians. Assume that (N, g) is a Riemannian man-
ifold and V ∈ C∞(N,R) is a smooth function on the configuration space referred
to as the potential. We define the Hamiltonian

Hg,V : T ∗N → R, (q, p) 7→ 1

2
|p|2g + V (q),

i.e., in the language of physics the sum of kinetic and potential energy.
In the special case where N is an open subset of Rn endowed with its standard

scalar product which we omit in the following from the notation the Hamiltonian
vector field of HV is given with respect to the splitting T ∗Rn = Rn × Rn

XHV (q, p) =

(
p

−∇V (q)

)
.

where ∇V is the gradient of V , which in terms of physics can be thought of as a
force. Given (q, p) in T ∗N ⊂ T ∗Rn if qp : R → N is a solution of the second order
ODE

∂2
t qp(t) = −∇V (qp(t))

meeting the initial conditions

qp(0) = q, ∂tqp(0) = p

then the Hamiltonian flow of HV applies to (q, p) is given by

φtHV (q, p) = (qp(t), ∂tqp(t)).

We discuss three basic examples of mechanical Hamiltonians. The first example is
the harmonic oscillator. Its Hamiltonian is given by

H : T ∗R→ R, (q, p) 7→ 1

2
(p2 + q2).

Its flow is given by

φtH(q, p) = (q cos t+ p sin t,−q sin t+ p cos t).

Note that the flow of the harmonic oscillator is periodic of period 1.
Our second example is the case of two uncoupled harmonic oscillators. In this

example the Hamiltonian is given by

H : T ∗R2 → R, (q, p) 7→ 1

2
(p2 + q2) =

1

2
(p2

1 + q2
1) +

1

2
(p2

2 + q2
2).
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Note that in this example the Hamiltonian flow is just the product flow of two
harmonic oscillators with respect to the splitting T ∗R2 = T ∗R×T ∗R. In particular,
the flow is again periodic of period 1. Moreover, note that if c > 0, then the level
set or energy hypersurface of two uncoupled harmonic oscillators H−1(c) is a three

dimensional sphere of radius
√

2c.
Our third example is the Kepler problem. In this case the Hamiltonian is given

by

H : T ∗(Rn \ {0})→ R, (q, p) 7→ 1

2
p2 − 1

|q|
.

The from the physical point of view most relevant cases are the case n = 2, the
planar Kepler problem and the case n = 3. Using Moser regularization we will
see that for negative energy the Hamiltonian flow of the Kepler problem in any
dimension n can be embedded up to reparametrization in the geodesic flow of the
round n-dimensional sphere. In the planar case the double cover of the geodesic
flow on the round two dimensional sphere can be interpreted as the Hamiltonian
flow of two uncoupled harmonic oscillators via Levi-Civita regularization.

3.3. Magnetic Hamiltonians. Mechanical Hamiltonians model physical sys-
tems where the force just depends on the position. There are however important
forces which depend on the velocity as well. Examples are the Lorentz force in
the presence of a magnetic field or the Coriolis force. To model such more general
systems we twist the kinetic energy with a one form. The set-up is as follows.
Assume that (N, g) is a Riemannian manifold, V ∈ C∞(N,R) is a potential, and
in addition A ∈ Ω1(N) is a one form on N . We consider the Hamiltonian

Hg,V,A : T ∗N → R, (q, p) 7→ 1

2
|p−Aq|2 + V (q).

Because of its importance in the study of electromagnetism such Hamiltonians are
referred to as magnetic Hamiltonians.

3.4. Physical symmetries. The last class of Hamiltonians is less directly
associated to Hamiltonian systems arising in physical situations. However, their
Hamiltonian flows generate a family of physical transformations which are impor-
tant to study symmetries of Hamiltonian systems. Assume that N is a manifold
and X ∈ Γ(TN) is a vector field on N . We associate to the vector field X a
Hamiltonian

HX : T ∗N → N

as follows. Denote by π : T ∗N → N the footpoint projection. A point e ∈ T ∗N
we can interpret as a vector e ∈ T ∗π(e)N . We can pair this vector with the vector

X(π(e)) ∈ Tπ(e)N . Hence we set

HX(e) := e
(
X(π(e))

)
.

Assume that the flow φtX : N → N exists for every t ∈ R. Then the Hamiltonian
flow of HX exists as well and is given by

(8) φtHX = d∗φ
t
X

while the symplectomorphism d∗φ for a diffeomorphism φ was defined in (1).
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A prominent example of such a Hamiltonian is angular momentum. Namely
consider on R2 the vector field

X = q1
∂

∂q2
− q2

∂

∂q1
∈ Γ(TR2).

Define angular momentum as the Hamiltonian

L : T ∗R2 → R
given for (q, p) ∈ T ∗R2 by

L(q, p) := HX(q, p) = p1q2 − p2q1.

Note that the vector field X generates the clockwise rotation, i.e.,

φtX = R−t

where
Rt : R2 → R2

is the counterclockwise rotation

Rt
(
q1, q2

)
=
(
(cos t)q1 − (sin t)q2, (sin t)q1 + (cos t)q2

)
.

Therefore in view of (8) we obtain for the Hamiltonian flow of angular momentum

(9) φtL = d∗R−t : T
∗R2 → T ∗R2.

4. Hamiltonian structures

A Hamiltonian manifold is the odd dimensional analogue of a symplectic man-
ifold.

Definition 4.1. A Hamiltonian manifold is a tuple (Σ, ω), where Σ is an odd
dimensional manifold, and ω ∈ Ω2(Σ) is a closed two form with the property that
kerω defines a one dimensional distribution in TΣ. The two form ω is called a
Hamiltonian structure on Σ.

Here is how Hamiltonian manifolds arise in nature. Suppose that (M,ω) is a
symplectic manifold and H ∈ C∞(M,R) is a Hamiltonian with the property that
0 is a regular value of H. Consider the energy hypersurface

Σ = H−1(0) ⊂M.

It follows that the tuple (Σ, ω|Σ) is a Hamiltonian manifold. Moreover, it follows
that in this example the one dimensional distribution kerω is given by

(10) kerω = 〈XH |Σ〉,
i.e., the line bundle spanned by the restriction of the Hamiltonian vector field to
Σ. Indeed, note that if x ∈ Σ and ξ ∈ TxΣ it holds that

ω(XH , ξ) = −dH(ξ) = 0

where the last equality follows since ξ is tangent to a level set of H. In particular,
the leaves of the distribution kerω|Σ correspond to the trajectories of the flow φtH
restricted to Σ. However, by studying the leaves of kerω|Σ instead of the flow
of φtH |Σ we lose the information about their parametrization. One can say that
people studying Hamiltonian manifolds instead of Hamiltonian systems are quite
relaxed, since they do not care about time. This is often an advantage. Indeed,
by regularizing a Hamiltonian system one in general has to reparametrize the flow
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of the Hamiltonian. Therefore it is convenient to have a notion which remains
invariant under these transformations.

Given a Hamiltonian manifold (Σ, ω) a Hamiltonian vector field is a non-
vanishing section of the line bundle kerω. Again if Σ = H−1(0) arises as the
regular level set of a Hamiltonian function on a symplectic manifold the restriction
of XH to Σ is a Hamiltonian vector field. Note that if X is a Hamiltonian vector
field on (Σ, ω) it follows from Cartan’s formula that the Lie derivative LXω = 0,
so that ω is preserved under the flow of X.

5. Contact forms

Definition 5.1. Assume that (Σ, ω) is a Hamiltonian manifold of dimension
2n−1. A contact form for (Σ, ω) is a one-form λ ∈ Ω1(Σ) which meets the following
two assumptions

(i): dλ = ω,
(ii): λ ∧ ωn−1 is a volume form on Σ.

Not every Hamiltonian manifold (Σ, ω) does admit a contact form. An obvious
necessary condition for the existence of a contact form is that [ω] = 0 ∈ H2

dR(Σ).
The tuple (Σ, λ) is referred to as a contact manifold. The defining property for λ
is then the assumption

λ ∧ (dλ)n−1 > 0,

i.e., λ ∧ (dλ)n−1 is a volume form. Each contact manifold becomes a Hamiltonian
manifold by setting ω = dλ.

Given a contact manifold (Σ, λ) the Reeb vector field R ∈ Γ(Σ) is implicitly
defined by the conditions

ιRdλ = 0, λ(R) = 1.

It follows that the Reeb vector field is a non-vanishing section in the line bundle
ker dλ = kerω ⊂ TΣ. In particular it is a Hamiltonian vector field of the Hamil-
tonian manifold (Σ, ω) and we have

(11) kerω = 〈R〉.

If Σ arises as the level set Σ = H−1(0) of a Hamiltonian H on a symplectic manifold,
it follows from (10) and (11) that the Reeb vector field and the restriction of the
Hamiltonian vector field XH |Σ are parallel. In particular, their flows coincide up
to reparametrization.

On the contact manifold (Σ, λ) we can further define the hyperplane field

ξ := kerλ ⊂ TΣ.

This leads to a splitting

TΣ = ξ ⊕ 〈R〉.
Note that the restriction of dλ to ξ makes ξ a symplectic vector bundle of degree
2n− 2 over Σ.

The hyperplane distribution ξ is referred to as the contact structure. While the
contact structure ξ is determined by the contact form λ the opposite does not hold.
Indeed, if f > 0 is any positive smooth function on Σ, we obtain a new contact
form

λf := fλ ∈ Ω1(Σ).
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That λf is indeed a contact form can be checked by computing

λf ∧ (dλf )n−1 = fn(λ ∧ (dλ)n−1) > 0.

The two contact forms λ and λf give rise to the same contact structure

ξ = kerλ = kerλf .

On the other hand the Reeb vector fields of λ and λf are in general not parallel
to each other. Therefore the Reeb dynamics of the contact manifold (Σ, λf ) might
be quite different from the Reeb dynamics of the contact manifold (Σ, λ). This
explains as well that we cannot recover the Hamiltonian structure ω = dλ from the
contact structure ξ = kerλ.

The study of contact manifolds is nowadays an interesting topic in its own right,
see for example the book by Geiges [40]. Different than in contact topology our
major concern is the Hamiltonian structure ω = dλ, since this structure determines
the dynamics up to reparametrization. From our point of view the contact form is
more an auxiliary structure, which enables us to get information on the dynamics
of the Hamiltonian manifold (Σ, ω). Indeed, the contact form turns out to be an
indispensable tool in order to apply holomorphic curve techniques. Furthermore, we
will see that with the help of contact forms one can rule out blue sky catastrophes.

6. Liouville domains and contact type hypersurfaces

Contact manifolds can sometimes be obtained as certain nice hypersurfaces
in a symplectic manifold (M,ω). To be more precise, we consider a hypersurface
S ⊂ M , and assume that there is a vector field X defined in a neighborhood of S
satisfying

(12) LXω = ω.

In other words, the symplectic form ω is expanding along flow lines of X. So if φtX
denotes the flow of X, then

(13) (φtX)∗ω = etω.

We will call a vector field X satisfying (12) a Liouville vector field. If X is a Liouville
vector field for ω, then we obtain a 1-form λ by λ = ιXω. This 1-form is called the
Liouville form. We claim that

Proposition 6.1. Suppose that X is a Liouville vector field defined on a neigh-
borhood of a hypersurface S ⊂ M . Assume that X is transverse to S, so Tx∂M ⊕
〈Xx〉 = TxM for all x ∈ M . Then (S, (ιXω)|S) is a contact manifold with contact
form (ιXω)|S.

Proof: To see this, abbreviate λ = ιXω. Given x ∈ Σ choose a basis
{v1, . . . , v2n−1} of TxΣ. We compute

λ ∧ (dλ)n−1(v1, . . . , v2n−1) = ιXω ∧ ωn−1(v1, . . . , v2n−1)

=
1

n
ωn(Xx, v1, . . . , v2n−1).

Because X t Σ it follows that {Xx, v1, . . . , v2n−1} is a basis of TxM . Because ω is
non-degenerate it follows that

ωn(Xx, v1, . . . , v2n−1} 6= 0
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and we see that λ|Σ is indeed a contact form on Σ. �

A hypersurface Σ satisfying the assumptions of the proposition is called a con-
tact type hypersurface. We will now define a class of symplectic manifolds that
come equipped with a contact type hypersurface. To explain this notion we assume
that (M,λ) is an exact symplectic manifold, i.e., ω = dλ is a symplectic structure
on M . An exact symplectic manifold cannot be closed, since for a closed symplectic
manifold [ω] 6= 0 ∈ H2

dR(M). We assume that M is compact, so it must have a
non-empty boundary.

Definition 6.2. A Liouville domain is a compact, exact symplectic manifold
(M,λ) with the property that the Liouville vector field X, defined by ιXdλ = λ, is
transverse to the boundary and outward pointing.

By Proposition 6.1 it follows that the boundary of a Liouville domain (M,λ)
is contact with contact form λ|∂M , so we have.

Lemma 6.3. Assume that (M,λ) is a Liouville domain. Then (∂M, λ|∂M ) is
a contact manifold.

Given a Liouville domain (M,λ) with Liouville vector field X, we claim that

(14) LXλ = λ

where LX denotes the Lie derivative in direction of X. To see this we first observe
that

ιXλ = ω(X,X) = 0

by the antisymmetry of the form ω. Hence we compute using Cartan’s formula

LXλ = dιXλ+ ιXdλ = ιXω = λ.

This proves (14). We give two examples of Liouville domains which play an impor-
tant role in the following.

Example 6.4. The cotangent bundle M = T ∗N together with the Liouville one-
form is an example of an exact symplectic manifold. In local canonical coordinates
the Liouville one-form is given by λ =

∑
pidqi and therefore the associated Liouville

vector field reads

X =

n∑
i=1

pi
∂

∂pi
.

Now suppose that Σ ⊂ T ∗N is fiberwise star-shaped, i.e., for every x ∈ N Σ∩T ∗xN
bounds a star-shaped domain Dx in the vector space T ∗xN . Then X t Σ and
D =

⋃
x∈N Dx is a Liouville domain with ∂D = Σ.

Remark 6.5. If H : T ∗N → R is a mechanical Hamiltonian, i.e., H(q, p) =
1
2 |p|

2
g + V (q) for a Riemannian metric g on N and a smooth potential V : N → R

and c > maxV Then the energy hypersurface Σ = H−1(c) is fiberwise star-shaped.
Indeed,

dH(X)(q, p) = |p|2g
and because c > maxV it follows that p does not vanish on Σ so that we get

dH(X)|Σ > 0.
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Example 6.6. On the complex vector space Cn with coordinates (z1, . . . , zn) =
(x1 + iy1, . . . , xn + iyn) consider the one-form

λ =
1

2

n∑
i=1

(xidyi − yidxi).

The pair (Cn, λ) is a (linear) symplectic manifold with symplectic form

ω =

n∑
i=1

dxi ∧ dyi

and Liouville vector field

X =
1

2

n∑
i=1

(
xi

∂

∂xi
+ yi

∂

∂yi

)
.

If Σ ⊂ Cn is star-shaped, i.e., Σ bounds a star-shaped domain D, then X t Σ and
D is a Liouville domain with ∂D = Σ.

7. Real Liouville domains and real contact manifolds

A real Liouville domain is a triple (M,λ, ρ) where (M,λ) is a Liouville domain
and ρ ∈ Diff(M) is an exact anti-symplectic involution, i.e.,

ρ2 = id|M , ρ∗λ = −λ.

Because the exterior derivative commutes with pullback we immediately obtain that

ρ∗ω = −ω

for the symplectic form ω = dλ, i.e., ρ is an anti-symplectic involution. It follows
that the Liouville vector field X defined by ιXω = λ is invariant under ρ, meaning

ρ∗X = X.

The fixed point set Fix(ρ) of an anti-symplectic involution is a (maybe empty)
Lagrangian submanifold. To see that pick x ∈ Fix(ρ). The differential

dρ(x) : TxM → TxM

is then a linear involution. Therefore the vector space decomposes

TxM = ker(dρ(x)− id)⊕ ker(dρ(x) + id)

into the eigenspaces of dρ(x) to the eigenvalues ±1. Note that

TxFix(ρ) = ker(dρ(x)− id)

the eigenspace to the eigenvalue 1. Because ρ is anti-symplectic both eigenspaces
are isotropic subspaces of the symplectic vector space TxM , i.e., ω vanishes on both
of them. Hence by dimensional reasons they have to be Lagrangian, i.e., isotropic
subspaces of the maximal possible dimension, namely half the dimension of M .
This proves that Fix(ρ) is Lagrangian. If ρ is an exact symplectic involution then
in addition the restriction of λ to Fix(ρ) vanishes as well, so that Fix(ρ) becomes
an exact Lagrangian submanifold.
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Example 7.1. On Cn complex conjugation is an involution under which the
exact contact form λ = 1

2

∑n
i=1(xidyi−yidxi) is anti-invariant. Therefore if Σ ⊂ Cn

is a star-shaped hypersurface invariant under complex conjugation then Σ bounds
a real Liouville domain. Note that the fixed point set of complex conjugation is the
Lagrangian Rn ⊂ Cn. This explains the terminology real Liouville domain.

Example 7.2. Let N be a closed manifold and I ∈ Diff(N) a smooth involution,
i.e., I2 = id|N . By (2) the physical transformation d∗I : T ∗N → T ∗N is an exact
symplectic involution on T ∗N , namely

(d∗I)∗λ = λ

for the Liouville one-form λ. Consider further the involution rho1 : T ∗N → T ∗N
which on every fiber restricts to minus the identity so that in canonical coordinates
we have

ρ1(q, p) = (q,−p).
The involution I is an exact anti-symplectic involution which commutes with the
exact symplectic involution

ρ1 ◦ d∗I = d∗I ◦ ρ1 =: ρI

so that ρI is an exact anti-symplectic involution on T ∗N . Note that

Fix(ρI) = N∗Fix(I)

the conormal bundle of the fixed point set of I. If Σ ⊂ T ∗N is a fiberwise star-
shaped hypersurface invariant under ρI , then Σ bounds a real Liouville domain. In
particular, if we take I the identity on N , then the anti-symplectic involution is just
ρid = ρ1 and therefore the requirement is that Σ is fiberwise symmetric star-shaped.
Note that a mechanical Hamiltonian is invariant under the involution ρ1, so that
according to Remark 6.5 the energy hypersurface of a mechanical Hamiltonian for
energies higher than the maximum of the potential bounds a real Liouville domain.

Now assume that (M,λ, ρ) is a real Liouville domain with boundary Σ = ∂M .
Denote by abuse of notation the restrictions of λ and ρ to Σ by the same letter.
Then the triple (Σ, λ, ρ) is a real contact manifold, namely a contact manifold
(Σ, λ) together with an anti-contact involution ρ ∈ Diff(Σ), namely an involution
satisfying ρ∗λ = −λ. The Reeb vector field R ∈ Γ(TΣ) is then anti-invariant under
ρ, i.e.,

ρ∗R = −R.
The fixed point set of an anti-contact involution is a (maybe empty) Legendrian
submanifold of Σ, namely a submanifold whose tangent space is a Lagrangian sub-
bundle of the symplectic vector bundle ξ = ker(λ). Moreover, the flow φtR : Σ→ Σ
for t ∈ R of the Reeb vector field satisfies with ρ the relation

(15) φtR = ρ ◦ φ−tR ◦ ρ.
In order to see this, we compute

φtR = φ−t−R = φ−tρ∗R = ρ−1 ◦ φ−tR ◦ ρ = ρ ◦ φ−tR ◦ ρ
where for the last equality we have used that ρ is an involution.





CHAPTER 2

Symmetries and Noether’s theorem

1. Poisson brackets

In order to simplify differential equations, it is important to identify preserved
quantities, also called integrals. More formally, if X is a vector field on a manifold
M , then we call L an integral of X if X(L) = 0.

The notion of Poisson bracket will be helpful. For a symplectic manifold (M,ω)
we define the Poisson bracket of smooth functions F and G by

(16) {F,G} := ω(XF , XG) = −dF (XG) = −XG(F ) = XF (G).

We see directly from the definition that the Poisson bracket describes the time-
evolution of a function. Indeed, suppose that γ(t) is a flow line of XF . Then

dG ◦ γ(t)

dt
= XF (G) = {F,G}.

From this energy preservation, see Theorem 2.2, follows because {H,H} = 0 (the
Poisson bracket is alternating). Before we turn our attention to conserved quanti-
ties, we first need to establish some properties of the Poisson bracket.

Lemma 1.1. Given smooth functions F,G on a symplectic manifold (M,ω),
we have the following relation between the Lie bracket and Poisson bracket,

[XF , XG] = X{F,G}.

Proof: We first rewrite the Lie bracket a bit:

[XF , XG] = LXFXG =
d

dt
|t=0Fl

XF
t

∗
XG =

d

dt
|t=0XG◦FlXFt

.

Now use this identity and the definition:

i[XF ,XG]ω =
d

dt
|t=0ω(X

G◦FlXFt
, ·)

=
d

dt
|t=0

(
−d(G ◦ FlXFt

)
= −d

(
d

dt
|t=0G ◦ FlXFt

)
= −d (XF (G)) = −d{F,G}.

�
In a Darboux chart (U, ω = dp ∧ dq) for (M,ω), the Poisson bracket can be

written as

{F,G} =
∑
i

∂F

∂pi

∂G

∂qi
− ∂F

∂qi
∂G

∂pi
.

In a moment, we shall see that the Poisson bracket endows the space of smooth
functions on M with a Lie algebra structure. We briefly recall the definition.

19
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Definition 1.2. A Lie algebra consists of a vector space g together with a
binary operation [·, ·] such that is bilinear, alternating, so [v, v] = 0 for all v ∈ g
and satisfies the Jacobi identity, i.e. for all X,Y, Z ∈ g, we have

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Proposition 1.3. The pair (C∞(M), {·, ·}) is a Lie algebra.

Proof: We check the required properties. First of all, note that for a ∈ R
and F,G ∈ C∞(M), we have XaF+G = aXF + XG, since the Hamiltonian vector
field is the solution to a linear equation. Hence, {aF +G,H} = ω(XaF+G, XH) =
aω(XF , XH) + ω(XG, XH) = a{F,H} + {G,H}. The same argument works for
the second factor, so {·, ·} is bilinear. Also, {F, F} = ω(XF , XF ) = 0, so {·, ·} is
alternating. Alternatively, we can also use Lemma 1.1. Finally, we check that the
Jacobi identity by computing the individual terms:

{F, {G,H}} = XF ({G,H}) = XF (XG(H) )

{G, {H,F}} = −XG({F,H}) = −XG(XF (H) )

{H, {F,G}} = −X{F,G}(H) = −[XF , XG](H)

We have used Lemma 1.1 in the last step. Summing these terms shows that the
Jacobi identity holds. �

Lemma 1.4. The function G is an integral of XF if {F,G} = 0.

Proof: The function G is an integral if and only if XF (G) = 0. This holds if
and only if 0 = −dF (XG) = ω(XF , XG) = {F,G}. �

Remark 1.5. By Lemma 1.1 {F,G} = 0 implies that [XF , XG] = 0. On the
other hand, for G to be an integral of XF , it is not enough to just have [XF , XG] = 0.
Indeed, consider (R2, ω0 = dp∧ dq) with the Hamiltonians F = p and G = q. Then
XF = ∂q and XG = −∂p, so [XF , XG] = 0. However, G is linearly increasing
under the flow of XF , so G is not an integral of XF .

1.1. Noether’s theorem. Consider a smooth action of a Lie group G on a
symplectic manifold (M,ω). Take a vector ξ ∈ g. Then we get a path exp(tξ) in G
and act on M with this path. Take the derivative with respect to t to get a vector
field on M , namely

(17) Xξ(x) :=
d

dt
|t=0(exp(tξ) · x).

If we assume that the action preserves the symplectic form ω, then Xξ is a sym-
plectic vector field.

Remark 1.6. Note that Xξ does not need to be a Hamiltonian vector field. For
instance the vector field ∂θ on (T 2, dθ ∧ dφ) is symplectic, yet not Hamiltonian.

We will now assume that Xξ is Hamiltonian, so there for each Xξ there is a
function Hξ satisfying iXξω = dHξ. Then we get a map

ρ : g −→ C∞(M)

ξ 7−→ Hξ.

This map has no reason to be nice. We haven’t said anything about shifting the
Hξ’s by constants. Instead, we make the following definition.
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Definition 1.7. We say the action is Hamiltonian if the map ρ can be chosen
to be a Lie algebra homomorphism.

There are obstructions for actions to be Hamiltonian, but this will not be
relevant here. Instead, we point out a couple of examples

Example 1.8. We act with an SO(n)-matrix A on T ∗Rn by the formula A ·
(q, p) = (Aq,Ap), or in other words, the standard action on each component. This
action preserves the symplectic form.

The Lie algebra so(n) can be identified with skew-symmetric matrices together
with the usual commutator as Lie bracket.

Given a skew-symmetric n× n-matrix L, we define the Hamiltonian

HL(q, p) := ptLq.

The Hamiltonian equations are

ṗ = −∂qHL = −ptL = −Ltp = Lp q̇ = ∂pHL = Lq,

which we can solve by exponentiating, so (q(t), p(t) ) = (eLtq, eLtp). This is precisely
the SO(n)-action on T ∗Rn.

Theorem 1.9 (Hamiltonian version of Noether’s theorem). Suppose that G is
a Lie group acting Hamiltonianly on a symplectic manifold (M,ω). If H : M → R
is a Hamiltonian that is invariant under G, then each ξ ∈ g gives an integral Hξ of
XH , or equivalently {H,Hξ} = 0.

Proof: Take ξ ∈ g. We get a vector field Xξ on M by formula (17), which is
the Hamiltonian vector field of the function Hξ by the assumption of Hamiltonian
action. The Hamiltonian H is assumed to be invariant, so by the formula for the
Poisson bracket we have

0 = XHξ(H) = −XH(Hξ),

so Hξ is an integral of XH . �

1.2. Harmonic oscillator. Consider the Hamiltonian

H =
1

2
p2 +

a2

2
q2

on (T ∗R, dλc) ∼= (R2, ω0). The Hamiltonian flow is hence the linear ODE

ṗ = −a2q

q̇ = p

p(0) = p0q(0) = q0,

so we find the explicit solution

(p(t), q(t) ) = (p0 cos(at)− a · q0 sin(at),
p0

a
sin(at) + q0 cos(at).

If we don’t care about the parametrization, we can just observe that level sets are
ellipses, and that solutions lie on them. Later on, we will see several situations
where we can say where the solutions are, but not how they are parametrized. The
above Hamiltonian is called the harmonic oscillator, and it is one of the most basic
Hamiltonian systems.

Clearly, all solutions are periodic in this case: the period is given by 2π/a
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1.2.1. Several uncoupled oscillators. We can generalize the above example to
(R2n, ω0). Define the Hamiltonian

H =

n∑
j=1

1

2
p2
j +

a2
j

2
q2
j

This Hamiltonian describes n uncoupled oscillators. We have the ODE

ṗj = −a2
jqj

q̇j = pj ,

which can clearly also be explicitly solved: just use the above formula n times.
In this case, not all solutions are necessarily periodic. For instance, assume

that the frequencies aj are rationally independent, meaning there are no non-zero
rational numbers ni such that

∑
njaj = 0. Then we see that the j-th coordinate

satisfies

(pj(0) cos(ajt)− aj · qj(0) sin(ajt), . . .
pj(0)

aj
sin(ajt) + q0 cos(ajt).

Such a solution may not be periodic: the frequencies in the different coordinates
differ.

1.3. Central force: conservation of angular momentum. Suppose we
are given a Hamiltonian dynamical system H on T ∗R3. Define the angular mo-
mentum by

L := q × p.
Consider the Hamiltonian

(18) H =
1

2
|p|2 + V (‖q‖)

on R2n − {0} × R2n, where V : R → R is (smooth) function, possibly with some
singularities. Such a function V is called the potential for a central force, because
it only depends on the distance.

We will assume that n = 3, although this can be generalized.

Lemma 1.10. The angular momentum is preserved under the flow of XH . In
other words, the components of the angular momentum L = (L1, L2, L3) satisfy
{H,Li} = 0.

Proof: By Example 1.8, the standard SO(n) action acts Hamiltonianly on
T ∗Rn. The Hamiltonian for a central force is SO(n)-invariant, so Noether’s theo-
rem, Theorem 1.9, implies the claim. �

Remark 1.11. The physical interpretation of preservation of angular momen-
tum is that flow lines of the Hamiltonian vector field XH lie in the plane with
normal vector L.

1.4. The Kepler problem and its integrals. We shall consider the Hamil-
tonian

(19) H =
1

2
|p|2 − 1

|q|
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on R2n − {0} × R2n with coordinates (q, p) and symplectic form ω = dp ∧ dq. The
physically relevant case is n = 2, 3, and we shall first consider the case n = 3. The
equations of motion are

ṗ = − q

|q|3
q̇ = p.

In other words, the force equals q̈ = − q
|q|3 , so its strength drops of with the distance

squared.
The strategy is to find as many integrals as possible, and in fact the Kepler

problem turns completely integrable. We will define this notion later, but roughly
we can say that this means that there are so many conserved quantities that we
can convert the ODE’s into algebraic equations.

Lemma 1.12. The angular momentum L is an integral of the Kepler problem.

The Kepler problem has an obvious SO(3)-symmetry, or put differently the
force is central, so Lemma 1.10 applies.

Remark 1.13. In higher dimensions this Hamiltonian has a SO(n)-symmetry,
but we will not consider this more general (and unphysical) situation.

1.5. The Runge-Lenz vector: another integral of the Kepler problem.
The following integral depends on the specific form of Kepler Hamiltonian (19).
Define the Laplace-Runge-Lenz vector (also called Runge-Lenz vector)1 by

A := p× L− q

|q|
.

Lemma 1.14. The Runge-Lenz vector A is preserved under the flow of XH . In
other words, the components of A = (A1, A2, A3) satisfy {H,Ai} = 0.

Unlike the preservation of angular momentum, this integral is not obvious from
a symmetry of the phase space. We will prove that A is an integral with a short
computation.

Proof. We compute the time-derivative of A,

Ȧ = ṗ× L+ p× L̇− q̇

‖q‖
+

q

‖q‖2
q · q̇
‖q‖

= − q

‖q‖3
× (q × p)− p

‖q‖
+

q

‖q‖3
(q · p)

=
1

‖q‖3
(−q × (q × p)− (q · q)p+ (q · p)q) = 0.

In the second step we have used the Hamilton equations, and in the last step we
used the vector product identity

(u× v)× w = (u · w)v − (v · w)u.

�

Lemma 1.15. The Runge-Lenz vector satisfies the identity

‖A‖2 = 1 + 2H · ‖L‖2.

1This integral was discovered by Jakob Hermann (1678-1733). We refer to [42, 43] for the
history of this vector.
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Proof: The following computation makes use of the fact that p and L are
orthogonal and the identity q · p× L = det(q, p, L) = q × p · L. We find

‖A‖2 = ‖p× L‖2 − 2

|q|
q · p× L+

‖q‖2

‖q‖2
= 1 + ‖p‖2‖L‖2 − 2

|q|
‖L‖2

= 1 + 2(
1

2
‖p‖2 − 1

‖q‖
)‖L‖2.

�
1.5.1. Solving the Kepler problem. Define the plane PL = {v ∈ R3 | 〈L, v〉 = 0}.

Lemma 1.16. The vector A lies in the plane PL.

Recall that 〈q, L〉 = 0 and observe that

〈A,L〉 = 〈p× L,L〉 − 〈 q
‖q‖

, L〉 = 0 + 0.

To describe the movement of the particle more explicitly, we apply a coordinates
change, namely a rotation to move the L-vector to the z-axis. Then L = (0, 0, `)
for some ` > 0, and hence we can write

A = (‖A‖ cos g, ‖A‖ sin g, 0).

Definition 1.17. The angle g is called the argument of the perigee (peri-
helion)2.

We now determine the radius as function of the angle φ. Using the above
formula for A and the identity 〈p× L, q〉 = det(p, L, q), we find

‖q‖+ 〈A, q〉 = 〈 q
|q|
, q〉+ 〈A, q〉 = 〈p× L, q〉 = det(p, L, q) = 〈q × p, L〉 = ‖L‖2.

As before, we write q in polar coordinates

q = (r cosφ, r sinφ, 0)

and by plugging this into ‖q‖+ 〈A, q〉 = ‖L‖2, we find

(20) r =
‖L‖2

1 + ‖A‖ cos(φ− g)
.

It is common to call the quantity

f := φ− g

the true anomaly, and ‖A‖ is called the eccentricity. The geometric picture is
indicated in Figure 1.5.1. It is clear that from Equation 20 that the argument of the
perigee is the angle of the closest approach in a typical situation (here this means
L 6= 0).

With the above computations, we can deduce the following classification result
for solutions.

2Perigee means close to the Earth. Perihelion means close to the Sun. If the heavy mass
describes the Earth, one uses perigee, if it is the Sun, one uses the word perihelion.
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Figure 1. A sketch of a Kepler orbit

2. The planar Kepler problem

The above discussion describes the spatial Kepler problem, so the planar prob-
lem follows as a special case. For later computations, it will be helpful to develop
some explicit formulas for the planar problem.

As before, we can assume that L = (0, 0, `). In polar coordinates for q1q2-
plane, there is a nice expression of `. We write (q1, q2, q3) = (r cosφ, r sinφ, z).
The momentum coordinates (px, py, pz) transform with the inverse of the Jacobian,
so if we denote the cotangent coordinates dual to (r, φ, z) by (pr, pφ, pz), then we
find

(px, py, pz) = (cosφ · pr −
sinφ

r
pφ, sinφ · pr +

cosφ

r
pφ, pz).

The coordinate change for the q-coordinates is

qx = qr cos(qφ), qy = qr sin(qφ).

We are looking for a symplectic transformation, so, as mentioned, we just need
the inverse and transpose of the Jacobian of this coordinate transformation for the
p-part. It is, however, convenient to compute by using the fact that the canonical
1-form, λ = pxdqx + pydqy is preserved. This gives the equation pxdqx + pydqy =
prdqr + pφdqφ, so we find px = pr cos qφ − pφ

qr
sin qφ and py = pr sin qφ +

pφ
qr

cos qφ.

The Hamiltonian is cylindrical coordinates is hence

H =
1

2

(
p2
r +

p2
φ

q2
r

)
− 1

qr
.

Remark 2.1. It is important to observe that pφ is the angular momentum. The
Hamiltonian equations clearly show that the angular momentum is preserved as we
expect for a central force.

Plug this into ` = q1p2 − q2p1 and use the Hamilton equations q̇i = pi to find.

Lemma 2.2 (Kepler’s second law). We have

1

2
r2φ̇ =

1

2
` =

dArea

dt
.
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where Area is the area swept out by an ellipse.

To get the claim about the area, just use that

A =

∫ φ2

φ=φ1

∫ r=r1

r=0

rdφ =

∫ φ2

φ=φ1

1

2
r2dφ.

We assume that L 6= 0. The case L = 0 can be worked out separately: it
involves collision orbits.

Recall that the Hamiltonian for the planar Kepler problem is given by

(21) E : T ∗(R2 \ {0})→ R, (q, p) 7→ 1

2
p2 − 1

|q|
.

We prefer to abbreviate the Hamiltonian for the Kepler problem by E, as an abbre-
viation for energy and not by H as usual. This is because we also have to study the
Kepler problem in rotating coordinates, the so called rotating Kepler problem, and
we prefer to save the letter H to denote the Hamiltonian in rotating coordinates.

The Kepler problem is rotationally invariant. Because rotation is generated by
angular momentum we obtain by Noether’s theorem

(22) {E,L} = 0,

a formula, the reader is invited to check as well by direct computation. However,
the Kepler problem admits as well some ”hidden symmetries”. These hidden sym-
metries do not arise from flows on the configuration space R2 \ {0} but from flows
which only live on phase space T ∗(R2 \ {0}). We introduce the smooth functions

A1, A2 : T ∗(R2 \ {0})→ R
given by {

A1(q, p) = p2(p2q1 − p1q2)− q1
|q| = p2L(q, p)− q1

|q| ,

A2(q, p) = −p1(p2q1 − p1q2)− q2
|q| = −p1L(q, p)− q2

|q| .

Lemma 2.3. The Poisson bracket of E with A1 and A2 vanishes, i.e.,

{E,A1} = {E,A2} = 0.

Proof: The Hamiltonian vector field of E is given by

XE = p1
∂

∂q1
+ p2

∂

∂q2
− q1

|q|3
∂

∂p1
− q2

|q|3
∂

∂p2
.

The differential of A1 is

dA1 = Ldp2 + p2dL−
q2
2

|q|3
dq1 +

q1q2

|q|3
dq2.

Using (22) we compute

{A1, E} = dA1(XE) = −q2L

|q|3
− q2

2p1

|q|3
+
q1q2p2

|q|3
= 0.

This proves that {E,A1} = −{A1, E} = 0 and that {E,A2} = 0 is shown by a
similar computation. �

The two integrals A1 and A2 of the Kepler problem give rise to the vector

(23) A := (A1, A2) : T ∗(R2 \ {0})→ R2.

This vector is known as the Runge-Lenz vector.
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The Runge-Lenz vector can be used to give an elegant explanation why trajec-
tories of the Kepler flow follow conic sections. This is due to the following formula

(24) 〈A, q〉 = L2 − |q|
which follows immediately from the definition of A1 and A2. If A = 0 this means
that q lies on a circle of radius L2 with center in the origin. If A 6= 0 abbreviate

r := |q|, θ = arccos
〈A, q〉
r|A|

,

i.e., θ is the angle between A and q. With this notation (24) becomes

r
(
|A| cos θ + 1

)
= L2.

In particular, the length of the Runge-Lenz vector is the eccentricity of the conic
section the Kepler trajectory follows.

The eccentricity can be directly computed in terms of E and L due to the
following formula

(25) A2 = 1 + 2EL2.

In order to prove (25) we compute

A2 = A2
1 +A2

2

=

(
p2L−

q1

|q|

)2

+

(
p1L+

q2

|q|

)2

= p2L2 − 2(p2q1 − p1q2)L

|q|
+
q2

q2

= 2L2

(
p2

2
− 1

|q|

)
+ 1

= 2EL2 + 1.

Formula (25) gives rise to the following inequality for energy and angular momen-
tum in the Kepler problem

(26) 2EL2 + 1 ≥ 0.

Moreover, equality holds if and only it the trajectory lies on a circle.





CHAPTER 3

Regularization of two body collisions

1. Moser regularization

As we have seen in the discussion about the planar Kepler problem, the Ke-
pler problem admits an obvious rotational symmetry, namely under rotations of
the plane, SO(2), but also hidden symmetries which are generated by the Runge-
Lenz vector (23). These hidden symmetries played an important role in the early
development of quantum mechanics, in particular in Pauli’s and Fock’s discussion
about the spectrum of the hydrogen atom [35, 92]. In [86] Moser explained how
the Kepler flow can be embedded into the geodesic flow of the round sphere. This
explains the hidden symmetries because the round metric is invariant under the
group SO(3). In the case of the planar Kepler problem we obtain the geodesic flow
on the two dimensional sphere and the symmetry group becomes SO(3). In partic-
ular, the symmetry group is three dimensional, in accordance with the fact that we
have three integrals, namely angular momentum as well as the two components of
the Runge-Lenz vector. We refer to the works of Hulthén [61] and Bargmann [11]
for a discussion of these symmetries in terms of quantum mechanics. See also the
exposition [71] by Kim which explains the relation of the Runge-Lenz vector with
the moment map of the Hamiltonian action of SO(3) on the cotangent bundle of
the two dimensional sphere.

We first explain Moser’s regularization of the Kepler problem at the energy
value − 1

2 . Let E : T ∗(R2 \ {0})→ R be the Kepler Hamiltonian (21), i.e., the map

(q, p) 7→ 1
2p

2 − 1
|q| . Define

K(p, q) = 1
2

(
|q|
(
E(−q, p) + 1

2

)
+ 1

)2

= 1
2

(
1
2 (p2 + 1)|q|

)2

.

Recall from Section 2.2 the switch map which is symplectic and interchanges the
roles of position and momentum. If we do this acrobatics in our mind, the Hamil-
tonian K is just the kinetic energy of the ”momentum” q with respect to the round
metric on S2 in the chart obtained by stereographic projection. Hence by Theo-
rem 3.1 the flow of the Hamiltonian vector field of K is given by the geodesic flow
of the round two sphere in the chart obtained by stereographic projection. Note
that

dK|E−1(− 1
2 )(p, q) = |q|dE|E−1(− 1

2 )(−q, p).
In particular, because the switch map (p, q) 7→ (−q, p) is a symplectomorphism the
Hamiltonian vector fields restricted to the energy hypersurface E−1(− 1

2 ) = K−1( 1
2 )

are related by
XK |E−1(− 1

2 )(p, q) = |q|XE |E−1(− 1
2 )(−q, p).

That means the flow of XK is just a reparametrization of the flow of XE . In
particular, after reparametrization the Kepler flow at energy − 1

2 can be interpreted

29
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as the geodesic flow of the round two sphere in the chart obtained by stereographic
projection.

The energy hypersurface E−1(− 1
2 ) is noncompact. This is due to collisions.

However, the geodesic flow in the chart on the round two sphere obtained by
stereographic projection extends to the geodesic flow on the whole two-sphere.
This procedure regularizes the Kepler problem. If we think of the two-sphere as
S2 = R2 ∪ {∞}, then the point at infinity corresponds to collisions. Indeed, at a
collision point the original momentum p explodes which corresponds to the point
at infinity of S2 after interchanging the roles of momentum and position. It is also
useful to note that the geodesic flow on the round two-sphere is completely peri-
odic. The Kepler flow at negative energy is almost periodic. Trajectories are either
ellipses which are periodic or collision orbits which are not periodic. Heuristically
one can imagine that by regularizing the Kepler problem one builds in some kind
of trampoline into the mass at the origin, such that when the body collides it just
bounces back. The corresponding bounce orbit then becomes periodic in accordance
with the fact that the geodesic flow on the round two-sphere is periodic.

To get a feeling what is going on on a more conceptional level it is also useful to
discuss regularization in terms of Hamiltonian manifolds. Recall that by going from
the energy hypersurface of a Hamiltonian in a symplectic manifold to the underly-
ing Hamiltonian manifold one loses the information on the parametrization of the
trajectories. Because during the regularization procedure one has to reparametrize
the trajectories it is conceptually easier to forget the parametrization at all and
just discuss the whole procedure via Hamiltonian structures. Given a noncompact
Hamiltonian manifold (Σ, ω) the question is if there exists a closed Hamiltonian
manifold (Σ, ω) and an embedding

ι : Σ→ Σ

such that

ι∗ω = ω.

Consider now more generally the Kepler problem at a negative energy value
c < 0. In this case the Kepler flow is still up to reparametrization equivalent to
the geodesic flow of the round two sphere in stereographic projection. However
the symplectic transformation (p, q) 7→ (−q, p) now has to be combined with the
physical transformation (q, p) 7→ ( q√

−2c
,
√
−2cp). Note

K(p, q) =
1

2

{
− |q|

2c

[
E
(
− q√
−2c

,
√
−2cp

)
− c
]

+
1√
−2c

}2

=
1

2

(
1

2
(p2 + 1)|q|

)2

.

The two Hamiltonian vector fields on the energy hypersurface

Σc := E−1(c) = K−1(− 1
4c )

are related by

XK |Σc(p, q) =
|q|

(−2c)
3
2

XE |Σc
(
− q√

−2c
,
√
−2cp

)
respectively

XE |Σc(q, p) = − 2c

|q|
XK |Σc

(
p√
−2c

,−
√
−2cq

)
.
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Suppose now that γ ∈ C∞(S1,Σc) is a Kepler ellipse, i.e., a solution of the ODE

∂tγ(t) = τXE(γ(t)), t ∈ S1

where τ > 0 is the minimal period of the ellipse. We next express the period τ in
terms of the energy value c. In view of the discussion above we can interpret γ as
well as a simple closed geodesic for the geodesic flow on the round two sphere. In
view of Σc = K−1(− 1

4c ) the momentum of the geodesic has length
√
−2c. Therefore

if λ = −qdp is the Liouville one-form on the cotangent bundle of the sphere (note
that momentum and position interchanged their role) the action of the simple closed
geodesic is

(27)

∫
S1

γ∗λ =
2π√
−2c

.

Consider the one-form

λ′ = λ− d(qp) = −2qdp− pdq.
Because λ and λ′ only differ by an exact one-form we have by Stokes

(28)

∫
S1

γ∗λ =

∫
S1

γ∗λ′.

Using that the Hamiltonian vector field of the Kepler Hamiltonian is given by

XE = p
∂

∂q
− q

|q|3
∂

∂p

we compute∫
S1

γ∗λ′ =

∫ 1

0

λ′(τXE(γ))dt = τ

∫ 1

0

(
− p2 +

2

|q|

)
dt = −2cτ.(29)

Combining (27), (28). and (29) we obtain

τ = − π

c
√
−2c

.

We proved the following version of Kepler’s third law

Lemma 1.1 (Kepler’s third law). The minimal period τ of a Kepler ellipse
only depends on the energy and we have the relation

τ2 =
π2

−2E3
.

2. The Levi-Civita regularization

We embed C into its cotangent bundle T ∗C as the zero section. We get a
smooth map

L : C2 \ (C× {0})→ T ∗C \ C, (u, v) 7→
(
u

v̄
, 2v2

)
.

If we think of C as a chart of S2 via stereographic projection at the north pole, the
map L extends to a smooth map

L : C2 \ {0} → T ∗S2 \ S2

which we denote by abuse of notation by the same letter. The map L is a covering
map of degree 2. If we write (p, q) for coordinates of T ∗C = C × C. where a
bit unconventional but justified by Moser’s regularization we write p for the base
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coordinate and q for the fiber coordinate, the Liouville one-form on T ∗C is given
by

λ = q1dp1 + q2dp2 = Re(qdp̄).

If we pull back the Liouville one-form by the map L we obtain

λL (u, v) := L ∗λ(u, v)

= Re

(
2v2d

(
ū

v

))

= 2Re

(
v2

(
dū

v
− ūdv

v2

))
= 2Re

(
vdū− ūdv

)
= 2

(
v1du1 − u1dv1 + v2du2 − u2dv2

)
.

Its exterior derivative is the symplectic form

ωL = 4
(
dv1 ∧ du1 + dv2 ∧ du2

)
.

Note that λL does not agree with the standard Liouville one-form on C2 given by

λC2 =
1

2

(
u1du2 − u2du1 + v1dv2 − v2dv1

)
and ωL differs from the standard symplectic form on C2

ωC2 = dλC2 = du1 ∧ du2 + dv1 ∧ dv2.

Indeed, the two subspaces C× {0} and {0} ×C of C2 are Lagrangian with respect
to ωL but symplectic with respect to ωC2 . Nevertheless the Liouville vector field
of λL implicitly defined by

ιXL ωL = λL

is given by

XL =
1

2

(
u1

∂

∂u1
+ u2

∂

∂u2
+ v1

∂

∂v1
+ v2

∂

∂v2

)
and agrees with the Liouville vector field of λC2 . Recall that the standard Liouville
vector field on T ∗S2 defined by ιXdλ = λ for the standard Liouville one-form on
T ∗S2 is given by

X = q
∂

∂q
where q denotes the fiber variable. Because pull back commutes with exterior
derivative we obtain

L ∗X = XL .

This implies the following lemma.

Lemma 2.1. A closed hypersurface Σ ⊂ T ∗S2 is fiberwise star-shaped if and
only if L −1Σ ⊂ C2 is star-shaped.

Note that a fiberwise star-shaped hypersurface in T ∗S2 is diffeomorphic to
the unit cotangent bundle S∗S2 which itself is diffeomorphic to three dimensional
projective space RP 3. On the other hand a star-shaped hypersurface in C2 is
diffeomorphic to the three dimensional sphere S3 which is a twofold cover of RP 3.

In practice the Levi-Civita regularization of planar two body collisions [76]
is carried out by the variable substitution (q, p) 7→ (2v2, uv̄ ). As pointed out by
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Chenciner in [23] this substitution is already anticipated by Goursat [44]. Hence
it is much older than Moser’s regularization [86]. While Moser’s regularization
works in every dimension the Levi-Civita regularization depends on the existence
of complex numbers which only exist in dimension two. Using quaternions instead of
complex numbers an analogue of the Levi-Civita regularization can be constructed
in the spatial case [74].

We illustrate how the Levi-Civita regularization works for the Kepler problem
at the energy value − 1

2 . We consider the Hamiltonian

H : T ∗(R2 \ {0})→ R, (q, p) 7→ p2

2
− 1

|q|
+

1

2
.

After variable substitution we obtain

H(u, v) =
|u|2

2|v|2
− 1

2|v|2
+

1

2
.

We introduce the Hamiltonian

K(u, v) := |v|2H(u, v) =
1

2

(
|u|2 + |v|2 − 1

)
.

The level set
Σ := H−1(0) = K−1(0)

equals the three dimensional sphere. The Hamiltonian flow of K on Σ is just a
reparametrization of the Hamiltonian flow of H on Σ. It is periodic. Physically it
can be interpreted as the flow of two uncoupled harmonic oscillators. Summarizing
we have seen the following. If we apply Moser regularization to the Kepler problem
of negative energy we obtain the geodesic flow of S2 and the regularized energy
hypersurface becomes RP 3. It double cover is S3 which we directly obtain by
applying the Levi-Civita regularization to the Kepler problem. The double cover of
the geodesic flow on S2 can be interpreted as the Hamiltonian flow of two uncoupled
harmonic oscillators.





CHAPTER 4

The restricted three body problem

1. The restricted three body problem in an inertial frame

The first ingredient in the restricted three body problem are two masses, the
primaries, which we refer to it as the earth and the moon. We scale the total mass
to one so that for some µ ∈ [0, 1] the mass of the moon equals µ and the mass of the
earth equals 1−µ. Here we allow the mass of the moon to be bigger than the mass
of the earth, although in such a situation one might prefer to change the names
of the primaries. The earth and the moon move in 3-dimensional Euclidean space
R3 according to Newton’s law of gravitation and we denote their time dependent
positions by e(t) ∈ R3 respectively m(t) ∈ R3 for t ∈ R.

The second ingredient is a massless object referred to as the satellite. Because
the satellite is massless it does not influence the movements of the earth and the
moon. On the other hand the earth and the moon attract the satellite according to
Newton’s law of gravitation. The goal of the problem is to get an understanding of
the dynamics of the satellite which can be quite intricate. If q denotes the position
of the satellite and p its momentum than the Hamiltonian of the satellite in the
inertial system is given according to Newton’s law of gravitation by

(30) Et(q, p) =
1

2
p2 − µ

|q −m(t)|
− 1− µ
|q − e(t)|

namely the sum of kinetic energy and Newton’s potential. We abbreviate this
Hamiltonian by E and not by H in order to distinguish it from the Hamiltonian of
the restricted three body problem in rotating coordinates. Note that because the
earth and the moon are moving the Hamiltonian is not autonomous, i.e., it depends
on time. Actually, because we have to avoid collisions of the satellite with one of
the primaries even the domain of definition of the Hamiltonian is time dependent,
namely

Et : T
∗(R3 \ {e(t),m(t)}

)
→ R.

In particular, because the Hamiltonian depends on time it is not preserved under
the flow of its time dependent Hamiltonian vector field, i.e., preservation of energy
does not hold.

If the satellite moves in the ecliptic, i.e., the plane spanned by the orbits of the
earth and the moon, after choosing suitable coordinates such that e(t),m(t) ∈ R2

for every t ∈ R, the domain of definition of the Hamiltonian becomes

Et : T
∗(R2 \ {e(t),m(t)}

)
→ R.

This is referred to as the planar restricted three body problem, while the former
one is called the spatial restricted three body problem. In the following we focus on
the planar case. This is due to the fact that the question about global surfaces of
section only makes sense in the planar case. A further specialization is obtained by

35
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assuming that the earth and moon move on circles about their common center of
mass. After choosing suitable coordinates their time dependent position are given
by

(31) e(t) = −µ
(

cos(t), sin(t)
)
, m(t) = (1− µ)

(
cos(t), sin(t)

)
.

This problem is referred to as the circular planar restricted three body problem. Of
course there is also a circular spatial restricted three body problem. The amazing
thing about the circular case is that after a time dependent transformation which
puts the earth and moon at rest, the Hamiltonian of the circular restricted three
body problem in rotating coordinates becomes autonomous, i.e., independent of
time. In particular, it is preserved along its flow. This surprising observation is due
to Jacobi. We first explain time dependent transformations.

2. Time dependent transformations

Suppose that (M,ω) is a symplectic manifold and E ∈ C∞(M × R,R) and
L ∈ C∞(M × R,R) are two time dependent Hamiltonians. For t ∈ R abbreviate
Et = E(·, t) ∈ C∞(M) and similarly Lt. This gives rise to two time dependent
Hamiltonian vector fields XEt and XLt . For simplicity let us assume that the
flows of the Hamiltonian vector fields φtE and φtL exist for all times. One can
consider more complicated situations where the domain of definitions of the two
Hamiltonians itself depend on time. This actually happens in the restricted three
body problem. Nevertheless the treatment of this more general cases does not
require basic new ingredients apart from a notational nightmare.

Define the time dependent Hamiltonian function

L3E ∈ C∞(M × R,R)

by

(L3E)(x, t) = L(x, t) + E((φtL)−1x, t), x ∈M, t ∈ R.

We claim that

(32) φtL3E = φtL ◦ φtE , t ∈ R.

To see that pick x ∈M . Abbreviate y = φtL(φtE(x)) and pick further ξ ∈ TyM . We
compute using the fact that φtE is symplectic from Theorem 2.3

ω

(
d

dt
(φtL(φtE(x)), ξ

)
= ω

(
XLt(y) + dφtL(φtE(x))XEt(φ

t
E(x)), ξ

)
= dLt(y)ξ + ω

(
XEt((φ

t
L)−1(y)), (dφtL)−1(y)ξ

)
= dLt(y)ξ + d(E ◦ (φtL)−1)(y)ξ

= d(L3E)t(y)ξ.

This establishes (32).
Note that even if E and L are autonomous, i.e., independent of time, the

Hamiltonian L3E does not need to be autonomous, unless E is invariant under the
flow of L.
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3. The circular restricted three body problem in a rotating frame

For simplicity we discuss the planar case. The spatial case works analogously.
We apply to the Hamiltonian Et given by (30) with positions of the earth and
moon determined by (31) the time dependent transformation generated by angular
momentum1

L ∈ C∞(T ∗R2,R), (q, p) 7→ p1q2 − p2q1.

We abbreviate

H := L3E.

Note that by (9) angular momentum generates the rotation. If we abbreviate

e = (−µ, 0), m = (1− µ, 0)

the Hamiltonian H becomes

(33) H(q, p) =
1

2
p2 − µ

|q −m|
− 1− µ
|q − e|

+ p1q2 − p2q1.

Note that this Hamiltonian is autonomous. In particular, in the rotating frame the
Hamiltonian H is preserved by Theorem 2.2. This surprising observation goes back
to Jacobi and therefore H is also referred to as the Jacobi integral. More precisely,
for some historic reasons the integral −2H, which of course is preserved under the
Hamiltonian flow of H as well, is traditionally called the Jacobi integral.

We point out that the fact that H = L3Hi is autonomous only holds in the
circular case. For example if the primaries move on ellipses with some positive
eccentricity, the so called elliptic restricted three body problem, the Hamiltonian
H does not become time independent.

Abbreviating by

V : R2 \ {e,m} → R, q 7→ − µ

|q −m|
− 1− µ
|q − e|

the Newtonian potential the Hamiltonian equation of motion become

(34)


q′1 = p1 + q2

q′2 = p2 − q1

p′1 = p2 − ∂V
∂q1

p′2 = −p1 − ∂V
∂q2

.

For the second derivatives of q we compute

q′′1 = p′1 + q′2 = p2 −
∂V

∂q1
+ p2 − q1 = 2q′2 + q1 −

∂V

∂q1

and

q′′2 = p′2 − q′1 = −p1 −
∂V

∂q2
− p1 − q2 = −2q′1 + q2 −

∂V

∂q2
.

Therefore the first order ODE (34) is equivalent to the following second order ODE

(35)

{
q′′1 = 2q′2 + q1 − ∂V

∂q1

q′′2 = −2q′1 + q2 − ∂V
∂q2

.

1Actually, one usually defines the angular momentum in physics by q× p, which is minus the
quantity we define here.
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To give the additional rotational term a physical interpretation we complete
the squares and rewrite (33) as

(36) H(q, p) =
1

2

(
(p1 + q2)2 + (p2 − q1)2

)
− µ

|q −m|
− 1− µ
|q − e|

− 1

2
q2.

The last three terms only depend on q and we introduce the so called effective
potential

U : R2 \ {e,m} → R, q 7→ − µ

|q −m|
− 1− µ
|q − e|

− 1

2
q2 = V (q)− 1

2
q2.

Using this abbreviation the Hamiltonian H can be written more compactly as

(37) H(q, p) =
1

2

(
(p1 + q2)2 + (p2 − q1)2

)
+ U(q).

The effective potential potential consists of the Newtonian potential for the earth
and the moon plus the additional term − 1

2q
2. The additional term gives rise to a

new force just experienced in rotating coordinates, namely the centrifugal force. The
Hamiltonian H in (37) is not a mechanical Hamiltonian anymore, i.e., it doesn’t just
consist of kinetic plus potential energy. Instead of that the Hamiltonian contains
a twist in the kinetic part and is therefore a magnetic Hamiltonian as discussed in
Section 3.3. The twist in the kinetic part can be interpreted in terms of physics
as an additional force, namely the Coriolis force. Different from the gravitational
force and the centrifugal force which only depend on the position of the satellite the
Coriolis force depends on its velocity, like the Lorentz force for a particle moving
in a magnetic field. This explains why the Hamiltonian of the restricted three
body problem in rotating coordinates becomes a magnetic Hamiltonian. There
are now four forces acting on the satellite in the rotating coordinate system, the
gravitational force of the earth, the gravitational force of the moon, the centrifugal
force, as well as the Coriolis force. This vividly shows that the dynamics of the
restricted three body complex is highly intricate.

4. The five Lagrange points

In this section we discuss the critical points of the Hamiltonian H given by
(37). We immediately observe that the projection map π : R4 = R2 × R2 → R2

given by (q, p) 7→ q induces a bijection

(38) π|crit(H) : crit(H)→ crit(U).

Indeed, the inverse map for a critical point (q1, q2) ∈ crit(U) is given(
π|crit(H)

)−1
(q1, q2) = (q1, q2,−q2, q1).

We explain now that if µ ∈ (0, 1), the effective potential U = Uµ has five critical
points. The critical points of U are called Lagrange points.

Note that U is invariant under reflection at the axis of earth and moon (q1, q2) 7→
(q1,−q2). Therefore either a critical point of U lies on the axis of earth and moon,
i.e., the fixed point set of the reflection, or it appears in pairs. It turns out that
there are three critical points of U on the axis of earth and moon. These collinear
points were discovered already by Euler and they are saddle points of U . Moreover,
there is one pair of non collinear critical points of U discovered by Lagrange. It
turns out that these points build equilateral triangles with the earth and the moon
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and for this reason they are referred to as equilateral points. The equilateral points
are maxima of U .

We first discuss the two equilateral Lagrange points following the book by
Abraham-Marsden [2]. Because of the reflection symmetry we can restrict our
attention to upper half-space R× (0,∞). Because the distance between earth and
moon is one, i.e., |e−m| = 1, we have a diffeomorphism

φ : R× (0,∞)→ Θ

between the upper half-space and the half-strip

Θ = {(ρ, σ) ∈ (0,∞)2 : ρ+ σ > 1, |ρ− σ| < 1}
which is given by

φ(q) =
(
|q −m|, |q − e|

)
, q ∈ R× (0,∞).

Consider the smooth function

V : Θ→ R, V := U ◦ φ−1.

Critical points of V correspond to critical points of the effective potential U on the
upper half-space. To give an explicit description of V in terms of the variables ρ
and σ we compute for q ∈ R× (0,∞)

q2 = µq2 + (1− µ)q2

= µ
(
ρ2 + 2〈m, q〉 −m2

)
+ (1− µ)

(
σ2 + 2〈e, q〉 − e2

)
= µρ2 + 2µ(1− µ)〈1, q〉 − µ(1− µ)2

+(1− µ)σ2 − 2µ(1− µ)〈1, q〉 − (1− µ)µ2

= µρ2 + (1− µ)σ2 − µ(1− µ).

Therefore V as function of ρ and σ reads

(39) V (ρ, σ) = −µ
ρ
− 1− µ

σ
− 1

2

(
µρ2 + (1− µ)σ2 − µ(1− µ)

)
.

Its differential is given by

dV (ρ, σ) =
µ(1− ρ3)

ρ2
dρ+

(1− µ)(1− σ3)

σ2
dσ.

Hence V has a unique critical point at (1, 1) ∈ Θ. The Hessian at the critical point
(1, 1) is given by

HV (1, 1) =

(
−3µ 0

0 −3(1− µ)

)
.

We conclude that (1, 1) is a maximum. Going back to the original coordinates we
define the Lagrange point `4 as

(40) `4 = φ−1(1, 1) :=
(

1
2 − µ,

√
3

2

)
.

We define the Lagrange point `5 as the point obtained by reflection `4 at the axis
through earth and moon

(41) `5 :=
(

1
2 − µ,−

√
3

2

)
.

By reflection symmetry of U the Lagrange point `5 is also a maximum of U and it
is the only critical point in the lower half-space R× (−∞, 0). We summarize what
we proved so far
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Lemma 4.1. The only critical points of U on R2\(R\{0}, i.e., the complement
of the axis through earth and moon are `4 and `5 and they are maximas of U .

We next discuss the collinear critical points. For this purpose we consider the
function

u := U |R\{−µ,1−µ} : R \ {−µ, 1− µ} → R, r 7→ − µ

|r + µ− 1|
− 1− µ
|r + µ|

− r2

2
.

Because U is invariant under reflection at the axis of the earth and moon, it follows
that critical points of u are critical points of U as well. The second derivative of u
is given by

u′′(r) = − 2µ

|r + µ− 1|3
− 2(1− µ)

|r + µ|3
− 1 < 0.

Therefore u is strictly concave. Since at the singularities at −µ and 1 − µ as well
as at −∞ and ∞ the function u goes to −∞, we conclude that the function u
attains precisely three maxima, one at a point −µ < `1 < 1 − µ, one at a point
`2 > 1− µ and one at a point `3 < −µ. The points `1, `2, `3 are referred to as the
three collinear Lagrange points. Although one has closed formulas of the position
of the Lagrange points `4 and `5 a similar closed formula does not exist for `1, `2,
or `3. In fact to obtain the exact position of the three collinear Lagrange points
one has to solve quintic equations with coefficients depending on µ, see [2, Chapter
10].

Lemma 4.2. The three collinear Lagrange points are saddle points of the ef-
fective potential U .

Proof: Because there is no closed formula for the position of the three collinear
Lagrange points we give a topological argument to prove the Lemma. Note that
the Euler characteristic of the two fold punctured plane satisfies

χ
(
R2 \ {e,m}

)
= −1.

Denote by ν2 the number of maxima of U , by ν1 the number of saddle points of U ,
and by ν0 the number of minima of U . Because U goes to −∞ at infinity as well as
at the singularities e and m it follows from the Poincaré-Hopf index theorem that

(42) ν2 − ν1 + ν0 = χ
(
R2 \ {e,m}

)
= −1.

By Lemma 4.1 we know that `4 and `5 are maxima, so that

(43) ν2 ≥ 2.

Since the three collinear Lagrange points are maxima of u, the restriction of U to
the axis through earth and moon, it follows that they are either saddle points or
maxima of U . In particular,

(44) ν0 = 0

and therefore

(45) ν1 + ν2 = 5.

Combining (42), (43), (44), and (45) we conclude that

ν2 = 2, ν1 = 3.

This finishes the proof of the Lemma. �
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The reader might enjoy trying by looking at the Hessian of U to check directly
that the three collinear Lagrange points are saddle points. If you get stuck we
recommend to have a look at [2, Chapter 10].

Because of the reflection symmetry the function U attains the same value at `4
and `5. In view of Lemma 4.2 together with the fact that U goes to −∞ at infinity
and the singularities e and m, we conclude that it attains it global maximum at
the two equilateral Lagrange points. We state this fact in the following Corollary.

Corollary 4.3. The effective potential attains its global maximum precisely at
the two equilateral Lagrange points and it holds that

maxU = U(`4) = U(`5) = −3

2
+
µ(µ− 1)

2
.

Proof: To compute the value of U(`4) we get using (39)

U(`4) = V (1, 1) = −µ− (1− µ)− 1

2

(
µ+ 1− µ− µ(1− µ)

)
= −3

2
+
µ(µ− 1)

2
.

This finishes the proof of the Corollary. �

We next discuss the ordering of the critical values of the saddle points of U .

Lemma 4.4. If µ ∈
(
0, 1

2

)
the critical values of the collinear Lagrange points

are ordered as follows

(46) U(`1) < U(`2) < U(`3).

If µ = 1
2 we have

(47) U(`1) < U(`2) = U(`3).

Remark 4.5. If µ ∈
(

1
2 , 1
)

one gets from (46) by interchanging the roles of the
earth and the moon that

U(`1) < U(`3) < U(`2).

Proof of Lemma 4.4: We follow the exposition given by Kim [70]. We first
show U(`1) < U(`2) for µ ∈ (0, 1). Suppose that −µ < q < 1 − µ. Abbreviate
ρ := 1 − µ − q > 0 and set q′ := 1 − µ + ρ. In the following we identify R with
R× {0} ⊂ R2. We estimate

U(q′)− U(q) = −µ
ρ
− 1− µ

1 + ρ
− 1

2
(1− µ+ ρ)2 +

µ

ρ
+

1− µ
1− ρ

+
1

2
(1− µ− ρ)2

= (1− µ)

(
1

1− ρ
− 1

1 + ρ
− 2ρ

)
=

2(1− µ)ρ3

1− ρ2

> 0.

In particular, by choosing q = `1 we get

U(`1) < U(`′1) ≤ U(`2)

where for the last inequality we used that `2 is the maximum of the restriction of
U to (1− µ,∞).
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We next show that for 0 < µ < 1
2 it holds that U(`2) < U(`3). If q > 1− µ we

estimate

U(−q)− U(q) = − µ

1− µ+ q
− 1− µ
q − µ

− q2

2
+

µ

q − 1 + µ
+

1− µ
q + µ

+
q2

2

= µ

(
1

q − (1− µ)
− 1

q + (1− µ)

)
+ (1− µ)

(
1

q + µ
− 1

q − µ

)
=

2µ(1− µ)

q2 − (1− µ)2
− 2µ(1− µ)

q2 − µ2

=
2µ(1− µ)

(
(1− µ)2 − µ2

)
(q2 − (1− µ)2)(q2 − µ2)

=
2µ(1− µ)(1− 2µ)

(q2 − (1− µ)2)(q2 − µ2)

> 0.

We choose now q = `2 to obtain

U(`2) < U(−`2) ≤ U(`3)

because `3 is the maximum of the restriction of U to (−∞,−µ).
We finally note that if µ = 1

2 the effective potential U is invariant under reflec-
tion at the y-axis (q1, q2) 7→ (−q1, q2) as well and `2 is mapped to `3 under reflection
at the y-axis. This finishes the proof of the Lemma. �

Recall from (38) that projection to position space gives a bijection between critical
points of the Hamiltonian H and critical points of the effective potential U . For
i ∈ {1, 2, 3, 4, 5} abbreviate

Li = π|−1
crit(H)(`i) ∈ crit(H).

If `i = (qi1, q
i
2) then Li = (qi1, q

i
2,−qi2, qi1). Note that

H(Li) = U(`i)

and if µ(Li) denotes the Morse index of Li as a critical point of H, i.e., the number
of negative eigenvalues of the Hessian of H at Li, we have

µ(Li) = µ(`i).

In particular, we proved the following theorem.

Theorem 4.6. For µ ∈ (0, 1) the Morse indices of the five critical points of H
satisfy

µ(L1) = µ(L2) = µ(L3) = 1, µ(L4) = µ(L5) = 2.

If µ ∈
(
0, 1

2

)
the critical values of H are ordered as

H(L1) < H(L2) < H(L3) < H(L4) = H(L5).

If µ = 1
2 , then the critical values satisfy

H(L1) < H(L2) = H(L3) < H(L4) = H(L5).
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5. Hill’s regions

Let H be the Hamiltonian of the planar circular restricted three body problem
in rotating coordinates given by (37). Fix c ∈ R. Because H is autonomous the
energy hypersurface or level set

Σc = H−1(c) ⊂ T ∗
(
R2 \ {e,m}

)
is preserved under the flow of the Hamiltonian vector field of H. Consider the
footpoint projection

π : T ∗
(
R2 \ {e,m}

)
→ R2 \ {e,m}, (q, p) 7→ q.

The Hill’s region of Σc is the shadow of Σc under the footpoint projection

Kc := π(Σc) ⊂ R2 \ {e,m}.
Because the first two terms in (37) are nonnegative we can obtain the Hill’s region
Kc as well as the sublevel set of the effective potential

Kc =
{
q ∈ R2 \ {e,m} : U(q) ≤ c

}
.

If the energy lies below the first critical value, i.e., c < H(L1), the Hill’s region has
three connected components

Kc = Kec ∪ Kmc ∪ Kuc

where the earth e lies in the closure of Kec and the moon m lies in the closure of
Kmc . The connected components Kec and Kmc are bounded, where the connected
component Kuc is unbounded. Trajectories of the restricted three body problem
above the unbounded component Kuc are referred to as comets. Accordingly the
energy hypersurface of the restricted three body problem decomposes into three
connected components

(48) Σc = Σec ∪ Σmc ∪ Σuc

where
Σec := {(q, p) ∈ Σc, q ∈ Kec

and similarly for Σmc and Σuc .

L1
L2L3

L4

L5

Figure 1. The Hill’s region for various levels of the Jacobi energy
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6. The rotating Kepler problem

The Hamiltonian of the rotating Kepler problem is given by the Hamiltonian
of the restricted three body problem (37) for µ = 0. That means that the moon has
no zero mass and can be neglected and the satellite is just attracted by the earth
like in the Kepler problem. The difference to the usual Kepler problem is that the
coordinate system is still rotating. The Hamiltonian of the rotating Kepler problem

H : T ∗(R2 \ {0})→ R
is explicitly given for (q, p) ∈ T ∗(R2 \ {0}) by

(49) H(q, p) =
1

2
p2 − 1

|q|
+ p1q2 − p2q1.

The first two terms are just the Hamiltonian E of the planar Kepler problem while
the third term is angular momentum L so that we can write

H = E + L.

Because E and L Poisson commute we get

{H,L} = {E,L}+ {L,L} = 0

meaning that H and L Poisson commute as well. In particular, the rotating Kepler
problem is an example of a completely integrable system. It is unlikely that for any
positive value of µ the restricted three body problem is completely integrable as
well and for all but finitely values of µ analytic integrals can be excluded by work
of Poincaré and Xia [90, 108].

If we complete the squares in (49) we obtain the magnetic Hamiltonian

H(q, p) =
1

2

(
(p1 + q2)2 + (p2 − q1)2

)
− 1

|q|
− 1

2
q2

which we write as

H(q, p) =
1

2

(
(p1 + q2)2 + (p2 − q1)2

)
+ U(q)

for the effective potential
U : R2 \ {0} → R

given by

U(q) = − 1

|q|
− 1

2
q2.

Different than for positive µ the effective potential is rotationally invariant. There-
fore its critical set is rotationally invariant as well. We write

U(q) = f(|q|)
for the function

f : (0,∞)→ R, r 7→ −1

r
− 1

2
r2.

The differential of f is given by

f ′(r) =
1

r2
− r

and therefore f has a unique critical point at r = 1 with critical value

f(1) = −3

2
.

We have proved
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Lemma 6.1. The effective potential U of the rotating Kepler problem has a
unique critical value − 3

2 and its critical set consists of the circle of radius one
around the origin.

Because critical points of H and U are in bijection via projection as explained
in (38) and the value of H at a critical point coincides with the value of U of its
projection we obtain the following Corollary.

Corollary 6.2. The Hamiltonian H of the rotating Kepler problem has a unique
critical value − 3

2 .

7. Moser regularization of the restricted three body problem

In complex notation the Hamiltonian (33) of the restricted three body problem
can be written as the map H : T ∗(C \ {−µ, 1− µ})→ R given by

H(q, p) =
1

2
p2 − µ

|q − 1 + µ|
− 1− µ
|q + µ|

+ 〈q, ip〉.

We shift coordinates and put the origin of our coordinate system to the moon to
obtain the Hamiltonian Hm : T ∗(C \ {0,−1})→ R defined by

Hm(q, p) = H(q + 1− µ, p+ i− iµ) +
(1− µ)2

2
(50)

=
1

2
p2 − µ

|q|
− 1− µ
|q + 1|

+ 〈q, ip〉+ 〈q, µ− 1〉

=
1

2
p2 − µ

|q|
+ 〈q, ip〉 − 1− µ

|q + 1|
− (1− µ)q1.

For c ∈ R we consider the energy hypersurface Σc = H−1
m (c). We switch the roles

of q and p and think of p as the base coordinate and q as the fiber coordinate.
The energy hypersurface is than a subset Σc ⊂ T ∗C ⊂ T ∗S2 where for the later
inclusion we think of the sphere as S2 = C ∪ {∞} via stereographic projection.

We examine if the closure Σc is regular in the fiber above ∞. For this purpose
we examine how the terms in (50) transform under chart transition. The chart
transition from the chart given by stereographic projection at the north pole to the
chart given by stereographic projection at the south pole is given by

φ : C \ {0} → C \ {0}, p 7→ 1

p
=

p

|p|2

where p = p1 − ip2 denotes the conjugate transpose of p. In real notation this
corresponds to the map

(p1, p2) 7→
(

p1

p2
1 + p2

2

,
−p2

p2
1 + p2

2

)
.

The Jacobian of φ at p ∈ R2 \ {0} computes to be

dφ(p) =
1

(p2
1 + p2

2)2

(
p2

2 − p2
1 −2p1p2

2p1p2 p2
2 − p2

1

)
.

Its determinant is given by

det
(
dφ(p)

)
=

1

(p2
1 + p2

2)2
.
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Therefore the inverse transpose of dφ(p) reads(
dφ(p)−1

)T
=

(
p2

2 − p2
1 −2p1p2

2p1p2 p2
2 − p2

1

)
.

Consequently the exact symplectomorphism

d∗φ : T ∗(R2 \ {0})→ T ∗(R2 \ {0})
is given by

(51) d∗φ(p, q) =

(
p1

p2
1 + p2

2

,
−p2

p2
1 + p2

2

, (p2
2− p2

1)q1− 2p1p2q2, 2p1p2q1 + (p2
2− p2

1)q2

)
.

Note that because φ−1 = φ it holds that

(d∗φ)−1 = d∗φ
−1 = d∗φ.

Therefore the push forward of kinetic energy to the chart centered at the south pole
is given by

(d∗φ)∗

(
p2

2

)
= (d∗φ)∗

(
p2

2

)
=

1

2p2
.

The push forward of Newton’s potential is

(d∗φ)∗

(
1

|q|

)
=

1

p2|q|
.

Angular momentum L = p1q2 − p2q1 transforms as

(dφ∗)∗L = −L.
Assume that Ω ⊂ R2 is an open subset containing the origin 0 and V : Ω→ R is a
smooth function. Set

FV : R2 × Ω→ R, (p, q) 7→ V (q)

and define

FV : (d∗φ)
(
(R2 \ {0})× Ω

)
∪
(
{0} × R2

)
→ R

by

FV (p, q) =

{
FV
(
d∗φ(p, q)

)
p 6= 0

V (0) p = 0.

It follows from the transformation formula (51) that FV is smooth.
We now choose Ω = C \ {−1} and

V : Ω→ R, q 7→ − 1− µ
|q + 1|

− (1− µ)q1.

It follows that the Hamiltonian Hm in the chart given by stereographic projection
at the south pole is given by the map

(q, p) 7→ 1

2p2
− 1

p2|q|
− L(q, p)− FV (p, q).

Because FV extends smoothly to p = 0 the energy hypersurface Σc extends smoothly
to p = 0 as well and the intersection of its closure with the fiber over 0 is given by{

1

|q|
=

1

2
: q ∈ R2

}
=
{
|q| = 2 : q ∈ R2

}
,

i.e., a circle of radius 2.
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The origin in the chart obtained by stereographic projection at the south pole
corresponds to the north pole, respectively the point ∞ ∈ S2. The fact that we
obtained for the intersection a circle depends on our specific choice of coordinates
on the sphere S2. However, because convexity is preserved under linear transfor-
mations we proved the following Lemma.

Lemma 7.1. For every c ∈ R the closure of the energy hypersurface Σc =
H−1
m (c) ⊂ T ∗S2 is regular in the fiber over ∞ and Σc ∩ T ∗∞S2 is convex.

Recall from (48) that if the energy c is less then the first critical value H(L1)
the energy hypersurface Σc has three connected components Σec, Σmc , Σuc , the first
close to the earth, the second close to the moon and the third consisting of comets.
The regularization described above compactifies the component Σmc to Σ

m

c . Of
course the same can be done with the component around the earth to obtain the
regularized component Σ

e

c. Indeed, the roles of the earth and moon can always
be interchanged simply by replacing µ by 1 − µ. In the following we discuss the
regularized component Σ

e

c. But by interchanging the roles of the earth and the
moon everything said below is true as well for the moon. In [6] the following
Theorem is proved.

Theorem 7.2 (Albers-Frauenfelder-Paternain-van Koert). For energy values
below the first critical value, i.e., for c < H(L1), the regularized energy hypersurface

Σ
e

c ⊂ T ∗S2 is fiberwise star-shaped.

As an immediate corollary of this theorem we have

Corollary 7.3. Under the assumption of Theorem 7.2 the restriction of the
Liouville one-form λ on T ∗S2 gives a contact form on Σ

e

c. In particular, after
reparametrization the regularized flow of the restricted three body problem around
the earth below the first critical value can be interpreted as a Reeb flow.

We have seen that in the fiber over ∞ the regularized energy hypersurface
bound actually a convex domain. Therefore we ask the following question.

Question 7.4. Under the assumptions of Theorem 7.2 is Σ
e

c fiberwise convex
in T ∗S2, i.e., after reparametrization can the regularized flow of the restricted three
body problem around the earth below the first critical value be interpreted as a Finsler
flow?

In [75] Lee proved that below the first critical value Hill’s lunar problem is
fiberwise convex. Hill’s lunar problem is a limit problem of the restricted three
body problem where the mass ratio of the earth and moon diverges to ∞ and the
satellite moves in a tiny neighborhood of the moon. We discuss this problem in
Section 8. It is also known that below the first critical value the regularized rotating
Kepler problem is fiberwise convex, see [25].

As a further Corollary of Theorem 7.2 we obtain

Corollary 7.5. Under the assumption of Theorem 7.2 the regularized energy
hypersurface Σ

e

c is diffeomorphic to RP 3.

We finish this section by explaining how this Corollary follows more elementary
from the Fibration theorem of Ehresmann with no reference to Theorem 7.2. We
first recall the following theorem of Ehresmann [30]. A proof can be found for
example in [20, Theorem 8.12]
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Theorem 7.6 (Fibration theorem of Ehresmann). Assume that f : Y → X is
a proper submersion of differential manifolds, then f is a locally trivial fibration.

As a Corollary of Ehresmann’s fibration theorem we have

Corollary 7.7. Assume that F : M × [0, 1] → R is a smooth function such
that F−1(0) is compact and for every r ∈ [0, 1] it holds that 0 is a regular value
of Fr := F (·, r) : M → R. Then F−1

0 (0) and F−1
1 (0) are diffeomorphic closed

manifolds.

Proof: That F−1
r (0) is a closed manifold for every r ∈ [0, 1] follows from

the assumptions that 0 is a regular value of Fr and F−1(0) is compact. It remains
to prove that all these manifolds are diffeomorphic. We show this by applying
Theorem 7.6 to the projection map

π : Y := F−1(0)→ [0, 1], (x, r) 7→ r.

Because Y is compact by assumption the projection map is proper. It remains to
check that is submersive. If (x, r) ∈ Y the differential of π is the linear map

dπ(x,r) : T(x,r)Y → R, (x̂, r̂) 7→ r̂.

The tangent space of Y is given by

T(x,r)Y =
{

(x̂, r̂) ∈ TxM × R : dF(x,r)(x̂, r̂) = 0
}
.

Pick r̂ ∈ R. Because 0 is a regular value of Fr there exists x̂ ∈ TxM such that

dF(x,r)(x̂, 0) = dFr(x̂) = −dF(x,r)(0, r̂).

This implies that

dF(x,r)(x̂, r̂) = dF(x,r)(x̂, 0) + dF(x,r)(0, r̂) = 0

and therefore (x̂, r̂) ∈ T(x,r)Y . Since r̂ ∈ R was arbitrary this shows that dπ(x,r) is
surjective and π is a proper submersion. Now the assertion of the Corollary follows
from Theorem 7.6. �

We now use Corollary 7.7 to give a direct proof of Corollary 7.5 with no refer-
ence to Theorem 7.2.

Proof of Corollary 7.5: In view of Corollary 7.7 the Corollary 7.5 can now
be proved by a deformation argument. Namely we first switch of the moon to
end up in the rotating Kepler problem and then we switch of the rotation as well.
To make the dependence of the regularized energy hypersurface on the mass of
the moon µ visible we write Σ

e

c,µ. For given µ1 ∈ (0, 1) and c1 < Hµ1
(L1,µ1

) we
choose a smooth path c : [0, µ1] → R with the property that c(µ) < Hµ(L1,µ) and

c(µ1) = c1. In view of Corollary 7.7 the manifold Σ
e

c1,µ1
is diffeomorphic to Σ

e

c(0),0

but the last one is just the regularized energy hypersurface of the rotating Kepler
problem below the first critical value. A further homotopy which switches of the
rotation in the rotating Kepler problem shows that the latter one is diffeomorphic
to the regularized energy hypersurface of the (non-rotating) Kepler problem for a
negative energy value which by Moser is diffeomorphic to RP 3. This proves the
Corollary. �
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8. Hill’s lunar problem

8.1. Derivation of Hill’s lunar problem. While the restricted three body
problem considers the case where the two primaries have comparable masses, Hill’s
lunar problem [49] deals with the case where the first primary compared to the
second one has a much much bigger mass, the second primary has a much much
bigger mass than the satellite and the satellite moves very close to the second pri-
mary. We show how to derive the Hamiltonian of Hill’s lunar problem from the
restricted three body problem by blowing up to coordinates close to the second pri-
mary, compare also [82]. Recall from (50) that after shifting position and momenta
of the Hamiltonian of the restricted three body problem in order to put the origin
of our coordinate system to the moon we obtain the Hamiltonian

Hm(q, p) =
1

2
p2 − µ

|q|
− (1− µ)

(
1√

(q1 + 1)2 + q2
2

+ q1

)
+ p1q2 − p2q1.

The diffeomorphism

φµ : T ∗R2 → T ∗R2, (q, p) 7→ (µ
1
3 q, µ

1
3 p)

is conformally symplectic with constant conformal factor µ
2
3 , i.e.,

φ∗µω = µ
2
3ω

for the standard symplectic form on T ∗R2. Define

Hµ : T ∗(R2 \ {(0, 0), (−µ− 1
3 , 0)})→ R, Hµ := µ−

2
3 (Hm ◦ φµ − 1).

Because φ is symplectically conformal with conformal factor µ
2
3 it follows that

XHµ = φ∗µXHm .

On each compact subset the Hamiltonian Hµ converges uniformly in the C∞-
topology to the Hamiltonian H : T ∗(R2 \ {0})→ R given by

(52) H(q, p) =
1

2
p2 − 1

|q|
+ p1q2 − p2q1 − q2

1 +
1

2
q2
2

We refer to the Hamiltonian H as Hill’s lunar Hamiltonian.
The Hamiltonian equation corresponding to Hill’s lunar Hamiltonian is the

following first order ODE

(53)


q′1 = p1 + q2

q′2 = p2 − q1

p′1 = p2 + 2q1 − q1
|q|3

p′2 = −p1 − q2 − q2
|q|3

which is equivalent to the following second order ODE

(54)

{
q′′1 = 2q′2 + 3q1 − q1

|q|3

q′′2 = −2q′1 −
q2
|q|3 .
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8.2. Hill’s lunar Hamiltonian. Apart from its rather simple form which
makes Hill’s lunar Hamiltonian an important testing ground for numerical inves-
tigations, see for example [103], a nice feature of it is that it is invariant under
two commuting anti-symplectic involutions. Namely ρ1, ρ2 : T ∗R2 → T ∗R2 given
for (q, p) ∈ T ∗R2 by the formula

ρ1(q1, q2, p1, p2) = (q1,−q2,−p1, p2), ρ2(q1, q2, p1, p2) = (−q1, q2, p1,−p2)

are both anti-symplectic involutions such that

H ◦ ρ1 = H, H ◦ ρ2 = H.

The two anti-symplectic involutions commute and their product is the symplectic
involution

ρ1 ◦ ρ2 = ρ2 ◦ ρ1 = −id.

In contrast to Hill’s lunar Hamiltonian the Hamiltonian of the restricted three body
problem is only invariant under ρ1 but not under ρ2.

By completing the squares we can write Hill’s lunar Hamiltonian (52) in the
equivalent form

H(q, p) =
1

2

(
(p1 + q2)2 + (p2 − q1)2

)
− 1

|q|
− 3

2
q2
1 .

If one introduces the effective potential U : R2 \ {0} → R by

U(q) = − 1

|q|
− 3

2
q2
1

the Hamiltonian for Hill’s lunar problem can be written as

H(q, p) =
1

2

(
(p1 + q2)2 + (p2 − q1)2

)
+ U(q).

As in the restricted three body problem there is a one to one correspondence be-
tween critical points of H and critical points of U . Namely, the footpoint projection

π : T ∗(R2 \ {0})→ R2 \ {0}, (q, p) 7→ q

induces a bijection

π|crit(H) : crit(H)→ crit(U).

The partial derivatives of U compute to be

(55)
∂U

∂q1
=

q1

|q|3
− 3q1 = q1

(
1

|q|3
− 3

)
,

∂U

∂q2
=

q2

|q|3
.

The latter implies that at a critical point q2 has to vanish. Since U has a singularity
at the origin, we conclude that at a critical point q1 does not vanish and therefore
the critical set of U is given by

crit(U) =
{

(3−
1
3 , 0), (−3−

1
3 , 0)

}
.

The two critical points of U can be thought of as the limits of the first and second
Lagrange point `1 and `2 of the restricted three body problem under the blow up at
the moon. Because the remaining Lagrange points `3, `4, and `5 are too far away
from the moon, they are not visible in Hill’s lunar problem anymore. In particular,
the critical set of H reads

crit(H) =
{

(3−
1
3 , 0, 0, 3−

1
3 ), (−3−

1
3 , 0, 0,−3−

1
3 )
}
.
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Note that the two critical points of H are fixed by the anti-symplectic involution ρ1

but interchanged through the anti-symplectic involution ρ2. Because H is invariant
under ρ2 it attains the same value at the two critical points. That means that Hill’s
lunar problem has just one critical value which computes to be

H(3−
1
3 , 0, 0, 3−

1
3 ) = U(3−

1
3 , 0)

= −3
1
3 − 3

2
3−

2
3

= −3
1
3 − 3

1
3

2

= −3
1
3 (2 + 1)

2

= −3
4
3

2
.

To obtain the Hessian of U at its critical points we compute from (55)

∂2U

∂q2
1

(±3−
1
3 , 0) = −3q2

1

|q|5

∣∣∣∣
(q1,q2)=(±3−

1
3 ,0)

= − 3

|q1|3

∣∣∣∣
q1=±3−

1
3

= −9,

∂2U

∂q1∂q2
(±3−

1
3 , 0) =

∂2U

∂q2∂q1
(±3−

1
3 , 0) = 0,

and finally
∂2U

∂q2
2

(±3−
1
3 , 0) =

1

|q|3

∣∣∣∣
(q1,q2)=(±3−

1
3 ,0)

= 3.

Therefore the Hessian of U at its critical points is given by

HU (±3−
1
3 , 0) =

(
−9 0
0 3

)
.

We conclude that the critical points of U are saddle points. It follows that the two
critical points of H have Morse index equal to one. We summarize this fact in the
following Lemma.

Lemma 8.1. Hill’s lunar Hamiltonian has a unique critical value at energy

− 3
4
3

2 . At the critical value it has two critical points both of Morse index one.

If c ∈ R we abbreviate by
Σc = H−1(c)

the three dimensional energy hypersurface of H in the four dimensional phase space
T ∗(R2 \ {0}). The Hill’s region to the energy value c is defined as

(56) Kc = π(Σc) =
{
q ∈ R2 \ {0} : U(q) ≤ c

}
.

If c < − 3
4
3

2 then the Hills region Kc has three connected components one bounded

and the other two unbounded. We denote the bounded component of Kc by Kbc and
abbreviate

Σbc :=
{

(q, p) ∈ Σc : q ∈ Kbc
}
.

9. Euler’s problem of two fixed centers

See [106]





CHAPTER 5

Periodic orbits

1. Variational approach

Assume that (M,ω) is a symplectic manifold and H ∈ C∞(M,R) is a Hamil-
tonian with the property that 0 is a regular value, i.e., Σ = H−1(0) ⊂ M is a
regular hypersurface. Abbreviate by S1 = R/Z the circle. A parametrized periodic
orbit on Σ is a loop γ ∈ C∞(S1,Σ) for which there exists τ > 0 such that the tuple
(γ, τ) is a solution of the problem

∂tγ(t) = τXH(γ(t)), t ∈ S1.

Because γ is parametrized the positive number τ = τ(γ) is uniquely determined by
γ. We refer to τ as the period of γ. Indeed, if we reparametrize γ to γτ : R→ N by

γτ (t) = γ
(
t
τ

)
then γτ satisfies

∂tγτ (t) = XH(γτ (t)), γτ (t+ τ) = γ(t), t ∈ R.

By a period orbit we mean the trace {γ(t) : t ∈ S1} of a parametrized periodic orbit.
If we think of (Σ, ω|Σ) as a Hamiltonian manifold, a periodic orbit corresponds to
a closed leaf of the foliation kerω on Σ. However, note that the period of the
periodic orbit only makes sense with reference to the Hamiltonian H and cannot
be determined directly from the Hamiltonian structure ω|Σ.

We next explain how parametrized periodic orbits can be interpreted variation-
ally as critical points of an action functional. To simplify the discussion we assume
that (M,ω) is an exact symplectic manifold, i.e., ω admits a primitive λ such that
dλ = ω. Abbreviate

L = C∞(S1,M)

the free loop space of M and set R+ = (0,∞) the positive real numbers. Consider

AH : L× R+ → R.

defined for a free loop γ ∈ L and τ ∈ R+ by

(57) AH(γ, τ) =

∫
S1

γ∗λ− τ
∫
S1

H(γ(t))dt.

One might think of AH as the Lagrange multiplier functional of the area functional
of the constraint given by the mean value of H. We refer to AH as Rabinowitz
action functional.

Remark 1.1. The action functional AH has itself an interesting history. Al-
though Moser explicitly wrote in ([87]) that AH is useless in finding periodic orbits,
it was used shortly later by Rabinowitz in his celebrated paper [93] to prove existence
of periodic orbits on star-shaped hypersurfaces in R2n and so opened the way for

53
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the application of global methods in Hamiltonian mechanics. Moreover, the action
functional AH can be used to define a semi-infinite dimensional Morse homology
in the sense of Floer [33], which is referred to as Rabinowitz Floer homology, see
[5, 24].

Lemma 1.2. Critical points of AH precisely consist of pairs (γ, τ), where γ is
a parametrized periodic orbit of XH on Σ of period τ .

Proof: If γ ∈ L the tangent space of L at γ

TγL = Γ(γ∗TM)

consists of vector fields along γ. Suppose that (γ, τ) ∈ L× R+ and pick

(γ̂, τ̂) ∈ T(γ,τ)(L× R+) = TγL× R.
By applying Cartan’s formula to the Lie derivative Lγ̂λ we compute for the pairing
of the differential of AH with (γ̂, τ̂)

dAH(γ,τ)(γ̂, τ̂) =

∫
S1

γ∗Lγ̂λ− τ
∫
S1

dH(γ)γ̂dt− τ̂
∫
S1

H(γ)dt

=

∫
S1

γ∗dιγ̂λ+

∫
S1

γ∗ιγ̂dλ− τ
∫
ω(γ̂, XH(γ))dt

−τ̂
∫
S1

H(γ)dt

=

∫
S1

dγ∗ιγ̂λ+

∫
S1

γ∗ιγ̂ω −
∫
ω(γ̂, τXH(γ))dt

−τ̂
∫
S1

H(γ)dt

=

∫
S1

ω(γ̂, ∂tγ)dt−
∫
ω(γ̂, τXH(γ))dt− τ̂

∫
S1

H(γ)dt

=

∫
S1

ω(γ̂, ∂tγ − τXH(γ))dt− τ̂
∫
S1

H(γ)dt

We conclude that a critical point (γ, τ) of AH is a solution of the problem

(58)

{
∂tγ − τXH(γ) = 0∫
S1 H(γ)dt = 0.

In view of preservation of energy as explained in Theorem 2.2 problem (58) is
equivalent to the following problem

(59)

{
∂tγ = τXH(γ)
H(γ) = 0,

i.e., the mean value constraint can be replaced by a pointwise constraint. But so-
lution of problem (59) are precisely parametrized periodic orbits of XH of period
τ on the energy hypersurface Σ = H−1(0). This proves the Lemma. �

There are two actions on the free loop space L = C∞(S1,M). The first action
comes from the group structure of the domain S1. Given r ∈ S1 and γ ∈ L we
reparametrize γ by

r∗γ(t) = γ(r + t), t ∈ S1.

If we extend this S1-action of L to L×R by acting trivially on the second factor, the
action functional AH is S1-invariant. Its critical set, namely the set of parametrized
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periodic orbits, is than S1-invariant as well, which is also obvious from the ODE
parametrized periodic orbits meet. We refer to an equivalence class of parametrized
periodic orbits under reparametrization by S1 as an unparametrized periodic orbit.

The second action on the free loop space comes from the fact that S1 is diffeo-
morphic to its finite covers. Consider the action of the monoid N on L given for
n ∈ N and γ ∈ L by

n∗γ(t) = γ(nt), t ∈ S1.

The two actions combined give rise to an action on L of the semi-direct product
Nn S1 with product defined as

(n1, r1)(n2, r2) = (n1n2, n1r2 + r1).

We extend the action of N on L to an action of N on L×R which is given for γ ∈ L,
τ ∈ R and n ∈ N by

n∗(γ, τ) = (n∗γ, nτ).

The action functional AH is homogeneous of degree one for the action by N, i.e.,

AH(n∗(γ, τ)) = nAH(γ, τ), (γ, τ) ∈ L× R, n ∈ N.

Therefore its critical set is invariant under the action of N as well, again a fact
which can immediately understood as well by looking at the ODE. A parametrized
periodic orbit γ is called multiple covered if there exists a parametrized periodic
orbit γ1 and a positive integer n ≥ 2 such that γ = n∗γ1. Note that this notion
does not depend on the parametrization of the orbit such that one can talk about
multiple covers on the level of unparametrized periodic orbits. A parametrized or
unparametrized periodic orbit is called simple if it is not multiple covered. Because
a periodic orbit is a solution of a first order ODE it follows that for a simple periodic
orbit it holds that

γ(t) = γ(t′) ⇐⇒ t = t′ ∈ S1.

Moreover, for every parametrized periodic orbit γ there exists a unique simple
periodic orbit γ1 and a unique k ∈ N such that γ = k∗γ1. We refer to k as the
covering number of the periodic orbit γ. Alternatively, the covering number can
also be defined as

cov(γ) = max
{
k ∈ N : γ(t+ 1

k ) = γ(t), ∀ t ∈ S1
}
.

Again the covering number does not depend on the parametrization and can there-
fore associated as well to unparametrized periodic orbits. With the notion of the
covering number at our disposal we can characterize simple periodic orbits as the
periodic orbits of covering number one.

We referred to the trace of a parametrized periodic orbit as a periodic or-
bit. There is a one to one correspondence between periodic orbits and simple un-
parametrized orbits respectively equivalence classes of parametrized periodic orbits
under the action of the monoid Nn S1.

2. Symmetric periodic orbits and brake orbits

Suppose that (M,ω, ρ) is a real symplectic manifold, namely a symplectic man-
ifold (M,ω) together with an anti-symplectic involution ρ. Moreover, assume that
H ∈ C∞(M,R) is a Hamiltonian invariant under ρ, i.e.,

H ◦ ρ = H
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and 0 is a regular value of H. Because the Hamiltonian is invariant under ρ while
the symplectic form is anti-invariant it follows that the Hamiltonian vector field is
anti-invariant as well

ρ∗XH = −XH .

The anti-symplectic involution induces an involution Iρ on the free loop space
C∞(S1,Σ) of the energy hypersurface Σ = H−1(0) which is given for γ ∈ C∞(S1,Σ)
by

Iρ(γ)(t) = ρ(γ(1− t)), t ∈ S1.

Because the Hamiltonian vector field is anti-invariant under ρ it follows that if γ is
a periodic orbit of period τ , then Iρ(γ) is again a periodic orbit of the same period
τ . In particular, the involution Iρ restricts to an involution of periodic orbits. A
periodic orbit fixed under the involution Iρ is called a symmetric periodic orbit. In
particular, a symmetric periodic orbit satisfies

γ(t) = ρ(γ(1− t)).

If we plug into this equation t = 1
2 we obtain

γ
(

1
2

)
= ρ
(
γ
(

1
2

))
concluding that

γ
(

1
2

)
∈ Fix(ρ) ∩ Σ.

Because γ is periodic, i.e., γ(0) = γ(1) we further obtain

γ(0) ∈ Fix(ρ) ∩ Σ

as well.
We discussed in Chapter 7 that the fixed point set of an anti-symplectic invo-

lution is a (maybe empty) Lagrangian submanifold of M . We further claim that

(60) Σ t Fix(ρ),

meaning that Σ intersects the fixed point set of ρ transversally. To see that let
x ∈ Σ∩Fix(ρ) = H−1(0)∩Fix(ρ). Because 0 is a regular value of H by assumption
there exists v ∈ TxM such that

dH(x)v 6= 0.

Because H is invariant under ρ it holds that

dH(x) = d(H ◦ ρ)(x) = dH(ρ(x))dρ(x) = dH(x)dρ(x).

Set

w := v + dρ(x)v.

We compute

dH(x)w = dH(x)v + dH(x)dρ(x)v = 2dH(x)v 6= 0.

Moreover,

dρ(x)w = w

so that

w ∈ TxFix(ρ).

This proves (60).
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If we restrict a symmetric periodic orbit x period τ to [0, 1
2 ], then the path

x|[0, 12 ] ∈ C∞
([

0, 1
2

]
,Σ
)

is a solution of the problem{
∂tx(t) = τXH(x(t)), t ∈

[
0, 1

2

]
x(0), x

(
1
2

)
∈ Fix(ρ).

A solution of this problem is referred to as a brake orbit. On the other hand given
a brake orbit we can obtain a symmetric periodic orbit as follows. Namely we set
for t ∈

(
1
2 , 1
]

x(t) := ρ(x(1− t)).
In view of the boundary conditions of a brake orbit we obtain a continuous loop
x ∈ C0(S1,Σ). Because XH is anti-invariant under ρ and x is an integral curve
of the vector field τXH in the interval

[
0, 1

2

]
it follows that x is an integral curve

of τXH on the whole circle. In this case x is automatically smooth and therefore
a periodic orbit. Moreover, by construction it is symmetric. This proves that the
restriction map

x 7→ x|[0, 12 ]

induces a one to one correspondence between symmetric periodic orbits and brake
orbits.

Brake orbits are an interesting topic of study in its own right. The notion of
brake orbits goes back to the work by Seifert [99], in which they were studied for
mechanical Hamiltonians with anti-symplectic involution mapping p to −p which
corresponds to time reversal. We refer to the paper by Long, Zhang, and Zhu [80]
for a modern study of brake orbits and as guide to the literature. We mention as
well the paper by Kang [64] in which brake orbits are studied in connection with
respect to the restricted three body problem.

3. Blue sky catastrophes

Assume that (M,ω) is a symplectic manifold and H ∈ C∞(M × [0, 1],R).
We think of H as a one parameter family of autonomous Hamiltonian functions
Hr = H(·, r) ∈ C∞(M,R) and we assume that 0 is a regular value of Hr for every
r ∈ [0, 1]. the level set H−1

r (0) is connected, and H−1(0) is compact such that
H−1
r (0) is a smooth one parameter family of closed, connected submanifolds of

M . For r ∈ [0, 1] abbreviate by XHr the Hamiltonian vector field of Hr implicitly
defined by the condition

dHr = ω(·, XHr ).

Suppose that (γr, τr) ∈ C∞
(
S1, H−1

r (0))× (0,∞)
)

for r ∈ [0, 1) is a smooth family
of loops and positive numbers solving the problem

∂tγr(t)) = τrXHr (γr(t)), t ∈ S1, r ∈ [0, 1),

i.e., γr is a smooth family of periodic orbits of XHr on the energy hypersurfaces
H−1
r (0) and τr are its periods. Suppose now that τr converges to τ1 ∈ (0,∞) as r

goes to 1. Because H−1(0) is compact it follows from the theorem of Arzela-Ascoli
that γr converges to a periodic orbit γ1 of period τ1. On the other hand if τr goes
to infinity, then the family of periodic orbits γr ”disappears in the blue sky” as r
goes to 1. Such a scenario is referred to as a ”blue sky catastrophe”.

We explain how the assumption that the energy hypersurfaces H−1
r (0) are

contact prevents blue sky catastrophes.
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Theorem 3.1. Assume that ω = dλ such that λ|H−1
r (0) is a contact form for

every r ∈ [0, 1]. Suppose that (γr, τr) for r ∈ [0, 1) is a smooth family of periodic
orbits γr of period τr. Then there exists τ1 ∈ (0,∞) such that τr converges to τ1.

Proof: Let Rr be the Reeb vector field of λ|H−1
r (0). Note that XHr |H−1

r (0) is

parallel to Rr. We first claim that we can assume without loss of generality that

(61) Rr = XHr |H−1
r (0).

To see this note that because the two vector fields are parallel there exist smooth
functions fr : H−1

r (0)→ R such that

Rr = frXHr |H−1
r (0).

Moreover, because H−1(0) is compact, there exists c > 0 such that

1

c
≤ |fr(x)| ≤ c, r ∈ [0, 1], x ∈ H−1

r (0).

Now choose a smooth extension f̄ : M × [0, 1]→ R \ {0} such that

f̄(·, r)|H−1
r (0) = fr

and replace H by f̄ ·H. This guarantees (61). The original family of periodic orbits
γr gets reparametrized by this procedure, however because of the compactness of
H−1(0) the question about convergence of τr is unaffected.

We now consider the family of functionals

Ar := AHr : C∞(S1,M)× (0,∞)→ R.

Using (61) we compute now the action of Ar at the critical point (γ, τ) as follows

(62) Ar(γ, τ) =

∫ 1

0

λ
(
τXHr (γ)

)
dt = τ

∫ 1

0

λ(Rr)dt = τ

i.e., the period of the periodic orbit γ can be interpreted as the action value of Ar.
Now let (γr, τr) for r ∈ [0, 1) be a smooth family of periodic orbits, or according to
our new interpretation critical points of Ar. Using (62) we are now in position to
compute the derivative of τr with respect to the r-parameter as follows

(63) ∂rτr =
d

dr

(
Ar(γr, τr)

)
= (∂rAr)(γr, τr) = −τr

∫
S1

(∂rHr)(γr)dt.

Here we have used in the second equation that (γr, τr) is a critical point of Ar.
Because H−1(0) is compact there exists κ > 0 such that

(64)
∣∣∣∂rHr|H−1

r (0)

∣∣∣ ≤ κ, ∀ r ∈ [0, 1].

Combining (63) and (64) we obtain the estimate

|∂rτr| ≤ κτr.

In particular, if 0 ≤ r1 < r2 < 1, this implies

e−κ(r2−r1)τr1 ≤ τr2 ≤ eκ(r2−r1)τr1 .

This proves that τr converges, when r goes to 1 and hence excludes blue sky catas-
trophes. �
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4. Periodic orbits in the rotating Kepler problem

Recall that the Hamiltonian of the rotating Kepler problem is given by

H = E + L

where E is the Hamiltonian of the (non-rotating) Kepler problem and L is angular
momentum. Furthermore, by (25) the relation

A2 = 1 + 2L2E

holds, where A is the Runge-Lenz vector whose length corresponds to the eccen-
tricity of the corresponding Kepler ellipse. Combining these two facts we obtain
the inequality

0 ≤ 1 + 2E(H − E)2 = 1 + 2H2E − 4HE2 + 2E3 =: p(H,E).

Moreover, equality holds if and only if the corresponding Kepler orbit has vanishing
eccentricity, i.e., for circular periodic orbits. Before we investigate these circular
orbits in more detail, we first explain some symmetry properties that general orbits
enjoy.

4.1. The shape of the orbits if E < 0. From Noether’s theorem we know
that {E,L} = 0, so [XE , XL] = 0. It follows that the flows of XE and XL commute,
so we see that

(65) φtH = φtL ◦ φtE .

We want to investigate how the orbits look like if E < 0.
For this we consider the q-components of an orbit in the Kepler problem. Let

εT : [0, T ]→ R2 denote a Kepler ellipse with period T , i.e. a solution to the Kepler
problem with negative energy.

By (65), we also obtain a solution to the rotating Kepler problem, which no
longer needs to be periodic. Its q-components are given by

εRT (t) = eitεT (t),

since L just induces a rotation in both the q- and p-plane. There are now two cases

• εT is a circle. In this case, εRT is periodic unless it is a critical point (which
can happen if T = 2π).

• εT is not a circle, in which case it is either a proper ellipse or a collision
orbit (which looks like a line).

We now consider the second, so the orbit εT is not a circle. We then observe that
such an orbit is periodic if the following resonance relation is satisfied for some
positive integers k, `

2πk = T`.

Hence periodic orbits in the rotating Kepler problem of the second kind have the
following symmetry property.

Lemma 4.1. Periodic orbits in the rotating Kepler problem of the second kind
satisfy the following rotational symmetry,

εRT (t+ T ) = e2πk/`εRT (t).
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Proof. From the periodicity condition we have T = 2πk/`, so we find

εRT (t+ T ) = eit+iT εT (t+ T ) = ei2πk`eitεT (t) = e2πk/`εRT (t).

�

Figure 1 illustrates this lemma.

x

y y

x

Figure 1. Periodic orbits in the rotating Kepler problem for c =
1.6: the circle indicates the boundary of the Hill’s region.

4.2. More on circular orbits. If we fix H, the function

pH := p(H, ·)
is a cubic polynomial in E and if we fix E, the function

pE := p(·, H)

is a quadratic polynomial in H. By Corollary 6.2 we know that − 3
2 is the unique

critical value of H. At the critical value the cubic polynomial p− 3
2

splits as follows

(66) p− 3
2
(E) = 2(E + 2)(E + 1

2 )2

i.e., p− 3
2

has a simple zero at −2 and a double zero at − 1
2 . Recall that the discrim-

inant of a cubic polynomial p = ax3 + bx2 + cx+ d is given by the formula

∆(p) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.

In the case that the coefficients are real, the discriminant can be used to determine
the number of real roots. Namely if ∆(p) > 0 the polynomial p has three distinct
real roots, if ∆(p) = 0 the polynomial has a double root, and if ∆(p) < 0 the poly-
nomial has one real and two complex conjugated roots. For the cubic polynomial
pH the discriminant computes as follows

∆(pH) = 64H6 − 64H6 + 256H3 − 108− 288H3 = −32H3 − 108.

We see that ∆(pH) > 0 for H < − 3
2 , vanishes at H = − 3

2 and satisfies ∆(pH) < 0

for H > − 3
2 . For H < − 3

2 we denote by E1(H), E2(H), E3(H) ∈ R the zero’s of
pH ordered such that

E1(H) < E2(H) < E3(H).

In view of (66) the three functions extend continuously to H = − 3
2 such that

E1
(
− 3

2

)
= −2, E2

(
− 3

2

)
= E3

(
− 3

2

)
= − 1

2 .
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Moreover, E1 extends to a continuous function on the whole real line such that
E1(H) is the unique real root of pH if H > − 3

2 . Note that the discriminant of the

quadratic polynomial pE(H) = 2EH2 − 4E2H + 2E3 + 1 equals

∆(pE) = −8E

and therefore for E < 0 the polynomial pE has precisely two real zeros. We conclude
that the functions E1 and E2 are monotone increasing and the function E3 is
monotone decreasing such that

lim
H→−∞

E1(H) = lim
H→−∞

E2(H) = −∞, lim
H→−∞

E3(H) = lim
H→∞

E1(H) = 0.

For later reference we observe that the images of the three functions are

(67) imE1|(−∞, 32 ] = (−∞, 2], imE2 = (−∞, 1
2 ], imE3 = [ 1

2 , 0).

Note that as an unparametrized, simple orbit a circular orbit in the (non-rotating)
planar Kepler problem is uniquely determined by its energy E and its angular
momentum L. On the other for given values of E and L a circular periodic orbit
only exists if 0 = 1 + 2EL2. That means that for a given negative energy value
there exist precisely two circular orbits whose angular momenta differ by a sign,
i.e., the circle is traversed backwards.

A circular periodic orbit of the Kepler problem also gives rise to a circular
periodic orbit in the rotating Kepler problem, since the circle is invariant under
rotation. In particular, a circular periodic orbit of the rotating Kepler problem
is uniquely determined by the values of H and L or equivalently by the values of
H and E. That for given values of H and E a circular periodic orbit exists, it
most hold that p(H,E) = 0. Hence by the discussion above, for a given value of
H less than the critical value − 3

2 there exist three circular periodic orbits, while

for a given energy value H bigger than the critical value − 3
2 there exists a unique

circular periodic orbit.
If the energy value c is less than − 3

2 the Hill’s region Kc has two connected
components, one bounded and one unbounded. We next discuss which of the three
circular periodic orbits lie above the bounded component and which lie above the
unbounded one. Because the Runge-Lenz vector for a circular periodic orbit van-
ishes we obtain from (24) for the radius r of a circular periodic orbit

r = L2 = − 1

2E

while the second inequality follows from (25) again in view of the fact that the
Runge-Lenz vector vanishes. In view of (67) we conclude that the circular peri-
odic orbits corresponding to the energy values E1(c) and E2(c) have radius less
than one where the circular periodic orbit corresponding to the energy value E3(c)
has radius bigger one. Therefore the first two circular periodic orbits lie above
the bounded component of the Hill’s region where the third one lies above the
unbounded component of the Hill’s region.

The circular periodic orbit corresponding to E1 is referred to as the retrograde
periodic orbit, while the circular periodic orbit corresponding the E2 is referred to
as the direct periodic orbit.

For very small energy the rotating Kepler problem approaches more and more
the usual Kepler problem which after Moser regularization is equivalent to the
geodesic flow on the two sphere. Due to invariance of the geodesic flow on the
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round two sphere under rotation the closed geodesics are not isolated. We next
explain how the retrograde and direct periodic orbit of the rotation Kepler problem
bifurcate from the geodesic flow of the round two sphere.

Periodic orbits can be interpreted variationally as critical points of Rabinowitz
action functional. We first explain the bifurcation picture out of a Morse-Bott
critical component in the finite dimensional set-up. For this purpose suppose that
X is a manifold and f ∈ C∞(X × [0, 1),R). For r ∈ [0, 1) we abbreviate fr :=
f(·, r) ∈ C∞(X,R) so that we obtain a one-parameter family of smooth functions
on X. Suppose that

C ⊂ critf0

is a Morse-Bott component of the critical set of f0. We mean by this that C ⊂ X
is a closed submanifold which corresponds to a connected component of the critical
set of f0 with the property that for every x ∈ C it holds that

TxC = kerHf0
(x)

where Hf0(x) is the Hessian of f0 at x. Suppose that the restriction of the derivative

of fr with respect to the homotopy variable r to the Morse-Bott component f̊0|C
is a Morse function. Then it follows from the implicit function theorem that there
exists ε > 0, an open neighborhood U of C in X and a smooth function

x ∈ crit(f̊0|C)× [0, ε)→ U

meeting the following conditions.

(i): If ι : crit(f̊0|C) → U is the inclusion and x0 = x(·, 0) : crit(f̊0|C) → U ,
then it holds that x0 = ι.

(ii): For every r ∈ (0, ε) the restriction fr|U is Morse and we have crit(fr|U ) =

imxr where xr = x(·, r) : crit(f̊0|C)→ U .

Recall from (49) that the Hamiltonian for the rotating Kepler problem reads

H : T ∗(R2 \ {0})→ R, (q, p) 7→ 1

2
p2 − 1

|q|
+ p1q2 − p2q1.

For an energy value c < 0 we regularize the rotating Kepler problem via

Kc(p, q) :=
1

2

(
− |q|

2c

(
H
(
q
2c ,
√
−2cp

)
− c
)

+ 1

)2

− 1

2

=
1

2

(
1

2
(1 + p2) +

(p1q2 − p2q1)

(−2c)
3
2

)2

|q|2 − 1

2
.

The discussion in Section 7 shows that the Hamiltonian Kc extends to a smooth
Hamiltonian on T ∗S2 for every c < 0. By abuse of notation we denote the canonical
smooth extension of Kc to T ∗S2 by the same letter. There is some small difference
in the regularization above compared to the regularization in Section 1. In Sec-
tion 1 we used to symplectic transformation (p, q) 7→

(
− q√

−2c
,
√
−2cp). Here we

use the transformation (p, q) 7→
(
q
2c ,
√
−2cp

)
which is only conformally symplec-

tic with conformal factor 1√
−2c

. For fixed c we can easily switch between the two

transformations because a conformal symplectic factor can always be absorbed in
the Hamiltonian in order to get the same Hamiltonian vector field. In particular,
a conformal symplectic factor only gives rise to a reparametrization of the Hamil-
tonian flow. However, this transformation becomes problematic when one wants
to study a sequence of symplectically conformal maps where the conformal factor
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converges to zero. This precisely we intend to do now. Namely we want to study
the limit where c goes to −∞. For that purpose we change the variable c in order
to get the Hamiltonian

Kr(p, q) := K
− 1

2r
2
3 (p, q) =

1

2

(
1

2
(1 + p2) + (p1q2 − p2q1)r

)2

|q|2 − 1

2

for r ∈ (0,∞). This Hamiltonian smoothly extends to r = 0, where it becomes

K0(p, q) =
1

2

(
1

2
(1 + p2)

)2

|q|2 − 1

2
.

This is just the regularized Kepler Hamiltonian which coincides with kinetic energy
on the round two-sphere. In particular, its Hamiltonian flow is just the geodesic
flow on the round two-sphere.

We abbreviate by L = C∞(S1, T ∗S2) the free loop space of T ∗S2 and consider
the family

Ar := AKr : L× R+ → R
of action functionals as defined by (57). Critical points of A0 correspond to
geodesics on the round two-sphere. Unparametrized simple closed geodesics on
the round two sphere are in one to one correspondence with unparametrized great
circles. Great circles parametrized according to arc length are determined by a
point and a unit direction. In particular, the space of parametrized great circles
is diffeomorphic to S∗S2 ∼= RP 3 where S∗S2 = {v ∈ T ∗S2 : ||v|| = 1} is the unit
cotangent bundle of S2. The circle S1 acts on the space of parametrized great cir-
cles by time shift. Hence the space of unparametrized great circles is diffeomorphic
to RP 3/S1 ∼= S2. If γ : S1 → S∗S2 is a (parametrized) periodic orbit of the Hamil-
tonian vector field of K0 corresponding to a simple closed geodesic, then because
the periodic of a simple closed geodesic on the round two sphere parametrized by
arc length is 2π, the tuple (γ, 2π) is a critical point of A0. Abbreviate by

C ⊂ critA0

the space of all these tuples. Note that

C ∼= RP 3

is a Morse-Bott component of A0. The circle S1 acts on L by time-shift and on R+

trivially. Because the action functionals Ar are invariant under this S1-action they
induce action functionals

Ar : (L× R+)/S1 → R.

Note that S1 acts on L×R+ with finite isotropy so that the quotient (L×R+)/S1

is an orbifold. However, at C ⊂ L × R+ the S1-action is free and we denote the
quotient by

C = C/S1 ⊂ crit(A0).

Note that

C ∼= RP 3/S1 ∼= S2.

We next study the restriction of Å0 to C. Note that

(68) K̊0(p, q) =
1

2
(1 + p2)(p1q2 − p2q1)|q|2 =

√
2K0 + 1L|q|
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where L = p1q2− p2q1 is angular momentum. Note that at a point (γ, τ) ∈ L×R+

the derivative of Ar with respect to the r-variable at r = 0 is given by

Å0(γ, τ) = −τ
∫
S1

K̊0(γ)dt.

If (γ, 2π) = (p, q, 2π) ∈ C it follows that K0(γ) = 0 and therefore

Å0(γ, 2π) = −2π

∫
S1

L(γ)|q|dt.

Because angular momentum L is constant along periodic orbits of the Kepler prob-
lem, we can write this as

Å0(γ, 2π) = −2πL(γ(0))

∫
S1

|q|dt.

The integral
∫
S1 |q|dt gives the ratio of the period of a Kepler ellipse of energy

− 1
2 before and after regularization. After regularization a Kepler ellipse becomes a

closed geodesic on the round two-sphere and hence has period 2π. Before regular-
ization by the version of the third Kepler law explained in Lemma 1.1 the period for
energy − 1

2 is 2π as well, so that
∫
S1 |q|dt = 1 independent of the orbit. Therefore

we can simplify the above formula to

Å0(γ, 2π) = −2πL(γ(0)).

The induced map L of L on the quotient S∗S2/S1 ∼= RP 3/S1 ∼= S2 is just the
standard height function on the two-sphere. This is not a coincidence but a very
special case of a much more general fact. Indeed, the Hamiltonian vector field of
L on S2 induces a periodic flow, so that we can think of L as a moment map for
a circle action on S2. By a very special case of the convexity theorem of Atiyah-
Guillemin-Sternberg [9, 46] we know that such a moment map is Morse all whose
critical points have even index, in particular, it has no saddle points and a unique
maximum and a unique minimum. It is easy to see what the critical points are
in our case. By the theory of Lagrange multipliers at a critical point of L on the
constraintK−1

0 (0) the differential of L andK0 have to be proportional to each other,
so that the Hamiltonian vector fields must be parallel. This happens precisely at
the circular periodic orbits of the Kepler problem. For a fixed energy value there
are precisely two circular periodic orbits moving in opposite direction.

5. The retrograde and direct periodic orbit

5.1. Low energies. We have seen how the retrograde and direct periodic orbit
bifurcate from the geodesic flow in the rotating Kepler problem. The phenomenon
described for the rotating Kepler problem is much more general as explained by
Conley [26] and Kummer [73]. It continues to hold if one adds to the rotating
Kepler problem some additional velocity independent forces.

Here is the set-up. Let Ω ⊂ R2 be an open subset containing the origin and
V : Ω→ R be a smooth function with the property that the origin is a critical point
of V and µ > 0. We consider the Hamiltonian

H := HV,µ : T ∗(Ω \ {0})→ R, (q, p) 7→ 1

2
p2 − µ

|q|
+ p1q2 − p2q1 + V (q).
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An example of a Hamiltonian of this form is the Hamiltonian Hm in (50) which is
obtained from the Hamiltonian of the restricted three body problem by shifting co-
ordinates, or Hill’s lunar Hamiltonian. For a given energy value c < 0 we regularize
H by introducing the Hamiltonian

Kc(p, q) =
1

2

(
− |q|

2c

(
H
(
q
2c ,
√
−2cp

)
− c− V (0)

)
+ µ

)2

− µ2

2

=
1

2

(
1

2
(1 + p2) +

(p1q2 − p2q1)

(−2c)
3
2

−
(V
(

q
−2c

)
− V (0))

2c

)2

|q|2 − µ2

2

As in the rotating Kepler problem we change the energy parameter and introduce

Kr(p, q) := K
−r−

2
3

2 (p, q)

=
1

2

(
1

2
(1 + p2) + (p1q2 − p2q1)r +

(
V (qr

2
3 )− V (0)

)
r

2
3

)2

|q|2 − µ2

2
.

Note that

K0(p, q) =
1

2

(
1

2
(1 + p2)

)2

|q|2 − µ2

2

does not depend on V . In particular, its flow on the energy hypersurface K−1
0 (0)

coincides with the geodesic flow on the round two sphere up to reparametrization.
Abbreviate

Gr(p, q) :=
1

2
(1 + p2) + (p1q2 − p2q1)r +

(
V (qr

2
3 )− V (0)

)
r

2
3

so that we can write

(69) Kr(p, q) =
1

2
Gr(p, q)

2|q|2 − µ2

2
.

For the first derivative of Gr with respect to the homotopy parameter r we get

∂Gr
∂r

(p, q) = (p1q2 − p2q1) +
2

3

〈
∇V (qr

2
3 ), q

〉
r

1
3 +

2
(
V (qr

2
3 )− V (0)

)
3r

1
3

In particular,

∂Gr
∂r

∣∣∣∣
r=0

(p, q) = p1q2 − p2q1 = L(q, p).

For the second derivative of Gr we obtain

∂2Gr
∂r2

(p, q) =
4

9

〈
HV (qr

2
3 )q, q

〉
+

2
〈
∇V (qr

2
3 ), q

〉
9r

2
3

+
4
〈
∇V (qr

2
3 ), q

〉
9r

2
3

−
2
(
V (qr

2
3 )− V (0)

)
9r

4
3

=
4

9

〈
HV (qr

2
3 )q, q

〉
+

2
〈
∇V (qr

2
3 ), q

〉
3r

2
3

−
2
(
V (qr

2
3 )− V (0)

)
9r

4
3
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where by HV we abbreviate the Hessian of V . Because the origin is a critical point
of V we conclude

∂2Gr
∂r2

∣∣∣∣
r=0

(p, q) =
4

9

〈
HV (0)q, q

〉
+

2

3

〈
HV (0)q, q

〉
− 1

9

〈
HV (0)q, q

〉
=

〈
HV (0)q, q

〉
.

In view of (69) we get for the first derivative of Kr

∂Kr

∂r
(p, q) = Gr(p, q)|q|2

∂Gr
∂r

(p, q) =
√

(2Kr(p, q) + µ2)|q|∂Gr
∂r

(p, q)

so that we have
∂Kr

∂r

∣∣∣∣
r=0

(p, q) =
√

(2K0 + µ2)|q|L.

In particular, this does not depend on V and therefore coincides with the computa-
tion for the rotating Kepler problem (68). For the second derivative of Kr it holds
that

∂2Kr

∂r2
=

|q|√
2Kr + µ2

∂Kr

∂r

∂Gr
∂r

+
√

2Kr + µ2|q|∂
2Gr
∂r2

= |q|2
((

∂Gr
∂r

)2

+Gr
∂2Gr
∂r2

)
.

In particular, because Gr is two times continuously differentiable in r for every
r ∈ [0,∞) the same is true for Kr.

As for the rotating Kepler problem we consider for r ∈ [0,∞) the family of
action functionals

Ar := AKr : L× R+ → R

as defined by (57) where L = C∞(S1, T ∗S2). Because Kr is two times differentiable

and K0 as well as K̊0 do not depend on the choice of V we conclude that precisely
as in the rotating Kepler problem the geodesic flow bifurcates at r = 0 into two
periodic orbits which we still refer to as the direct and retrograde periodic orbits.

5.2. Birkhoff’s shooting method. Recall from (54) that trajectories of
Hill’s lunar problem satisfy the following second order ODE

(70)

{
q′′1 − 2q′2 = q1

(
3− 1

|q|3

)
q′′2 + 2q′1 = − q2

|q|3

The energy constraint for Hill’s lunar problem becomes

(71) c =
1

2

(
(q′1)2 + (q′2)2

)
− 1

|q|
− 3

2
q2
1 .

The following theorem is due to Birkhoff [17].

Theorem 5.1. Assume c < − 3
4
3

2 . Then there exists τ > 0 and (q1, q2) : [0, τ ]→
(−∞, 0]× [0,∞) solving (70), (71), and

q2(0) = 0, q′1(0) = 0, q1(τ) = 0, q′2(τ) = 0.
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Proof: Consider the function

fc : (0,∞)→ R, r 7→ c+
1

r
+

3

2
r2.

Its derivative

f ′c = − 1

r2
+ 3r

has a unique zero at r = 1

3
1
3

= 3−
1
3 and satisfies

f ′c|(0,3− 1
3

) < 0, f ′c|(3− 1
3 ,∞
) > 0.

In particular, fc has a unique minimum at r = 3−
1
3 at which it attains the value

fc(3
− 1

3 ) = c+
3

4
3

2
< 0.

We conclude that there exists a unique rc ∈ (0, 3−
1
3 ) such that

fc(rc) = 0.

Choose r ∈ (0.rc]. Let qr : [0, Tr) → R2 be the solution of (70) to the initial
conditions

(72) qr1(0) = −r, qr2(0) = 0, (qr1)′(0) = 0, (qr2)′(0) =
√

2fc(r).

In view of the initial conditions (71) holds for every t by preservation of energy.
In particular, qr lies in the bounded part of the Hill’s region whose only non-
compactness comes from collisions at the origin. Hence we choose Tr ∈ (0,∞] such
that limt→Tr q

r(t) = 0 in case that Tr is finite. We introduce the quantity

τ(r) := inf
{
t ∈ (0, Tr) : qr2(t) = 0, or qr1(t) = 0

}
.

Here we understand that if the set is empty, then τ(r) = Tr. If r < rc in view of
the initial conditions (72) we have (qr2)′(0) > 0 and therefore

τ(r) > 0.

We claim that

(73) τ(r) <∞, r ∈ (0, rc).

To see that we first integrate the first equation in (70) and use the initial condition
(72)

(qr1)′(t) = (qr1)′(0) + 2qr2(t)− 2qr2(0) +

∫ t

0

qr1

(
3− 1

|qr|3

)
ds(74)

= 2qr2(t) +

∫ t

0

qr1

(
3− 1

|qr|3

)
ds.

We further note that by the initial condition and the definition of τ(r) it holds that

(75) qr2(t) > 0, qr1(t) < 0, 0 < t < τ(r).

If Kbc is the bounded part of the Hill’s region we claim further that

(76) Kbc ⊂ B3−
1
3

(0),

i.e., the bounded part of the Hill’s region is contained in the ball of radius 3−
1
3

centered at the origin. To prove (76) suppose that

(q1, q2) ∈ ∂B
3−

1
3

(0).
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In particular,

|q| = 1

3
1
3

.

We estimate

− 1

|q|
− 3

2
q2
1 ≥ −

1

|q|
− 3

2
|q|2 = −3

4
3

2
> c.

In view of the characterization (56) of the Hill’s region as a sublevel set this implies
that

∂B
3−

1
3

(0) ∩ Kbc = ∅.

Because Kbc is connected and contains the origin in its closure (76) follows. Com-
bining (76) with the second inequality in (75) we conclude that

(77) qr1

(
3− 1

|qr|3

)
(t) > 0, 0 < t < τ(r).

Because qr1(0) = −r there exists t0 > 0 such that

(78) qr1

(
3− 1

|qr|3

)
(t) ≥ µ > 0, 0 ≤ t ≤ t0.

For t0 ≤ t < τ(r) we conclude from (74), (77), and (78) in combination with the
first inequality in (75) that

(79) (qr1)′(t) = 2qr2(t) +

∫ t

0

qr1

(
3− 1

|qr|3

)
ds ≥

∫ t0

0

qr1

(
3− 1

|qr|3

)
ds ≥ µt0.

This implies that

qr1(t) ≥ qr1(t0) + µt0(t− t0), t0 ≤ t < τ(r).

Because the Hill’s region Kbc is bounded τ(r) is finite and (73) is proved.

We define

ρ := inf
{
r ∈ (0, rc) : qr1(τ(r)) = 0, qr2(τ(r)) = 0

}
with the convention that ρ = rc if the set is empty. We claim that

(80) qr1(τ(r)) = 0, r ∈ (0, ρ).

In order to prove (80) we introduce the quantity

r0 := inf
{
r ∈ (0, ρ) : qr2(τ(r)) = 0

}
with the convention that r0 = ρ if the set is empty. We need to show that r0 = ρ.
For small r the trajectory qr1 is close to the origin and we conclude from the dynamics
of the Kepler problem that qr1(τ(r)) = 0. In particular,

r0 > 0.

We now argue by contradiction and assume that r0 < ρ. That means that

qr02 (τ(r0)) = 0, (qr02 )′(τ(r0)) = 0, (qr02 )′′(τ(r0)) ≥ 0.

By (79) we have

(qr01 )′(τ(r0)) > 0.

This contradicts the second equation in (70) and (80) is proved.

Our next claim is

(81) ρ < rc.



5. THE RETROGRADE AND DIRECT PERIODIC ORBIT 69

To prove that we consider the trajectory qrc . Its initial conditions are

qrc1 (0) = −rc, qrc2 (0) = 0, (qrc1 )′(0) = 0, (qrc2 )′(0) = 0.

The second equation in (70) implies that

(qrc2 )′′(0) = −2(qrc1 )′(0)− qrc2 (0)

|qrc(0)|3
= 0.

Differentiating the second equation in (70) and using (qrc2 )′(0) = (qrc1 )′(0) = 0 we
conclude

(qrc2 )′′′(0) = −2(qrc1 )′′(0)

= 2(qrc2 )′(0)− qrc1 (0)

(
3− 1

|qrc(0)|3

)
= rc

(
3− 1

r3
c

)
< 0.

Here we have used for the second equality the second equation in (70) and for the

last inequality the fact that rc ∈ (0, 3−
1
3 ). Summarizing we have

qrc2 (0) = 0, (qrc2 )′(0) = 0, (qrc2 )′′(0) = 0, (qrc2 )′′′(0) < 0.

In particular, there exists ε > 0 such that

(82) qrc2 (t) < 0, t ∈ (0, ε).

We assume now by contradiction that ρ = rc. If follows from (80) that

qr1(τ(r)) = 0, r ∈ (0, rc).

This implies that there exists ε > 0 such that

τ(r) ≥ ε, r ∈ [ rc2 , rc).

In particular,

qr2(t) ≥ 0, r ∈ [ rc2 , rc), t ∈ (0, ε).

But this has the consequence that

qrc2 (t) ≥ 0, t ∈ (0, ε)

in contradiction to (82). This contradiction proves (81).

In view of (81) the dynamics of the Kepler problem implies that (qr2)′(τ(r)) < 0
for r close to ρ. On the other hand the dynamics of the Kepler problem implies as
well that (qr2)′(τ(r)) > 0 for r close to 0. By the intermediate value theorem we
conclude that there exists r ∈ (0, ρ) such that

(qr2)′(τ(r)) = 0.

This proves the theorem. �
With more effort such a shooting argument can also be made to work for the

restricted three-body problem. The upshot, also due to Birkhoff, is the existence of
a retrograde orbit for all mass ratios µ < 1 for energies below the first critical point.
Note that such an argument can be implemented on a computer. See Figure 5.2.
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Figure 2. Shooting in the restricted three body problem

6. Lyapunov orbits

We first need some result about four times four matrices belonging to the Lie
algebra of the symplectic group Sp(2). Suppose that ω is the standard symplectic
form on R4 = C2. Recall that a 4× 4-matrix B belongs to the Lie algebra of Sp(2)
if and only if there exists a symmetric 4× 4-matrix S such that

B = JS

where J is the 4×4-matrix obtained by multiplication with i as explained in (107).
Note that S can be recovered from B by

S = −JB.

A symmetric matrix S is called non-degenerate when it is injective. If S is non-
degenerate then the Morse index µ(S) ∈ {0, 1, 2, 3, 4} of S is the number of negative
eigenvalues of S counted with multiplicity.

Proposition 6.1. Assume that B = JS ∈ Lie Sp(2) such that S is non-
degenerate and µ(S) = 1. Then there exists a symplectic basis {η1, η2, ξ1, ξ2} of
R4 and a ∈ (0,∞), b ∈ R \ {0} such that

Bη1 = aη1, Bη2 = −aη2, Bξ1 = −bξ2, Bξ2 = bξ1.

If [B]{η1,η2,ξ1,ξ2} denotes the matrix representation ofB in the basis {η1, η2, ξ1, ξ2}
then the Proposition asserts that

[B]{η1,η2,ξ1,ξ2} =


a 0 0 0
0 −a 0 0
0 0 0 −b
0 0 b 0

 .
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If one complexifies R4 to C4, then with respect to the basis {η1, η2, ξ1 +iξ2, ξ1−iξ2}
the matrix representation of B is diagonal

[B]{η1,η2,ξ1+iξ2,ξ1−iξ2} =


a 0 0 0
0 −a 0 0
0 0 ib 0
0 0 0 −ib

 .

In particular, the eigenvalues of B are {a,−a, ib,−ib}.

In order to prove Proposition 6.1 we need the following well known Lemma.

Lemma 6.2. Assume that B = JS ∈ Lie Sp(2) has an eigenvalue λ = a + ib
with a, b ∈ R \ {0}, then the spectrum of B is

S(B) = {λ,−λ, λ̄,−λ̄}.

Proof: Using that J = −J−1 = −JT and S = ST we compute

JBJ−1 = −SJT = −(JS)T = −BT

which shows that B is conjugated to −BT . Because B and BT have the same
eigenvalues, we conclude that −λ is an eigenvalue of B as well. Since B is real λ̄
and −λ̄ are eigenvalues of B as well. By assumption neither a nor b are zero so
that all the four numbers λ,−λ, λ̄,−λ̄ are different and hence the assertion about
the spectrum follows. �

Proof of Proposition 6.1: We prove the Proposition in four steps. To formulate
Step 1 we abbreviate by Syminj(4) the space of injective symmetric 4× 4-matrices.

Step 1: There exists a smooth path Sr ∈ Syminj(4) for r ∈ [0, 1] with the prop-
erty that

S0 = S, S1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

To see that note that because S is symmetric there exists R ∈ SO(4) such that
RSR−1 = RSRT is diagonal. Moreover, because µ(S) = 1 we can choose R such
that the first three diagonal entries of RSR−1 are positive and the fourth is nega-
tive. Because SO(4) is connected we can connect S and RSR−1 by a smooth path
in Syminj(4). Combining this path with convex interpolation between RSR−1 and
S1 the assertion of Step 1 follows.

Step 2: The matrix B has two real eigenvalues and two imaginary eigenvalues.

Let Sr for r ∈ [0, 1] be the smooth path of injective symmetric matrices obtained
in Step 1. This gives rise to a smooth path Br = JSr ∈ Lie Sp(2). The matrix

B1 = JS1 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 1 0 0


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has the eigenvalues {1,−1, i,−i}. Because Sr is injective 0 is not an eigenvalue of
Br for every r ∈ [0, 1]. Therefore we conclude from Lemma 6.2 that Br has two
real and two imaginary eigenvalues for every r ∈ [0, 1].

The proof of Lemma 6.2 now implies that there exists a, b ∈ (0,∞) such that
the eigenvalues of B = B0 are {a,−a, ib,−ib}. In particular, there exists a basis
{η1, η2, ξ1, ξ2} of R4 such that

(83) Bη1 = aη1, Bη2 = −aη2, Bξ1 = −bξ2, Bξ2 = bξ1.

We next examine if we can choose this basis symplectic.

Step 3: The symplectic orthogonal complement of the span of {η1, η2} is spanned
by {ξ1, ξ2}, i.e.,

〈η1, η2〉ω = 〈ξ1, ξ2〉.
To prove that we first note that since B ∈ Lie Sp(2) for every ξ, η ∈ R4 the formula

ω(Bξ, η) = −ω(ξ,Bη)

holds. Hence we compute

(84) bω(ξ1, η1) = ω(Bξ2, η1) = −ω(ξ2, Bη1) = −aω(ξ2, η1)

and

(85) bω(ξ2, η1) = −ω(Bξ1, η1) = ω(ξ1, Bη1) = aω(ξ1, η1).

Combining (84) and (85) we get

ω(ξ1, η1) = −a
b
ω(ξ2, η1) = −a

2

b2
ω(ξ1, η1)

implying that (
1 +

a2

b2

)
ω(ξ1, η1) = 0

and therefore
ω(ξ1, η1) = 0.

From (84) we conclude that
ω(ξ2, η1) = 0

as well. Therefore
η1 ∈ 〈ξ1, ξ2〉ω

and the same argument with η1 replaced by η2 leads to

η2 ∈ 〈ξ1, ξ2〉ω.
Summarizing we showed that

〈η1, η2〉 ⊂ 〈ξ1, ξ2〉ω

and because ω is non-degenerate the symplectic orthogonal complement of 〈ξ1, ξ2〉
is two dimensional so that we get

〈η1, η2〉 = 〈ξ1, ξ2〉ω.
With

〈ξ1, ξ2〉 =
(
〈ξ1, ξ2〉ω

)ω
= 〈η1, η2〉ω

the assertion of Step 3 follows.
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Step 4: We prove the proposition.

It follows from Step 3 that 〈η1, η2〉 is a two dimensional symplectic subspace of
R4. Hence after scaling η2 we can assume that

ω(η1, η2) = 1.

Note that (83) still remains valid after scaling η2. Because 〈ξ1, ξ2〉 by Step 3 is a
symplectic subspace as well we have

r := ω(ξ1, ξ2) 6= 0.

We distinguish two cases. First assume that r > 0. In this case we replace ξ1, ξ2
by 1√

r
ξ1,

1√
r
ξ2. Then

ω(ξ1, ξ2) = 1

and (83) still remains valid. It remains to treat the case r < 0. In this case
we replace b by −b and ξ1, ξ2 by 1√

−r ξ1,−
1√
−r ξ2. This finishes the proof of the

proposition. �





CHAPTER 6

Contacting the moon

1. A contact structure for Hill’s lunar problem

The following result was proved in [6].

Theorem 1.1. For any given µ ∈ [0, 1) assume that c < H(L1), the first critical
value of the restricted three body problem. Then the regularized energy hypersurface
Σc ⊂ T ∗S2 of the restricted three body problem is fiberwise star-shaped.

For Hill’s lunar problem a stronger result was proved in [75].

Theorem 1.2. Assume that c < − 3
4
3

2 . Then the regularized energy hypersur-

face Σc ⊂ T ∗S2 of Hill’s lunar problem is fiberwise convex.

Remark 1.3. It is an open problem if the regularized energy hypersurface of the
restricted three body problem for energies below the first critical value are fiberwise
convex as well.

Remark 1.4. Because Σc is fiberwise star-shaped it follows that it is contact.
In particular, a result of Cristofaro-Gardiner and Hutchings [28] implies that Σc
admits two closed characteristics. We already know the existence of one, namely the
retrograde periodic orbit from the work of Birkhoff. Lee’s result implies that below
the first critical value the regularized energy hypersurfaces of Hill’s lunar problem
are Finsler and in this case the existence of two closed characteristics was already
proved by Bangert and Long [10]. The existence of two closed characteristics in
Hill’s lunar problem was first proved by Llibre and Roberto in [79].

In this chapter we explain why below the first critical value the energy hyper-
surface of Hill’s lunar problem is fiberwise star-shaped. This is much weaker than
the result of Lee [75]. However, the advantage of the proof presented here is that
the same scheme can also be applied in the restricted three body problem to prove
fiberwise starshapedness [6], although there the argument gets much more involved.

Note that the vector field

X = q
∂

∂q

is a Liouville vector field on T ∗R2. Indeed, for ω = dp ∧ dq we obtain by Cartan’s
formula

LXω = dιXω + ιXdω = d(−qdp) = −dq ∧ dp = dp ∧ dq = ω.

Our next theorem tells us that this Liouville vector field is transverse to Σbc and
therefore ιXω defines a contact structure on Σbc.

Proposition 1.5. Assume that c < − 3
4
3

2 . Then X t Σbc.

75
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Proof: In polar coordinates (r, θ), i.e.,

q1 = r cos θ, q2 = r sin θ

the Liouville vector field reads

X = r
∂

∂r
,

the effective potential becomes

U = −1

r
− 3

2
r2 cos2 θ

and the Hamiltonian

H =
1

2

(
(p1 + r sin θ)2 + (p2 − r cos θ)2

)
+ U.

To prove the theorem it suffices to show that

(86) dH(X)|Σbc > 0.

We estimate using the Cauchy-Schwarz inequality

dH(X) = r sin θ(p1 + r sin θ)− r cos θ(p2 − r cos θ) + r
∂U

∂r

≥ r
∂U

∂r
−
√
r2 sin2 θ + r2 cos2 θ

√
(p1 + r sin θ)2 + (p2 − r cos θ)2

= r
∂U

∂r
− r
√

2(H − U).

This implies that

dH(X)|Σbc ≥ r
(
∂U

∂r
−
√

2(c− U)

)
.

Note that the right hand side is independent of the variables p1 and p2. Therefore
to prove (86) it suffices to show

(87)

(
∂U

∂r
−
√

2(c− U)

)∣∣∣∣
Kbc

> 0.

Pick (r, θ) ∈ Kbc. In particular,

U(r, θ) ≤ c.
By (76) the bounded part of Hill’s region is contained in the ball of radius 3−

1
3

centered at the origin. Observe that

U |∂B
3
− 1

3
(0) ≥ −

3
4
3

2
.

Since c < − 3
4
3

2 it follows that there exists

τ ∈
[
0, 1

3
1
3
− r
)

such that

(88) U(r + τ, θ) = c.

We claim that

(89)
∂U

∂r
(q) > 0, q ∈ B

3−
1
3

(0) \
{

0, (0,−3−
1
3 ), (0, 3−

1
3 )
}
.
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To see that we estimate
∂U

∂r
=

1

r2
− 3r cos2 θ ≥ 1

r2
− 3r ≥ 0.

If r < 3−
1
3 the inequality is strict and if r = 3−

1
3 the first inequality is strict because

cos2 θ < 1 because we removed the points (0,−3−
1
3 ) and (0, 3−

1
3 ) from the ball.

This proves (89).

We further claim that

(90)
∂2U

∂r2
(q) ≤ −1, q ∈ B

3−
1
3

(0) \ {0}.

In order to prove that we estimate

∂2U

∂r2
= − 2

r3
− 3 cos2 θ ≤ − 2

r3
≤ −6 ≤ −1.

In order to prove (87) we estimate using (88), (89), and (90)(
∂U

∂r
(r, θ)

)2

=

(
∂U

∂r
(r + τ, θ)

)2

−
∫ τ

0

d

dt

(
∂U(r + t, θ)

∂r

)2

dt

> −2

∫ τ

0

∂U(r + t, θ)

∂r

∂2U(r + t, θ)

∂r2
dt

≥ 2

∫ τ

0

∂U(r + t, θ)

∂r
dt

= 2
(
U(r + τ, θ)− U(r, θ)

)
= 2

(
c− U(r, θ)

)
.

Using (89) once more this implies

∂U

∂r
(r, θ) >

√
2
(
c− U(r, θ)

)
.

Therefore (
∂U

∂r
−
√

2(c− U)

)
(r, θ) > 0.

This proves (87) and the Proposition follows. �

Note that the map (q, p) 7→ (−p, q) is a symplectomorphism of T ∗R2 to itself
which interchanges the roles of position and momentum. Hence the base coordi-
nate q becomes the fiber coordinate where the fiber coordinate p becomes the base
coordinate after the transformation. Interchanging the roles of q and p in this way
the assertion of Theorem 1.5 can be interpreted as the fact that Σbc is fiberwise
star-shaped in T ∗R2, i.e., if p ∈ R2 then the fiber

Σbc,p := T ∗pR2 ∩ Σbc ⊂ T ∗pR2 = R2

bounds a star-shaped domain.





CHAPTER 7

Global surfaces of section

1. Disk-like global surfaces of section

The concept of a global surface of section was introduced by Poincaré shortly
before his death in [91]. Assume that X ∈ Γ(TS3) is a non-vanishing vector field
on the three dimensional sphere S3. We denote by φtX its flow on S3.

Definition 1.1. A (disk-like) global surface of section is an embedded disk
D ⊂ S3 satisfying

(i): X is tangent to ∂D, the boundary of D,

(ii): X is transverse to the interior D̊ of D,

(iii): For every x ∈ S3 there exists t+ > 0 and t− < 0 such that φt
+

X (x) ∈ D̊
and φt

−

X (x) ∈ D̊.

Remark 1.2. Requirement (i) implies that the boundary ∂D of the disk is a
periodic orbit of X. We refer to ∂D as the bounding orbit of the global surface of
section.

Remark 1.3. Instead of a disk one could consider more generally a Riemann
surface with boundary. In particular, an important example is an annulus which
has two bounding orbits, see Figure 1. However, in the following we concentrate
ourselves on disks and mean by a global surface of section always a disk-like global
surface of section unless specified otherwise.

Let us now assume that D ⊂ S3 is a global surface of section. We define the
Poincaré return map

ψ : D̊ → D̊

as follows. Given x ∈ D̊, define

τ(x) := min
{
t > 0 : φtX(x) ∈ D̊

}
,

i.e., the next return time of x to D. It follows from the conditions of a global surface
of section that τ(x) exists and is finite. Now define

ψ(x) := φ
τ(x)
X (x).

If x ∈ D̊ and ξ ∈ TxD the differential of the Poincaré return map is given by

(91) dψ(x)ξ = dφτ(x)(x)ξ + (dτ(x)ξ)X.

The two dimensional disk D together with the Poincaré return map ψ basically
contains all the relevant information on the flow of X on the three dimensional
manifold S3. For example periodic orbits of X different from the bounding orbit
∂D correspond to periodic points of the Poincaré return map. One can say that a
global surface of section reduces the complexity of the problem by one dimension.

79
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Figure 1. The existence of an annular surface of section has been
known in the component of the heavy primary for small µ since
Poincaré and Birkhoff. This displays such a surface after stereo-
graphic projection of the Levi-Civita regularization.

Recall that a Hamiltonian structure on S3 is a closed two-form ω ∈ Ω2(S3)
with the property that kerω is a one-dimensional distribution. A non-vanishing
section X ∈ Γ(kerω) is referred to as a Hamiltonian vector field. In view of (91)
the following Lemma follows.

Lemma 1.4. Assume that ω ∈ Ω2(S3) is a Hamiltonian structure, X ∈ Γ(kerω),
and D is a global surface of section for X with Poincaré return map ψ. Then

ψ∗ω|D̊ = ω|D̊,

i.e., ψ is area preserving with respect to the restriction of ω to the interior of the
global surface of section.

2. Obstructions

Given a non-vanishing vector field X on S3 it is far from obvious that the
dynamical system (S3, X) admits a global surface of section. Moreover, given a
periodic orbit γ of the vector field X we would like to know if it bounds a global
surface of section. A periodic orbit can be interpreted as a knot in S3, i.e. an
isotopy class of embeddings of S1 → S3. The first obstruction is obvious.

Obstruction 1:: If a periodic orbit bounds a global surface of section, then
it is unknotted.

Indeed, since the periodic orbit is the boundary of an embedded disk it has Seifert
genus zero. This is a characterizing property of the unknot. The second obstruction
describes the relation of the binding orbit with all other periodic orbits.

Obstruction 2:: If a periodic orbit bounds a global surface of section, it is
linked to every other periodic orbit.
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Indeed, a periodic orbit different from the binding orbit is a periodic point of
the Poincaré return map, i.e., coincides with a fixed point of an iteration of the
Poincaré return map. Because X is transverse to the interior of the global surface
of section, each intersection point of the periodic orbit with the global surface of
section counts with the same sign and therefore the linking number does not vanish.

The third obstruction holds in the case where the vector field X is the Reeb vector
field of a contact form λ on S3. Abbreviate by ξ = kerλ the hyperplane distri-
bution in T ∗S3. In contact geometry there are two important classes of knots. A
Legendrian knot is an embedding γ : S1 → S3 with the property that ∂tγ(t) ∈ ξγ(t)

for every t ∈ S1. The other extreme is a transverse knots, which is an embedding
γ : S1 → S3 with the property that ∂tγ(t) /∈ ξγ(t) for every t ∈ S1. We refer to the
book by Geiges [40] about a detailed discussion of Legendrian and transverse knots
in contact topology. A periodic Reeb orbit is an example of a transverse knot and
therefore we restrict our discussion in the following to transverse knots.

The third obstruction for a periodic orbit of a Reeb flow to bound a global
surface of section is that its selflinking number has to be equal to minus one. We
explain this notion for a transverse unknot γ : S1 → S3. Abbreviating byD = {z ∈
C : |z| ≤ 1} the unit disk in C we first choose an embedding

γ : D → S3

with the property that

γ(e2πit) = γ(t).

That such an embedding exists follows from the assumption that γ is the unknot.
Consider the vector bundle of rank two γ∗ξ → D. Because D is contractible we
can choose a non-vanishing section X : D → γ∗ξ. Fix a Riemannian metric g on
S3 and define

γX : S1 → S3, t 7→ expγ(t)X(t).

Because γ is a transverse knot we can choose X so small such that

γrX ∩ γ = ∅, r ∈ (0, 1].

We define the selflinking number of γ to be

s`(γ) := `k(γ, γX) ∈ Z

where `k is the linking number. By homotopy invariance of the linking number the
selflinking number of γ does not depend on the choice of the section X and the
Riemannian metric g. It is as well independent of the choice of the embedded filling
disk γ. To see that note that if γ : D → S3 and γ′ : D → S3 are two embedded
filling disks of γ in view of the fact that π2(S3) = {0} the two filling disks are
homotopic. Even if the homotopy is not through embedded disks we can use it to
construct for a given non-vanishing section X : D → γ∗ξ a non-vanishing section
X ′ : D → (γ′)∗ξ with the property that the restrictions of the two sections to the
boundary ∂D = S1 satisfy

X|∂D = X ′|∂D : S1 → γ∗ξ.

This shows that the selflinking number is independent of the choice of the embedded
filling disk as well.
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Remark 2.1. The selflinking number can as well be defined for transverse knots
γ : S1 → S3 which are not necessarily unknots. One uses here the fact that for every
knot there exists an oriented surface with boundary Σ and an embedding γ : Σ→ S3

with the property that γ|∂Σ = γ. Such a surface is referred to as a Seifert surface,
see for example [77], and with the help of a Seifert surface one defines the selflinking
number of a transverse knot similarly as for unknots. We refer to the book of Geiges
[40] for details. For the unknot the Seifert surface can be chosen as a disk and if
one defines the genus of a knot to be

g(γ) := min
{
g(Σ) : Σ Seifert surface of γ

}
∈ N ∪ {0}.

then the unknot can be characterized as the knot whose genus vanishes.

We are now ready to formula the third obstruction for a periodic orbit to be
the bounding orbit of a global surface of section.

Obstruction 3:: If the vector field on S3 coincides with the Reeb vector
field of a contact form on S3, and a periodic Reeb orbit γ bounds a global
surface of section, then its selflinking number satisfies s`(γ) = −1.

We next explain the reason for Obstruction 3. Let D ⊂ S3 be a global surface
of section. We then have two rank-2 vector bundles over the disk ξ|D → D and
TD → D. Abbreviate by

π : TS3 → ξ

the projection along the Reeb vector field R. Since R is transverse to the interior
of D we obtain a bundle isomorphism

π|D̊ : TD̊ → ξ|D̊.

Choose

X : D → ξ

a non-vanishing section. If (r, θ) are polar coordinates on D we define another
section from D to ξ by

Y := π(r∂r) : D → ξ.

Because ∂D is a periodic Reeb orbit it holds that ∂θ|∂D is parallel to the Reeb
vector field and therefore Y |∂D : ∂D → ξ is nonvanishing. In particular, we have
two nonvanishing section X|∂D, Y |∂D : ∂D → ξ. The selflinking number of the Reeb
orbit γ is then given by

s`(γ) = s`(∂D) = wind∂D(Y,X) = −wind∂D(X,Y )

where wind∂D(Y,X) is the winding number of X around Y . For r ∈ (0, 1] abbrevi-
ate Dr = {z ∈ D : |z| ≤ r} the ball of radius r. The section X is nonvanishing on
D while the section Y only vanishes at 0. Therefore the winding number

wind∂Dr (Y,X) ∈ Z

is defined for every r ∈ (0, 1]. By homotopy invariance of the winding number we
conclude that

wind∂D(Y,X) = wind∂Dr (Y,X), ∀ r ∈ (0, 1].

We now look at the situation for r = δ close to 0. Since X(0) is nonvanishing we
see that Y = π(r∂r) winds once around X(0) and therefore

wind∂Dδ(X,Y ) = 1.
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Combining these facts we conclude that

s`(γ) = −1.

We point out that to derive Obstruction 3 we only used the local assumption (i)
and (ii) of Definition 1.1 and not the global assumption (iii).

3. Existence results from holomorphic curve theory

In the following we assume that Σ ⊂ C2 is a star-shaped hypersurface. It
follows that the restriction of the one-form

λ =
1

2
(x1dy1 − y1dx1 + x2dy2 − y2dx2)

to Σ defines a contact form, see Example 6.6. The following theorem is due to
Hryniewicz [58, 59].

Theorem 3.1 (Hryniewicz). Assume that Σ ⊂ C2 is a star-shaped hypersurface
and γ ∈ C∞(S1,Σ) is an unknotted periodic Reeb orbit of period τ whose selflinking
number satisfies s`(γ) = −1. Further assume that one of the following conditions
holds

(i): The period τ of γ is minimal among the periods of all periodic Reeb
orbits.

(ii): Σ is dynamically convex.

Then γ bounds a global surface of section. Moreover, each periodic orbit which
corresponds to a fixed point of the Poincaré return map of the global surface of
section is unknotted and has selflinking number −1.

Remark 3.2. The fact that a periodic orbit corresponding to a fixed point of
the Poincaré return map itself is unknotted and has selflinking number −1 has an
interesting consequence. Namely, if Σ is dynamically convex we can apply Theo-
rem 3.1 again to this orbit to see that it bounds as well a global surface of section.
This leads to Hryniewicz theory of systems of global surfaces of section [59].

Remark 3.3. Under the assumption that the star-shaped hypersurface Σ ⊂ C2

satisfies some non-degeneracy condition, there exists an interesting improvement of
the theorem of Hryniewicz, which is due to Hryniewicz and Salomão. Namely if one
assumes that γ and all periodic orbits of Σ different from γ of period less than to
the period τ of γ are non-degenerate and none of these orbits has Conley-Zehnder
index 2 and is unlinked to γ, then γ still bounds a global surface of section.

The following Theorem is due to Hofer, Wysocki, and Zehnder [56].

Theorem 3.4 (Hofer-Wysocki-Zehnder). Assume that Σ ⊂ C2 is a star-shaped,
dynamically convex hypersurface, then there exists an unknotted periodic Reeb orbit
on Σ with selflinking number −1.

Combining the above two theorems we immediately obtain the following Corol-
lary.

Corollary 3.5 (Hofer-Wysocki-Zehnder). Assume that Σ ⊂ C2 is a star-
shaped, dynamically convex hypersurface, then Σ admits a global surface of section.
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Remark 3.6. Historically, this Corollary was first proved by Hofer-Wysocki-
Zehnder in the same paper [56] in which they established the existence of an unknot-
ted periodic Reeb orbit of selflinking number −1, before the Theorem of Hryniewicz
was available. This comes from the fact that both Hryniewicz as well as Hofer,
Wysocki, and Zehnder use holomorphic curves to prove their theorems. Therefore
Hofer, Wysocki, and Zehnder could use them to prove directly the existence of a
global surface of section in their groundbreaking work [56].

Remark 3.7. Using the global surface of section obtained in Corollary 3.5
Hryniewicz shows in [59] that each periodic orbit which corresponds to a fixed point
of the Poincaré return map is unknotted and has selflinking number −1. In particu-
lar, Theorem 3.1 implies that these periodic orbits bound a global surface of section
as well.

4. Contact connected sum - the archenemy of global surfaces of section

We briefly recall the connected sum of two smooth manifolds. Suppose that
M1 and M2 are two oriented n-dimensional manifolds. We will talk about balls
Dn which we give their standard orientation. For M1, choose an embedded ball
ι1 : Dn → M1, where ι1 is orientation preserving. For M2, choose an embedded
ball ι2 : Dn → M2 which reserves orientation. Intuitively, we take out small balls
from M1 and M2 and glue collar neighborhoods together.

We do this more precisely. Write Dr for the ball with radius r, so

Dr = {z ∈ Dn | ‖z‖ < r}.
Fix a number R with 0 < R < 1. We will use the annulus A := Dn −DR, and the
orientation reversing map

r : A −→ A

x 7−→ (1 +R− ‖x‖) · x

‖x‖
.

In addition, the map reverses the inner and outer sphere of the annulus, meaning
the spheres with radii R and 1, respectively. We define the connected sum of M1

and M2 as

M1#M2 := M1 \ ι1(DR)
∐

M2 \ ι2(DR)/ ∼
where ∼ is an equivalence relation. Namely, if x̃ ∈ M1 is given by x̃ = ι1(x), and
ỹ ∈M2 is given by ỹ = ι2(y), then we say that x̃ ∼ ỹ if and only if r(x) = y. Other
points are not related. Geometrically, the above just means that we glue the two
annuli ι1(A) and ι2(A) together by reversing inner and outer spheres.

Lemma 4.1. The connected sum M1#M2 defines an oriented smooth manifold.

Proof: Clearly M1 \ ι1(DR) and M2 \ ι2(DR) are smooth manifolds, and the
above equivalence relation glues along open sets, so we obtain the structure of a
smooth manifold on M1#M2. To see that we get an orientation, we observe that
ι2 and r are orientation reversing, so their composition is orientation preserving. �

4.1. Contact version. The contact version mimics the above construction,
but instead of gluing the two annuli directly together, we define a model for the
connecting tube. The discussion here follows Weinstein’s ideas, and we have drawn
a picture describing the construction of the tube in Figure 4.1. This model will
appear again when we look at level sets of Hamiltonians.
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Figure 2. Connected sum of smooth, oriented manifolds

j+(D2n−1)

j−(D2n−1)

Figure 3. The tube of the contact connected sum

Consider contact manifolds (M2n−1
1 , α1) and (M2n−1

2 , α1) together with two
points, say q1 ∈ M1 and q2 ∈ M2. We want to define the contact connected sum.
As before, choose a number 0 < R < 1 for the radius of the ball we are going to
cut out.

Choose Darboux balls ιk : D2n−1 →Mk containing qk for k = 1, 2. To construct
the tube, we also embed these Darboux balls into R2n by the map

j± : D2n−1 −→ R2n

(x, y; z) 7−→ (x, y, z,±1)

We observe that the vector field

X =
1

2
(x · ∂x + y · ∂y + 2z∂z − w∂w)

is a Liouville vector field and that it is transverse to j±(D2n−1). Furthermore, it
induces the Liouville form

iXω0 =
1

2
(xdy − ydx) + 2zdw + wdz,

which restricts to the contact form 1
2 (xdy − ydx) + 2dz on j+(D2n−1) and to the

contact form 1
2 (xdy − ydx) − 2dz on j−(D2n−1). These are the standard contact

form with the standard orientation, and a variation of the standard contact form
with the opposite orientation. To construct the tube, choose a smooth, increasing
function f : R→ R with the following properties

• f(z) = 1 if z > R
• f(0) < 0 and f(ε) = 0 and f ′(ε) > 0.
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We define the connecting tube as the set

T := {(x, y; z, w) ∈ R2n−2 × R2 | w2 = f(|x|2 + |y|2 + z2)} ∩ {|x|2 + |y|2 + z2 < 1}

Lemma 4.2. The connecting tube is a smooth submanifold of R2n. Further-
more, the Liouville vector field X = 1

2 (x∂x + y∂y) + 2z∂z −w∂w is transverse to T ,

so T is a contact manifold. For (x, y; z) with |x|2 + |y|2 + z2 > R, the contact form
coincides with the standard contact form on j±(D2n−1).

Proof: Since T is a level set of the function F : (x, y; z, w) 7→ f(|x|2 + |y|2 +
z2)− w2, it suffices to check that X(F ) 6= 0. Indeed, this shows that the Jacobian
has everywhere full rank, and of course it shows that X is transverse to T . We now
compute

X(F ) = f ′(|x|2 + |y|2 + z2) · (|x|2 + |y|2 + 4z2) + 2w2.

Since f is increasing, all terms are non-negative. To see that their sum is always
positive on T , we note the following.

• if w 6= 0, then 2w2 is positive.
• if w = 0, then f(|x|2 + |y|2 + z2) = 0 and |x|2 + |y|2 + z2 = ε, and by

assumption f ′(ε) > 0.

The last claim follows since T and ιj(D
2n−1) coincide if |x|2 + |y|2 + z2 > R,

and their contact forms are induced by the same Liouville vector field. �
We now define the contact connected sum by

(M1, α1)#(M2, α2)M1 \ ι1(DR)
∐

M2 \ ι2(DR)
∐
T / ∼ .

Here the equivalence relation is defined as follows.

• If x̃ = ι1(x) lies in M1 \ ι1(DR) and ỹ = j1(y) lies in T , then x̃ ∼ ỹ if and
only if x = y.

• If x̃ = ι2(x) lies in M2 \ ι2(DR) and ỹ = j2(y) lies in T , then x̃ ∼ ỹ if and
only if x = y.

• Other points are not related.

Theorem 4.3. The space (M1, α1)#(M2, α2) is a contact manifold.

Proof: The proof that this is a smooth manifold follows the same argument
as before: since we glue along open sets, we clearly get a differentiable atlas. To
see that this is a contact manifold, we only need to observe that M1 \ ι1(DR),
M2 \ ι2(DR) and T are contact manifolds with contact forms that patch together
with the gluing relation. �

5. Invariant global surfaces of section

Assume that ρ ∈ Diff(S3) is a smooth involution on the three dimensional
sphere, i.e., ρ2 = id and X ∈ Γ(TS3) is a nonvanishing vector field on S3 which is
anti-invariant under the involution ρ in the sense that

(92) ρ∗X = −X.
A (disk-like) global surface of section D ⊂ S3 is called invariant if ρ(D) = D. By
abuse of notation we denote the restriction of ρ to D again by the same letter.

Lemma 5.1. Assume that D ⊂ S3 is an invariant global surface of section.
Then the fixed point set Fix(ρ) ⊂ D is a simple arc intersecting the boundary ∂D
transversally.
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Proof: We first note that ρ is an orientation reversing involution of D. Indeed,
this follows from (92) in view of the fact that the vector field is tangent to the
boundary ∂D. Therefore Fix(ρ) is a one dimensional submanifold of D. That it
is transverse to ∂D follows again from (92). It follows from Brouwer’s fixed point
theorem, see for example [48, Theorem 1.9.], that Fix(ρ) is not empty. In particular,
it is a finite union of circles and intervals. We claim that there are no circles. To
see that we argue by contradiction and assume that the fixed point set of ρ contains
a circle. The complement of this circle consists of two connected components one
of them containing the boundary of ∂D. The involution ρ then has to interchange
these two connected components. However, the boundary of ∂D is invariant under
ρ and this leads to the desired contradiction. Consequently, the fixed points set
consists just of a finite union of intervals. It remains to show that there is just
one interval. To see that note that the complement of an interval consists again of
two connected components which are interchanged by ρ. Therefore there cannot
be additional fixed points and the lemma is proved. �

Remark 5.2. The Lemma above is actually an easy case of a much more gen-
eral result due to Brouwer [22] and Kérékjartò [69], which says that a topological
involution just defined in the interior of the disk is topologically conjugated to a
reflection at a line. We refer to [27] for a modern exposition of this result.

We observe in particular, that the binding orbit of an invariant global surface
of section is necessarily a symmetric periodic orbit. Moreover, if ψ : D̊ → D̊ is the
Poincaré return map it follows as in (15) that ψ satisfies with ρ the commutation
relation

(93) ρψρ = ψ−1.

6. Fixed points and periodic points

In his lifelong quest for periodic orbits Poincaré introduced the concept of a
global surface of section in [90], because in the presence of a global surface of
section the search for periodic orbits is reduced to the search of periodic points of
the Poincaré return map. Originally Poincaré thought of a global surface of section
as an annulus type global surface of section and it was Birkhoff who showed in
[16] that an area preserving map of an annulus which moves the two boundary
components in different directions has at least two fixed points. In [37, 38] Franks
proved the following theorem

Theorem 6.1 (Franks). Assume an area preserving homeomorphism of an open
annulus admits a periodic point, then it admits infinitely many periodic points.

On the other hand Brouwer’s translation theorem [21] asserts that

Theorem 6.2 (Brouwer). An area preserving homeomorphism of the open disk
admits a fixed point.

If we restrict an area preserving homeomorphism to the complement of one of
its fixed points we obtain an area preserving homeomorphism of the open annulus.
This implies the following Corollary.

Corollary 6.3. An area preserving homeomorphism of an open disk admits
either one or infinitely many periodic points.
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In view of Lemma 1.4 together with the fact that if a vector field admits a
global surface of section then periodic orbits of the vector field different form the
bounding orbit of the global surface of section are in one to one correspondence
with periodic points of the Poincaré return map we obtain the further Corollary.

Corollary 6.4. Assume that ω ∈ Ω2(S3) is a Hamiltonian structure on S3,
X ∈ Γ(kerω) a Hamiltonian vector field whose flow admits a global surface of
section. Then X has either two or infinitely periodic orbits.

The fixed point guaranteed by Theorem 6.2 is of special interest in view of
Theorem 3.1, because under the assumptions of this theorem the periodic orbit
corresponding to the fixed point is itself unknotted and has selflinking number −1
so that it bounds in the dynamically convex case another global surface of section.
The amazing thing about Theorem 6.2 is that the homeomorphism of the open
disk is not required to extend continuously to the boundary of the disk. If it does
than Theorem 6.2 just follows from Brouwer’s fixed point theorem, see for example
[48, Theorem 1.9]. In this case the assumption that the homeomorphism is area
preserving is not needed at all. However, if the homeomorphism does not extend
continuously to the boundary the condition, that the map is area preserving, is
essential. In fact, the open disk is just homeomorphic to the two dimensional plane
and a translation of the plane is an example of a homeomorphism without fixed
points. To prove Brouwer’s translation theorem one first shows that if an orientation
preserving homeomorphism of the open disk has a periodic point it has to have a
fixed point. We refer to [32] for a modern account of this remarkable fact. Hence
one is left with the case that the homeomorphism has no periodic point at all and
one shows in this case that is has to be a translation which then contradicts the
assumption that the homeomorphism is area preserving. A modern treatment of
this second step together with the precise definition what a translation is can be
found in [36], see also [47]. It was observed by Kang in [65] that a quite different
argument for this fact can be given if the global surface of section is symmetric.
Moreover, in this case one can find a fixed point of the Poincaré return map which
corresponds to a symmetric periodic orbit. We discuss this in the next section.

7. Reversible maps and symmetric fixed points

Let (D,ω) be a closed two-dimensional disk together with an area form ω ∈
Ω2(D) and suppose that ρ ∈ Diff(D) is an anti-symplectic involution, i.e.,

ρ2 = id, ρ∗ω = −ω.

Moreover, suppose that ψ ∈ Diff(D̊) is an area preserving diffeomorphism of the
interior of the disk, i.e., it holds that

ψ∗ω = ω,

which satisfies with ρ the commutation relation

(94) ρψρ = ψ−1.

This is the situation one faces by (93) if one considers the Poincaré return map of a
symmetric global surface of section for a Hamiltonian vector field of a Hamiltonian
structure on S3. A diffeomorphism satisfying (94) is called reversible. The following
result was proved by Kang in [65].
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Lemma 7.1 (Kang). Under the above assumptions there exists a common fixed

point of ρ and ψ in D̊, i.e., a point x ∈ D̊ satisfying

ρ(x) = x, ψ(x) = x.

Proof: In view of (94) we obtain

(ψρ)2 = ψψ−1 = id

so that ψρ is again an involution. Moreover, because ρ is anti-symplectic and ψ is
symplectic the composition is anti-symplectic as well, so that we have

(ψρ)∗ω = −ω.

By Lemma 5.1 we know that Fix(ρ) ⊂ D is a simple arc intersecting the boundary
∂D transversally. Because ρ is anti-symplectic we conclude that both connected
components of the complement of Fix(ρ) have the same area.

The anti-symplectic involution ψρ is only defined in the interior of the disk.
However, by the Theorem of Brouwer and Kérékjartò mentioned in Remark 5.2 the
involution ψρ is topologically conjugated to the reflection at a line and therefore
its fixed point set still consists of an arc whose complement has two connected
components. Because ψρ is anti-symplectic the two connected components of the
complement of its fixed point set have the same area as well.

It follows that Fix(ρ) and Fix(ψρ) intersect. This means that there exists x ∈ D̊
with the property that

ρ(x) = x, ψρ(x) = x

or equivalently

ρ(x) = x, ψ(x) = x.

This finishes the proof of the Lemma. �

If ψ : D̊ → D̊ is a reversible map we call following [65] a point x ∈ D̊ a sym-
metric periodic point of ψ, if there exists k, ` ∈ N with the property that

ψk(x) = x, ψ`(x) = ρ(x).

If k = ` = 1 then the symmetric periodic point is called a symmetric fixed point
whose existence was discussed in Lemma 7.1. The minimal k for which ψk(x) = x
holds is referred to as the period of x and abbreviated by k(x). Then there exists
a unique

`(x) ∈ Z/k(x)Z
such that

ψ`(x)(x) = ρ(x).

Note that the period only depends on the orbit of x, in particular it holds that

k(ψ(x)) = k(x).

This is not true for `(x). In particular, from (94) together with the fact that ρ is
an involution we obtain the relation

ρ = ψρψ

using that we compute

ψ`(x)+1(x) = ψρ(x) = ψ2ρψ(x)
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implying that
ψ`−2(ψ(x)) = ρ(ψ(x)).

Therefore it holds that

`(ψ(x)) = `(x)− 2 ∈ Z/k(x)Z.
If the period is odd then there exists a unique point in the orbit of x which lies on
the fixed point set Fix(ρ). If the period is even, then there are two cases. Either `
is even as well for every point in the orbit of x and there are precisely two points in
the orbit of x which lie on Fix(ρ) or ` is odd for every point in the orbit of x and
there is no point in the orbit of x which lies on the fixed point set of ρ.

In [65] Kang proved the following analogue of Franks theorem (Theorem 6.1)
for reversible maps.

Theorem 7.2 (Kang). Assume an area preserving reversible homeomorphism
of an open annulus admits a periodic point, then it admits infinitely many symmetric
periodic points.

Remark 7.3. A surprising feature of Kang’s theorem is the fact that the pe-
riodic point does not need to be symmetric in order to guarantee infinitely many
symmetric periodic points.

Combining Lemma 7.1 with Theorem 7.2 we obtain the following Corollary.

Corollary 7.4. A reversible anti-symplectic map of the open disk admits either
one or infinitely many symmetric periodic points.

Because orbits of symmetric periodic of the Poincaré return map of an invariant
global surface of section together with the binding orbit correspond to symmetric
periodic orbits we obtain further the following Corollary.

Corollary 7.5. Assume that ω ∈ Ω2(S3) is a Hamiltonian structure on S3

which is anti-invariant under an involution of S3 and X ∈ Γ(kerω) is a Hamilton-
ian vector field whose flow admits an invariant global surface of section. Then X
has either two or infinitely many symmetric periodic orbits.



CHAPTER 8

The Maslov Index

Assume that (V, ω) is a finite dimensional symplectic vector space. By choosing
a symplectic basis {e1, · · · , en, f1, · · · , fn}, i.e., a basis of V satisfying

ω(ei, ej) = ω(fi, fj) = 0, ω(ei, fj) = δij , 1 ≤ i, j ≤ n

we can identify V with Cn by mapping a vector ξ = ξ1 + ξ2 ∈ V with ξ1 =∑n
j=1 ξ

1
j ej , ξ

2 =
∑n
j=1 ξ

2
j fj to the vector (ξ1

1 + iξ2
1 , . . . , ξ

1
n + iξ2

n) ∈ Cn. The La-
grangian Grassmannian

Λ = Λ(n)

is the manifold consisting of all Lagrangian subspaces L ⊂ Cn. For example, since
any 1-dimensional linear subspace in C is Lagrangian, we have

Λ(1) = RP 1 ∼= S1.

The Lagrangian Grassmannian has the structure of a homogeneous space. To see
that we first observe that the group U(n) acts on the Lagrangian Grassmannian

U(n)× Λ(n)→ Λ(n), (U,L) 7→ UL.

That this action is transitive can be seen in the following way. On a given La-
grangian L ⊂ Cn choose an orthonormal basis e′1, · · · , e′n of L, where orthonor-
mal refers of course to the standard inner product on Cn. Putting f ′j = iej for
1 ≤ j ≤ n gives rise to a symplectic, orthonormal basis {e′1, . . . , e′n, f ′1, . . . , f ′n} of
Cn. Now define U : Cn → Cn as the linear map which maps ej to e′j and fj to f ′j .
This proves transitivity. The stabilizer of the U(n) action on Λ(n) can be identified
with the group O(n), namely the ambiguity in choosing an orthonormal basis on
the Lagrangian subspace. Therefore, the Lagrangian Grassmannian becomes the
homogeneous space

Λ(n) = U(n)/O(n).

Following [8] we next discuss the fundamental group of the Lagrangian Grassman-
nian. Consider the map

ρ : U(n)/O(n)→ S1, [A] 7→ detA2.

Note that because the determinant of a matrix in O(n) is plus or minus one, the
map ρ is well-defined, independent of the choice of the representative A ∈ U(n).
This gives rise to a fiber bundle

SU(n)/SO(n) // U(n)/O(n)

ρ

��
S1

91
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Since the fiber SU(n)/SO(n) is simply connected the long exact homotopy sequence
tells us that the induced homomorphism

ρ∗ : π1

(
U(n)/O(n)

)
→ π1(S1)

is an isomorphism. We state this fact as a theorem.

Theorem 0.6. The fundamental group of the Lagrangian Grassmannian satis-
fies

π1(Λ) ∼= Z.
Moreover, an explicit isomorphism is given by the map ρ∗ : π1(Λ)→ π1(S1).

If λ : S1 → Λ is a continuous loop of Lagrangian subspaces we obtain a contin-
uous map

ρ ◦ λ : S1 → S1

and we define the Maslov index of a loop as

µ(λ) := deg(ρλ) ∈ Z.
In view of Theorem 0.6 we can alternatively characterize the Maslov index as

µ(λ) = [λ] ∈ π1(Λ) = Z.
It is not clear from this definition how to generalize the definition of the Maslov
index from a loop of Lagrangian subspaces to a path of Lagrangian subspaces
λ : [0, 1] → Λ. In order to find such a generalization which is needed to define
the Conley-Zehnder index, we next discuss Arnold’s characterization of the Maslov
index as an intersection number with the Maslov (pseudoco)cycle [8].

In order to define the Maslov pseudo-cocycle we fix a basepoint L0 ∈ Λ(n) and
define for 0 ≤ k ≤ n

Λk = ΛkL0
(n) = {L ∈ Λ(n) : dim(L ∩ L0) = k}.

For each 0 ≤ k ≤ n the space Λk is a submanifold of Λ and the whole Lagrangian
Grassmannian is stratified as

(95) Λ =

n⋃
k=0

Λk.

We need the following proposition

Proposition 0.7. For 0 ≤ k ≤ n the codimension of Λk ⊂ Λ is given by

codim(Λk,Λ) =
k(k + 1)

2
.

Proof: We first compute the dimension of the Lagrangian Grassmannian.
Because Λ(n) = U(n)/O(n) we obtain

dim Λ(n) = dimU(n)/O(n) = dimU(n)− dimO(n)(96)

= n2 − n(n− 1)

2
=
n(n+ 1)

2
.

Recall further that the usual Grassmannian

G(n, k) = {V ⊂ Rn : dimV = k}
of k-planes in Rn can be interpreted as the homogeneous space

G(n, k) = O(n)/O(k)×O(n− k)
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and therefore its dimension is given by

dimG(n, k) = dimO(n)− dimO(k)− dimO(n− k)(97)

=
n(n− 1)

2
− k(k − 1)

2
− (n− k)(n− k − 1)

2
= k(n− k).

Given a Lagrangian L ∈ ΛkL0
(n), denote by (L ∩ L0)⊥ the orthogonal complement

of L ∩ L0 in L0. We obtain a symplectic splitting

Cn =
(
L ∩ L0 ⊕ i(L ∩ L0)

)
⊕
(

(L ∩ L0)⊥ ⊕ i(L ∩ L0)⊥
)

=: V0 ⊕ V1.

Note that V0 and V1 are symplectic subvector spaces of Cn of dimension dimV0 = 2k
and dimV1 = 2(n− k). Moreover, (L∩L0)⊥ ⊂ V1 as well as L∩V1 are Lagrangian
subspaces of V1 which satisfy (L∩L0)⊥∩(L∩V1) = {0}. Therefore we can interpret

L ∩ V1 ∈ Λ0
(L∩L0)⊥(n− k).

Furthermore, L ∩ V0 = L ∩ L0 is a k-dimensional subspace in L and therefore the
projection

ΛkL0
(n)→ G(n, k), L 7→ L ∩ L0

gives rise to a fiber bundle

Λ0(n− k) // Λk(n)

��
G(n, k).

Since Λ0(n− k) is an open subset of Λ(n− k) its dimension equals by (96)

dim Λ0(n− k) =
(n− k)(n− k + 1)

2
.

Using (97) we obtain

dim Λk(n) = dim Λ0(n− k) + dimG(n, k)(98)

=
(n− k)(n− k + 1)

2
+ k(n− k) =

n(n+ 1)

2
− k(k + 1)

2
.

Combining (96) and (98) the Proposition follows. �

Note that if we choose k = 1 in the above Proposition we obtain that Λ1 ⊂ Λ
is a codimension 1 submanifold of Λ. However, Λ1 is in general noncompact, its
closure is given by

Λ1 =

n⋃
k=1

Λk.

In particular, the boundary of Λ1 is given by

Λ1 \ Λ1 =

n⋃
k=2

Λk

and from Proposition 0.7 we deduce that

dim Λ1 − dim Λk ≥ 2

which means that the boundary of Λ1 has dimension at least 2 less than Λ1. This
property is crucial for intersection theoretic arguments with Λ1.
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If Λ1 is in addition orientable it meets the requirements of a pseudo-cycle as
in [81]. Results of Kahn, Schwarz, and Zinger [63, 98, 109], then show how
to associate a homology class to a pseudocycle. Unfortunately, Λ1 is not always
orientable. This is related to a Theorem of D. Fuks [39] which tells us that the
Lagrangian Grassmannian Λ(n) is orientable if and only if n is odd. As was noted
by Arnold [8] Λ1 is always coorientable. Hence if n is odd Λ1(n) is a pseudocycle
in the sense of McDuff and Salamon. Fortunately, the intersection number of Λ1

with a loop of Lagrangian subspaces can always be defined independently of these
theoretic consideration due to the fact that Λ1 can be cooriented. Our next goal is
to show how this coorientation works.

We first describe some natural charts for the Lagrangian Grassmannian. Given
L1 ∈ Λ choose a Lagrangian complement L2 of L1, i.e., L2 ∈ Λ such that L2∩L1 =
{0}. It follows that L1 ∈ Λ0

L2
. We now explain how to construct a vector space

structure on Λ0
L2

for which L1 becomes the origin. This is done by identifying Λ0
L2

with S2(L1), the quadratic forms on L1. Namely given L ∈ Λ0
L2

for each v ∈ L1

there exists a unique wv ∈ L2 such that v + wv ∈ L. We define

(99) Λ0
L2
→ S2(L1), L 7→ QL = QL1,L2

L

where

QL(v) = ω(v, wv), v ∈ L1.

We describe this procedure in coordinates. Namely we choose a basis {e1, . . . , en}
of L1. Then there exists a unique basis {f1, . . . , fn} of the Lagrangian complement
L2 of L1 such that {e1, . . . , en, f1, . . . , fn} is a symplectic basis of Cn. Using these
bases we identify L1 = Rn ⊂ Cn and L2 = iRn ⊂ Cn. Now if v = v1 + iv2, w =
w1 + iw2 ∈ Cn with v1, v2, w1, w2 ∈ Rn the symplectic form is given by

ω(v, w) = 〈v1, w2〉 − 〈v2, w1〉

where 〈·, ·〉 is the usual inner product on Rn. Now if L ⊂ Cn is a Lagrangian
satisfying L ∩ L2 = {0} we can write L as

L = {x+ iSx : x ∈ Rn} =: ΓS

namely as the graph of a linear map S : Rn → Rn. The fact that L is Lagrangian
translates into the fact that for every x, y ∈ Rn we have

0 = ω(x+ iSx, y + iSy) = 〈x, Sy〉 − 〈y, Sx〉

which is equivalent to the assertion that

〈x, Sy〉 = 〈y, Sx〉, x, y ∈ Rn

meaning that S is symmetric. Now for x ∈ Rn we compute

QL(x) = ω(x, iSx) = 〈x, Sx〉.

Remark 0.8. The natural charts lead to a new proof of the dimension formula
for the Lagrangian Grassmannian. Indeed,

dimS2(L1) =
n(n+ 1)

2

in accordance with (96).
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We next show how the natural charts lead to an identification of the tangent
space TL1Λ with the quadratic form S2(L1) on L1. Indeed, given a Lagrangian
complement L2 of L1, i.e., an element L2 ∈ Λ0

L1
, the natural chart obtained from

L2 leads to a vector space isomorphism

ΦL2 : TL1Λ→ S2(L1), L 7→ QL1,L2

L .

Our next Lemma shows that this vector space isomorphism does not depend on the
chart chosen.

Lemma 0.9. The vector space isomorphism ΦL2
is independent of L2, i.e., we

have a canonical identification of TL1
Λ with S2(L1).

Proof: We can assume without loss of generality that L1 = Rn ⊂ Cn. Then
an arbitrary Lagrangian complement of L1 is given by

L2 = {By + iy : y ∈ Rn}
where B is a real symmetric n×n matrix. Now consider a smooth path L : (−ε, ε)→
Λ satisfying L(0) = L1 and such that

L(t) = {x+ iA(t)x : x ∈ Rn}
where A(t) is a symmetric matrix such that A(0) = 0. For x ∈ Rn = L1 we next

compute QL1,L2

L(t) (x). For that purpose let wx(t) be the unique vector in L2 such

that
x+ wx(t) ∈ L(t).

Since wx(t) ∈ L2 there exists a unique y(t) ∈ Rn such that

wx(t) = By(t) + iy(t).

We therefore obtain

x+ wx(t) = x+By(t) + iy(t) ∈ L(t)

which implies that

(100) y(t) = A(t)(x+By(t)).

Moreover,

QL1,L2

L(t) (x) = ω(x,wx(t)) = ω(x,By(t) + iy(t)) = 〈x, y(t)〉

such that

(101)
d

dt

∣∣∣∣
t=0

QL1,L2

L(t) (x) = 〈x, y′(0)〉.

Since L(0) = L1 it follows that wx(0) = 0 and therefore y(0) = 0. Using this as
well as A(0) = 0 we obtain from differentiating (100)

y′(0) = A′(0)(x+By(0)) +A(0)(x+By′(0)) = A′(0)x.

Plugging this into (101) we get

(102)
d

dt

∣∣∣∣
t=0

QL1,L2

L(t) (x) = 〈x,A′(0)x〉.

This is independent of B and therefore d
dt

∣∣∣
t=0

QL1,L2

L(t) (x) does not depend on the

choice of the Lagrangian complement L2. This proves the lemma. �
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In view of the above Lemma we denote for L ∈ Λ and L̂ ∈ TLΛ the uniquely
determined quadratic form on L by

QL̂ ∈ S2(L).

We can use this form to characterize the tangent space of ΛkL0
.

Lemma 0.10. Assume that L0 ∈ Λ, k ∈ {0, . . . , n}, and L ∈ ΛkL0
, then

TLΛkL0
=
{
L̂ ∈ TLΛ : QL̂

∣∣
L0∩L

= 0
}
.

Proof: We decompose Cn as

Cn = Rk × Rn−k × Rk × Rn−k.
We can assume without loss of generality that

L = Rk × Rn−k × {0} × {0} = Rn × {0}
and

L0 = Rk × {0} × {0} × Rn−k.
Suppose that A : Rn → Rn is a matrix satisfying A = AT . We decompose

A =

(
A11 A12

A21 A22

)
where A11 : Rk → Rk, A12 : Rn−k → Rk, A21 : Rk → Rn−k, A22 : Rn−k → Rn−k
satisfy

A11 = AT11, A22 = AT22, A12 = AT21.

The graph of A then can be written as

ΓA = {(x, y,A11x+A12y,A21x+A22y) : x ∈ Rk, y ∈ Rn−k}.
Now suppose that (x1, y1, x2, y2) ∈ ΓA ∩ L0. Since (x1, y1, x2, y2) ∈ ΓA we obtain
x2 = A11x1 +A12y1 and y2 = A21x1 +A22y1. Because (x1, y1, x2, y2) ∈ L0 we must
have x2 = y1 = 0 and therefore A11x1 = 0 and y2 = A21x1. We have proved that

(103) ΓA ∩ L0 = {(x1, 0, 0, A21x1) : A11x1 = 0}.

If L̂ ∈ TLΛ we can write L̂ as

L̂ =
d

dt

∣∣∣∣
t=0

ΓtA : A : Rn → Rn, A = AT .

In view of (102) the associated quadratic form is given by

QL̂ : L× L→ R, z 7→ 〈z,Az〉, z = (x, y) ∈ Rk × Rn−k = Rn.
Its restriction to L ∩ L0 becomes

(104) QL̂
∣∣
L∩L0

: L ∩ L0 × L ∩ L0 → R, x 7→ 〈x,A11x〉, x ∈ Rk.

From (103) and (104) we deduce that the dimension of ΓtA∩L0 = k for every t ∈ R
if and only if QL̂

∣∣
L∩L0

= 0. This implies that

TLΛkL0
⊂
{
L̂ ∈ TLΛ : QL̂

∣∣
L0∩L

= 0
}
.

On the other hand we know from (98) that

dimTLΛkL0
=
n(n+ 1)

2
− k(k + 1)

2
= dim

{
L̂ ∈ TLΛ : QL̂

∣∣
L0∩L

= 0
}
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and therefore

TLΛkL0
=
{
L̂ ∈ TLΛ : QL̂

∣∣
L0∩L

= 0
}
.

This finishes the proof of the Lemma. �

In view of the previous Lemma we can now define the coorientation of Λ1 = Λ1
L0

in Λ as follows. If L ∈ Λ1 we define

[L̂] ∈ TLΛ/TLΛ1 positive ⇐⇒ QL̂
∣∣
L0∩L

positive.

Indeed, Lemma 0.10 tells us that this definition is well defined, independent of the

choice of L̂ in its equivalence class in TLΛ/TLΛ1.
We now use the coorientation of Λ1 to give an alternative characterization of

the Maslov index via intersection theory. We fix L0 ∈ Λ and define for a loop
λ : S1 → Λ the Maslov index as intersection number between λ and Λ1 = Λ1

L0
. In

order to do that we need the following definition.

Definition 0.11. Assume that λ : S1 → Λ is a smooth map. We say that λ
intersects Λ1 transversally if and only if the following two conditions are satisfied.

(i): For every t ∈ S1 such that λ(t) ∈ Λ1 we have

im(dλ(t)) + Tλ(t)Λ
1 = Tλ(t)Λ.

(ii): For every k ≥ 2 it holds that

imλ ∩ Λk = ∅.

One writes λ t Λ1 if λ intersects Λ1 transversally. It follows from Sard’s theo-
rem [83, Chapter 2] and the fact that codim(Λk,Λ) ≥ 3 for k ≥ 2 that after small
perturbation of λ we can assume that λ t Λ1. In fact, for this step codim(Λk,Λ) ≥ 2
for k ≥ 2 would already be sufficient, however, we soon need codim(Λk,Λ) ≥ 3 for
k ≥ 2 to show invariance of the intersection number under homotopies.

In the following let us assume that λ t Λ1. It follows that λ−1(Λ1) is a finite
set. For t ∈ λ−1(Λ1) we use the coorientation of Λ1 to define

ν(t) :=

{
1 ∂tλ(t) ∈ Tλ(t)Λ/Tλ(t)Λ

1 positive
−1 else.

We define now the intersection number of λ with Λ1 as

µ̃(λ) :=
∑

t∈λ−1(Λ1)

ν(t).

Here we understand that if t /∈ λ−1(Λ1) then ν(t) = 0 so that only finitely many
summand in the above sum are different from zero.

Theorem 0.12. The intersection number with the Maslov cycle coincides with
the Maslov index, i.e., µ̃ = µ.

Proof: We prove the theorem in two steps.

Step 1: µ̃(λ) only depends on the homotopy class of λ.

In order to prove Step 1 assume that λ0, λ1 t Λ1 are two loops of Lagrangian
subspaces which are homotopic to each other, i.e., we can choose a smooth map

λ : S1 × [0, 1]→ Λ
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such that
λ(·, 0) = λ0, λ(·, 1) = λ1.

Again taking advantage of Sard’s theorem and the fact that by Lemma 0.7 codim(Λk,Λ) ≥
3 for every k ≥ 2 we can assume maybe after perturbing the homotopy λ that λ t Λ1

in the sense that the following two conditions are met.

(i): For every (t, r) ∈ S1 × [0, 1] such that λ(t, r) ∈ Λ1 it holds that

im(dλ(t, r)) + Tλ(t,r)Λ
1 = Tλ(t,r)Λ.

(ii): For every k ≥ 2 we have

imλ ∩ Λk = ∅.
It now follows from the implicit function theorem that λ−1(Λ1) ⊂ S1 × [0, 1] is a
one dimensional manifold with boundary. The boundary is given by

∂
(
λ−1(Λ1)

)
=
(
λ−1

0 (Λ1)× {0}
)
∪
(
λ−1

1 (Λ1)× {1}
)
.

The manifold λ−1(Λ1) can be oriented as follows. We orient the cylinder by declar-
ing the basis {∂r, ∂t} to be positive at every point (t, r) ∈ S1× [0, 1]. Suppose that
(t, r) ∈ λ−1(Λ1) and v 6= 0 ∈ T(t,r)λ

−1(Λ1). Choose w ∈ T(t,r)(S
1× [0, 1]) such that

{v, w} is a positive basis of T(t,r)(S
1×[0, 1]). We now declare v to be a positive basis

of the one dimensional vector space T(t,r)λ
−1(Λ1) if and only if [dλ(w)] ∈ TΛ/TΛ1

is positive. Let us check that this notion is well defined, independent of the choice
of w. However, if w′ is another choice it follows that w′ = aw + bv where a > 0
and b ∈ R. Since dλ(v) ∈ TΛ1 we obtain [dλ(w′)] = a[dλ(w)] which due to the
positivity of a is positive if and only if [dλ(w)] is positive.

Since λ t Λ1 we have λ−1(Λ1) = λ−1(Λ1) and therefore λ−1(Λ) is compact. It
follows, see [83, Appendix] that a compact one dimensional manifold with boundary
is a finite union of circles and intervals. For a compact submanifold of the cylinder
S1 × [0, 1] there are three types of intervals. Either both boundary points lie in
the first boundary component S1 × {0}, or both boundary points lie in the second
component S1×{1}, or finally one boundary point lies in S1×{0} where the other
boundary point lies in S1 × {1}. In the first case both boundary points contribute
with opposite signs µ̃(λ0), in the second case they contribute with opposite signs to
µ̃(λ1) and in the third case they contribute with the same sign to µ̃(λ0) and µ̃(λ1).
This proves that µ̃(λ0) = µ̃(λ1) and finishes the proof of the first step.

Step 2: We prove the theorem.

As a consequence of Step 1 the intersection number µ̃ induces a homomorphism
from π1(Λ) to Z. By Theorem 0.6 we know that π1(Λ) = Z. Hence it suffices to
show that µ̃ agrees with µ on a generator of π1(Λ) = Z. Such a generator is given
by

λ(t) = (eiπt, 1, . . . , 1)Rn ⊂ Cn, t ∈ [0, 1].

For this path we have

ρ ◦ λ(t) = det


eiπt

1
. . .

1


2

= e2πit
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so that we obtain for the Maslov index

µ(λ) = deg(t 7→ e2πit) = 1.

It remains to compute µ̃(λ). A priori the computation of µ̃(λ) depends on the
choice of the basepoint L0 ∈ Λ used to define the Maslov cycle. However, the
Lagrangian Grassmannian is connected so that between any two basepoints we can
always find a smooth path such that a homotopy argument analogous to the one
in Step 1 shows that µ̃(λ) is independent of the choice of L0. Taking advantage of
this freedom we choose

L0 = (1, i, · · · , i)Rn.
It follows that λ t Λ1

L0
and

λ−1(Λ1) = {0}.
It remains to compute the sign at t = 0. As Lagrangian complement of λ(0) = Rn
we choose iRn. For t ∈ (− 1

2 ,
1
2 ) we can write the path λ(t) as graph

λ(t) = {x+ iA(t)x : x ∈ Rn}
where

A(t) =


tanπt 0 0

0 0
. . .

0 0

 .

By (102) the quadratic form Qλ
′(0) ∈ S2(Rn) is given by

Qλ
′(0)(x) = 〈x,A′(0)x〉, x ∈ Rn.

Now the derivative of the matrix A computes to be

A′(t) =


π

cos2 πt 0 0
0 0

. . .

0 0


and therefore

A′(0) =


π 0 0
0 0

. . .

0 0

 .

Moreover,
L0 ∩ λ(0) = span{(1, 0, . . . , 0)}

and therefore the map

Qλ
′(0)
∣∣
L0∩λ(0)

: x 7→ πx2

is positive. We conclude that
ν(0) = 1

and therefore
µ̃(λ) = 1 = µ(λ).

This finishes the proof of the theorem. �

One of the advantages of the intersection theoretic interpretation of the Maslov
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index is that it generalizes to paths of Lagrangians. This is necessary to define
the Conley-Zehnder index. We next explain the definition of the Maslov index for
paths due to Robbin and Salamon [94].

Suppose that λ : [0, 1] → Λ is a smooth path of Lagrangian subspaces. Fix a
basepoint L ∈ Λ. For t ∈ [0, 1] the crossing form

(105) C(λ, L, t) := Qλ
′(t)
∣∣
λ(t)∩L

is a quadratic form on the vector space λ(t)∩L. An intersection point t ∈ λ−1(Λ1
L) =

λ−1(
⋃n
k=1 ΛkL) is called a regular crossing if and only if the crossing form C(λ, L, t)

is nonsingular. After a perturbation with fixed endpoints we can assume that the
path λ : [0, 1]→ Λ has only regular crossings. In fact, we can even assume that for
all t ∈ (0, 1) it holds that λ(t) /∈ ΛkL for k ≥ 2. However, λ(0) or λ(1) might lie in
ΛkL for some k ≥ 2.

Suppose now that λ : [0, 1]→ Λ is a path with only regular crossings. Then its
Maslov index with respect to the chosen basepoint L ∈ Λ is defined by Robbin and
Salamon [94] as

(106) µL(λ) :=
1

2
signC(λ, L, 0) +

∑
0<t<1

signC(λ, L, t) +
1

2
signC(λ, L, 1) ∈ 1

2
Z.

Here sign refers to the signature of a quadratic form. The Maslov index for paths
has the following properties.

Invariance:: If λ0, λ1 : [0, 1] → Λ are homotopic to each other with fixed
endpoints, then

µL(λ0) = µL(λ1).

Concatenation:: Suppose that λ0, λ1 : [0, 1] → Λ satisfy λ0(1) = λ1(0),
then

µL(λ0#λ1) = µL(λ0) + µL(λ1)

where λ0#λ1 refers to the concatenation of the two paths.
Loop: : If λ : [0, 1]→ Λ is a loop, i.e., λ(0) = λ(1), then

µL(λ) = µ(λ)

the Maslov index for loops defined before. In particular, for loops the
Maslov index does not depend on the choice of the base point L ∈ Λ.

Remark 0.13. In general the Maslov index for paths depends on the choice of
the base point L ∈ Λ. However, if L0, L1 ∈ Λ and λ : [0, 1]→ Λ the three properties
of the Maslov index just described imply that the difference µL0

(λ) − µL1
(λ) only

depends on L0, L1, λ(0), λ(1), i.e., only the endpoints of the Lagrangian path λ
matter. Such indices which associate to a collection of four Lagrangian subspaces
of a symplectic vector space a number are also known in the literature as Maslov
indices and are for example studied in the work by Hörmander [50] or Kashiwara
[78].

Remark 0.14. There are other ways how to associate to a path of Lagrangian
subspaces a Maslov index. We mention here the work of Duistermaat [29]. The
Maslov index of Duistermaat has the property that it is independent of the choice
of the base point L ∈ Λ at the expense of the concatenation property. The Maslov
index of Duistermaat is related to the Maslov index of Robbin and Salamon by a
correction term involving a Hörmander-Kashiwara Maslov index.



8. THE MASLOV INDEX 101

We next explain how to define the Conley-Zehnder index as a Maslov index. If
(V, ω) is a symplectic vector space the symplectic group Sp(V ) consists of all linear
maps A : V → V satisfying A∗ω = ω. Moreover, if (V, ω) is a symplectic vector
space (V ⊕ V,−ω ⊕ ω) is a symplectic vector space as well and has the property
that for every A ∈ Sp(V ) the graph of A

ΓA = {(x,Ax) : x ∈ V } ⊂ V ⊕ V

is a Lagrangian subspace of (V ⊕ V,−ω ⊕ ω). Indeed, if (x,Ax), (y,Ay) ∈ ΓA we
have

(−ω ⊕ ω)((x,Ax), (y,Ay)) = −ω(x, y) + ω(Ax,Ay) = −ω(x, y) + ω(x, y) = 0

where in the second equality we have used that A is symplectic. In particular, the
diagonal

∆ = Γid = {(x, x) : x ∈ V }
is a Lagrangian subspace of (V ⊕ V,−ω ⊕ ω). Suppose now that we have given a
smooth path Ψ: [0, 1]→ Sp(V ), i.e., a smooth path of linear symplectic maps. We
associate to such a path a path of Lagrangian subspaces in V ⊕ V by

ΓΨ : [0, 1]→ Λ(V ⊕ V ), t 7→ ΓΨ(t).

We say that a smooth path of symplectic linear maps Ψ: [0, 1] → Sp(V ) starting
at the identity Ψ(0) = id is non-degenerate if

det(Ψ(1)− id) 6= 0,

i.e., 1 is not an eigenvector of Ψ(1). This is equivalent to the requirement that

ΓΨ(1) ∈ Λ0
∆

i.e., ΓΨ(1) does not lie in the closure of the Maslov pseudo-cocycle. We are now in
position to define the Conley-Zehnder index

Definition 0.15. Assume that Ψ [0, 1] → Sp(V ) is a non-degenerate path of
symplectic linear maps starting at the identity. Then the Conley-Zehnder index of
Ψ is defined as

µCZ(Ψ) := µ∆(ΓΨ) ∈ Z.

Remark 0.16. The Maslov index µ∆(ΓΨ) is also defined in the case where Ψ is
degenerate. However, in the degenerate case we do not define the Conley-Zehnder
index via the Maslov index. Instead of that following [56] we use the spectral flow
to associate a Conley-Zehnder index to a degenerate path in Definition 0.29. We
point out that in the case of degenerate paths the Conley-Zehnder index might in fact
be different from the Maslov index. Indeed, the Conley-Zehnder index as extended
to degenerate paths via Definition 0.29 becomes lower semi-continuous where the
Maslov index is neither lower nor upper semi-continuous.

Since the Maslov index is in general only half integer valued it is a priori not
clear that the Conley-Zehnder index takes values in the integers. However, this can
be seen as follows. Since by assumption the path is non-degenerate it follows that
signC(ΓΨ,∆, 1) = 0. Therefore we obtain the formula

µCZ(Ψ) =
1

2
signC(ΓΨ,∆, 0) +

∑
0<t<1

signC(ΓΨ,∆, t).
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Since Ψ(0) = id we have ΓΨ(0) = ∆ and therefore C(ΓΨ,∆, 0) is a quadratic form on
the vector space ∆. However, ∆ is even dimensional and therefore signC(ΓΨ,∆, 0) ∈
2Z. This proves that the Conley-Zehnder index is an integer.



CHAPTER 9

Spectral flow

In the following we let ω be the standard symplectic form on Cn. We abbreviate
by Sp(n) the linear symplectic group consisting of all real linear transformations
A : Cn → Cn satisfying A∗ω = ω.

Suppose that Ψ: [0, 1]→ Sp(n) is a smooth path of symplectic matrices which
starts at the identity, i.e., Ψ(0) = id. It follows that Ψ′(t)Ψ−1(t) ∈ Lie Sp(n), the
Lie algebra of the linear symplectic group. The Lie algebra of the linear symplectic
group can be described as follows. For the splitting Cn = Rn × Rn write

(107) J =

(
0 −id
id 0

)
.

Note that

J2 = −id, JT = −J.
Using J the condition that a matrix A ∈ Sp(n) is equivalent to the assertion that
A meets

ATJA = J.

That means that B ∈ Lie Sp(n) if and only if

BTJ + JB = 0.

Therefore

(JB)T = BTJT = −BTJ = JB

implying that JB ∈ Sym(2n), the vector space of symmetric 2n × 2n-matrices.
On the other hand one checks immediately that if JB ∈ Sym(2n), then B ∈
LieSp(n), which means that the map B 7→ JB is a vector space isomorphism
between Lie Sp(n) and Sym(2n).

Therefore to any smooth path Ψ ∈ C∞([0, 1],Sp(n)) satisfying Ψ(0) = id we
associate a smooth path S = SΨ ∈ C∞([0, 1],Sym(2n)) by setting

S(t) := −JΨ′(t)Ψ−1(t).

We recover Ψ from S by solving the ODE

(108) Ψ′(t) = JS(t)Ψ(t), t ∈ [0, 1], Ψ(0) = id.

That means we have a one to one correspondence between path of linear symplectic
matrices starting at the identity and paths of symmetric matrices. We associate to
these a linear operator

(109) A = AΨ = AS : W 1,2(S1,Cn)→ L2(S1,Cn), v 7→ −J∂tv − Sv.

Here L2 refers to the Hilbert space of square integrable functions and W 1,2 refers
to the Hilbert space of square integrable function which admit a weak derivative
which is also square integrable. Our goal is to relate the spectral theory of the

103
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operators AΨ to the Conley-Zehnder index of Ψ. For that purpose we first examine
the kernel of A.

Lemma 0.17. The evaluation map

E : kerA→ ker(Ψ(1)− id), v 7→ v(0)

is a vector space isomorphism.

Proof: We prove the lemma in three steps.

Step 1 The evaluation map is well defined.

Pick v ∈ kerA. We have to show that v(0) ∈ ker(Ψ(1) − id). The condition
that Av = 0 means that v is a solution of the ODE

(110) J∂tv = −Sv
or equivalently

∂tv = (∂tΨ)Ψ−1v = −Ψ∂t(Ψ
−1)v.

This can be rephrased by saying that ∂t(Ψ
−1v) = 0 or equivalently that

v(t) = Ψ(t)v0, v0 ∈ Cn.
Since v is a loop we obtain

v(0) = v(1) = Ψ(1)v(0).

This proves that the evaluation map is well defined.

Step 2: The evaluation map is injective.

Suppose that v ∈ kerE. That means that v(0) = 0. However, v is a solution
of the ODE (110). This implies that v(t) = 0 for every t ∈ S1.

Step 3: The evaluation map is surjective.

Suppose that v0 ∈ ker(Ψ(1)− id), i.e.,

Ψ(1)v0 = v0.

Define
v(t) = Ψ(t)v0.

It follows that
v(1) = Ψ(1)v0 = v0 = v(0).

Hence v ∈ W 1,2(S1,Cn) and we have seen in the proof of Step 1 that v ∈ kerA.
This finishes the proof of Step 3 and hence of the Lemma. �

It is worth pointing out that when Ψ(1) has an eigenvector to the eigenvalue 1
this precisely means that its graph ΓΨ(1) lies in the closure of the Maslov pseudo-

cocycle Λ1
∆. Hence by the Lemma crossing the Maslov pseudocycle is equivalent

that an eigenvalue of the operator crosses zero.
The L2-inner product on L2(S1,C) is given for two vectors v1, v2 ∈ L2(S1,Cn)

by

〈v1, v2〉 =

∫ 1

0

〈v1(t), v2(t)〉dt =

∫ 1

0

ω(v1(t), Jv2(t)〉dt.
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Lemma 0.18. The operator A is symmetric with respect to the L2-inner prod-
uct.

Proof: Suppose that v1, v2 ∈W 1,2(S1,Cn). We compute using integration by
parts and the fact that S is symmetric

〈Av1, v2〉 = −
∫ 1

0

〈J∂tv1 + Sv1, v2〉dt

= −
∫ 1

0

ω(J∂tv1, J∂tv2〉dt−
∫ 1

0

〈Sv1, v2〉dt

= −
∫ 1

0

ω(∂tv1, v2)dt−
∫ 1

0

〈v1, Sv2〉dt

= −
∫ 1

0

ω(v1, ∂tv2)dt−
∫ 1

0

〈v1, Sv2〉dt

= 〈v1, Av2〉.

This finishes the proof of the Lemma. �

A crucial property of the operator A : W 1,2(S1,Cn) → L2(S1,Cn) is that it is
a Fredholm operator of index 0. Before stating this theorem we recall some basic
facts about Fredholm operators without proofs. Proofs can be found for example
in [81, Appendix A.1]. If H1 and H2 are Hilbert spaces, then a bounded linear
operator D : H1 → H2 is called Fredholm operator if it has a finite dimensional
kernel, a closed image and a finite dimensional cokernel. Then the number

indD := dim kerD − dim cokerD ∈ Z

is referred to as the index of the Fredholm operator D. For example if H1 and H2

are finite dimensional, then every linear operator D : H1 → H2 is Fredholm and its
index is given by

indD = dimH1 − dimH2.

Interestingly in this example the Fredholm index does not depend on D at all,
although dim kerD and dim cokerD do. The usefulness of Fredholm operators lies
in the fact that similar phenomena happen in infinite dimensions and the Fredholm
index is rather stable under perturbations.

Recall that a compact operator K : H1 → H2 is a bounded linear operator with
the property that K(BH1

) ⊂ H2 is compact, where BH1
= {v ∈ H1 : ||v|| ≤ 1} is

the unit ball in H1 and the closure refers to the topology in H2. The first useful fact
about Fredholm operators is that they are stable under compact perturbations.

Theorem 0.19. Assume that D : H1 → H2 is a Fredholm operator and K : H1 →
H2 is a compact operator. Then D +K : H1 → H2 is a Fredholm operator as well
and

ind(D +K) = indD.

The second useful fact about Fredholm operators is that they are stable under
small perturbations in the operator topology.

Theorem 0.20. Assume that D : H1 → H2 is a Fredholm operator. Then there
exists ε > 0 such that for every E : H1 → H2 satisfying ||D − E|| < ε, where the
norm refers to the operator norm, it holds that E is still Fredholm and indE = indD.
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In order to prove that an operator is Fredholm the following Lemma is very
useful.

Lemma 0.21. Assume that H1, H2, H3 are Hilbert spaces, D : H1 → H2 is a
bounded linear operator, K : H1 → H3 is a compact operator, and there exists a
constant c > 0 such that the following estimate holds for every x ∈ H1

||x||H1
≤ c
(
||Dx||H2

+ ||Kx||H3

)
.

Then D has a closed image and a finite dimensional kernel.

An bounded linear operator with a closed image and a finite dimensional kernel
is referred to as a semi Fredholm operator. Therefore under the conditions of the
Lemma D is a semi Fredholm operator. In practice one can often apply the Lemma
again to the adjoint of D. Since the kernel of the adjoint of D coincides with the
cokernel of D this enables one to deduce the Fredholm property of D. The proofs of
the two previous Theorems as well as of the Lemma can be found in [81, Appendix
A.1.]. We can use these results to prove the following theorem.

Theorem 0.22. The operator A : W 1,2(S1,Cn) → L2(S1,Cn) is a Fredholm
operator of index 0.

We present two proofs of this theorem.

Proof 1 of Theorem 0.22: Since the inclusion of W 1,2(S1,Cn) ↪→ L2(S1,Cn) is
compact it follows that the operator AS = −J∂t + S is a compact perturbation of
the operator A0 = −J∂t. To check that the operator A0 is Fredholm of index 0 is
a straightforward exercise in the fundamental theorem of calculus and left to the
reader. Now it follows from Theorem 0.19 that AS is Fredholm of index 0 as well. �

The second proof does not invoke Theorem 0.19 but uses instead Lemma 0.21.
The reason why we present it is that according to a similar scheme many elliptic
operators can be proven to be Fredholm operators. These proofs usually contain
two ingredients. First one needs to produce an estimate in order to be able to
apply Lemma 0.21. Then one has to apply elliptic regularity in order to identify
the cokernel of the operator with the kernel of the adjoint. Since the operator A
is an operator in just one variable the elliptic regularity part is immediate. The
estimate is the content of the following lemma.

Lemma 0.23. There exists c > 0 such that for every v ∈ W 1,2(S1,Cn) the
following estimate holds

||v||W 1,2 ≤ c
(
||v||L2 + ||Av||L2

)
.

Proof: Since J∂tv = −Av − Sv we obtain

∂tv = JAv + JSv.
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Therefore we estimate

||v||2W 1,2 = ||v||2L2 + ||∂tv||2L2

= ||v||2L2 + ||J(A+ S)v||2L2

= ||v||2L2 + ||(A+ S)v||2L2

= ||v||2L2 + ||Av||2L2 + 2〈Av, Sv〉+ ||Sv||2L2

≤ ||v||2L2 + 2||Av||2L2 + 2||Sv||2L2

≤ c
(
||v||2L2 + ||Av||2L2

)
.

This finishes the proof of the Lemma. �

Proof 2 of Theorem 0.22: Because the inclusion W 1,2(S1,Cn) ↪→ L2(S1,Cn)
is compact we deduce from Lemma 0.21 and Lemma 0.23 that A is a semi Fred-
holm operator, i.e., kerA is finite dimensional and imA is closed. To determine its
cokernel choose w ∈ imA⊥, the orthogonal complement of the image of A. That
means that w ∈ L2(S1,Cn) satisfies

〈w,Av〉 = 0, ∀ v ∈W 1,2(S1,Cn).

Hence if v ∈W 1,2(S1,Cn) we have

0 = 〈w, Sv〉+ 〈w, J∂tv〉 = 〈Sw, v〉 − 〈Jw, ∂tv〉
and therefore

〈Jw, ∂tv〉 = 〈Sw, v〉, ∀ v ∈W 1,2(S1,Cn).

This implies that w which a priori was just an element in L2(S1,Cn) actually lies
in W 1,2(S1,Cn) and satisfies the equation

J∂tw = −Sw.
In particular,

Aw = 0.

Since by Lemma 0.18 the operator A is symmetric, it holds that every element in
the kernel of A is orthogonal to the image of A. We obtain

imA⊥ = kerA

and therefore
dim cokerA = dimkerA.

In particular, A is Fredholm and its index satisfies

indA = dim kerA− dim cokerA = 0.

This proves Theorem 0.22 again. �

The fact that A : W 1,2(S1,Cn) → L2(S1,Cn) is a symmetric Fredholm operator
of index 0 has important consequences for its spectrum. A reader familiar with the
theory of unbounded operators might recognize that the fact that A is Fredholm
of index 0 implies that A interpreted as an unbounded operator A : L2(S1,Cn) →
L2(S1,Cn) is self-adjoint with dense domain W 1,2(S1,Cn) ⊂ L2(S1,Cn). Here we
do not invoke the theory of self-adjoint unbounded operators but argue directly via
the standard properties of Fredholm operators we already recalled. We abbreviate
by

I : W 1,2(S1,Cn)→ L2(S1,Cn)
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the inclusion which is a compact operator and define the spectrum of A as

S(A) :=
{
η ∈ C : A− ηI not invertible

}
.

Its complement is the resolvent set

R(A) := C \S(A) =
{
η ∈ C : A− ηI invertible

}
.

An element η ∈ C is called an eigenvalue of A if ker(A− ηI) 6= {0}.

Lemma 0.24. The spectrum of A consists precisely of the eigenvalues of A,
i.e.,

η ∈ S(A) ⇐⇒ η eigenvalue of A.

Proof: The implication ”⇐=” is obvious. To prove the implication ”=⇒”
we observe that in view of the stability of the Fredholm index under compact
perturbations as stated in Theorem 0.19 it follows that A − ηI is still a Fredholm
operator of index 0. Now assume that η ∈ C is not an eigenvalue of A, i.e.,
ker(A−ηI) = {0}. Since the index of A−ηI is 0 we conclude that coker(A−ηI) =
{0}. This means that A− ηI is bijective and hence by the open mapping theorem
invertible. This finishes the proof of the Lemma. �

Lemma 0.25. S(A) ⊂ R.

Proof: Assume that η ∈ S(A). By Lemma 0.24 we know that η is an eigen-
value of A. Now the argument is standard. Indeed, if v 6= 0 such that Av = ηIv
we have in view of the symmetry of A establishes in lemma 0.18

η||v||2 = 〈Av, v〉 = 〈v,Av〉 = η̄||v||2

and therefore since ||v||2 6= 0 we conclude η = η̄ or in other words η ∈ R. �

Lemma 0.26. The spectrum S(A) is countable.

Proof: If η ∈ S(A) it follows from Lemma 0.24 that there exists eη 6= 0
such that Aeη = ηIeη. Since A is symmetric we have for η 6= η′ ∈ S(A) that
〈eη, eη′〉 = 0, i.e., the two eigenvectors are orthogonal to each other. Since the
Hilbert space L2(S1,Cn) is separable we conclude that S(A) has to be countable.
�

As a consequence of Lemma 0.26 we conclude that there exists ζ0 ∈ R such that
ζ0 /∈ S(A). In particular, A− ζ0I is invertible. Its inverse is a bounded linear map

(A− ζ0I)−1 : L2(S1,Cn)→W 1,2(S1,Cn).

We define the resolvent operator

R(ζ0) := I ◦ (A− ζ0I)−1 : L2(S1,Cn)→ L2(S1,Cn).

Since the inclusion operator I : W 1,2(S1,Cn)→ L2(S1,Cn) is compact we conclude
that the resolvent operator R(ζ0) is compact. Moreover, since A is symmetric, the
resolvent operator R(ζ0) is symmetric as well. Furthermore, 0 is not an eigenvalue
of R(ζ0), because if R(ζ0)v = 0 we get v = (A− ζ0I)R(ζ0)v = 0.

Recall that if H is a Hilbert space and R : H → H is a compact symmetric
operator then the spectral theorem for compact symmetric operators tells us that the
spectrum S(R) is real, bounded and zero is the only possible accumulation point
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of S(R). Moreover, for all η ∈ S(R) there exist pairwise commuting orthogonal
projections

Πη : H → H, Π2
η = Πη = Π∗η, ΠηΠη′ = Πη′Πη

satisfying ∑
η∈S(R)

Πη = id

such that
R =

∑
η∈S(R)

ηΠη.

Moreover, if η 6= 0 ∈ S(R) then dim imΠη <∞, meaning that the eigenvalue η has
finite multiplicity.

From the spectral decomposition of the resolvent R(ζ0) we obtain the spectral
decomposition of the operator A, namely

A =
∑

η∈S(R(ζ0))

(
1

η
+ ζ0

)
Πη.

In particular, we can improve Lemma 0.26 to the following stronger statement.

Proposition 0.27. The spectral S(A) ⊂ R is discrete.

If we write for the spectral decomposition of A

A =
∑

η∈S(A)

ηΠη

and ζ ∈ R(A) is in the resolvent set of A we obtain the spectral decomposition of
the resolvent operator R(ζ) as

R(ζ) =
∑

η∈S(A)

1

η − ζ
Πη.

Now choose a smooth loop Γ: S1 → R(A) ⊂ C such that the only eigenvalue of A
encircled by Γ is η. Now we can recover the projection Πη by the residual theorem
as follows

Πη =
i

2π

∫
Γ

R(ζ)dζ.

This formula plays a central role in Kato’s fundamental book [68]. According to
[68] this formula was first used in perturbation theory by Szökevalvi-Nagy [104]
and Kato [66, 67]. More generally if Γ: S1 → R(A) is a smooth loop and SΓ(A) ⊂
S(A) denotes the set of all eigenvalues of A encircled by Γ we obtain by the residual
theorem the following formula

i

2π

∫
Γ

R(ζ)dζ =
∑

η∈SΓ(A)

Πη.

The reason why this formula is so useful is that the map

A 7→ i

2π

∫
Γ

RA(ζ)dζ

is continuous in the operator A with respect the operator topology. In particular,
the eigenvalues of A vary continuously under perturbations of A.

Recall that the operator A = AS : W 1,2(S1,Cn) → L2(S1,Cn) is given as
v 7→ −J∂tv − S(t)v. In particular, for S = 0 we have the map A0 = −J∂t. Its
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eigenvalues are 2π` for ` ∈ Z and the corresponding eigenvectors are given by
v0e

2πi`t for v0 ∈ Cn. In particular, each eigenvalue has multiplicity 2n. Abbreviate
by

P := C∞([0, 1],Sym(2n))

the space of paths of symmetric 2n× 2n-matrices. We endow the space P with the
metric

d(S, S′) =

∫ 1

0

||S(t)− S′(t)||dt.

The Spectrum bundle is defined as

S := {S ∈ P : S(AS)} ⊂ P × R.
It comes with a canonical projection S→ P. In view of the continuity of eigenvalues
of the operators AS under perturbation and the description of the spectrum of A0

discussed above there exist continuous sections

ηk : P → S, k ∈ Z
which are uniquely determined by the following requirements

(i): The map S 7→ ηk(S) is continuous for every k ∈ Z.
(ii): ηk(S) ≤ ηk+1(S) for every k ∈ Z, S ∈ P.
(iii): S(AS) = {ηk(S) : k ∈ Z}.
(iv): If η ∈ S(AS), then the number #{k ∈ Z : ηk(S) = η} equals the

multiplicity of the eigenvalue η.
(v): The sections ηk are normalized such that ηj(0) = 0 for j ∈ {1, . . . , 2n}.

Recall that if S ∈ P we can associate to S a path of symplectic matrices ΨS starting
at the identity by formula (108). The following theorem relates the Conley Zehnder
index of ΨS as defined in Definition 0.15 to the spectrum of AS , see also [56, 95].

Theorem 0.28 (Spectral flow). Assume that ΨS is non-degenerate, meaning
that det(ΨS(1)− id) 6= 0. Then

(111) µCZ(ΨS) = max{k : ηk(S) < 0} − n.

Recall that the Conley-Zehnder index as explained in Definition 0.15 is only as-
sociated to non-degenerate paths of symplectic matrices. Inspired by Theorem 0.28
and following [56] we extend the Definition of the Conley-Zehnder index to degen-
erate paths of symplectic matrices, i.e. paths ΨS satisfying det(ΨS(1)− id) = 0, in
the following way.

Definition 0.29. Assume that ΨS [0, 1]→ Sp(n) is a degenerate path of sym-
plectic linear maps starting at the identity. Then the Conley-Zehnder index of ΨS

is defined as

µCZ(ΨS) := max{k : ηk(S) < 0} − n.

In view of Theorem 0.28 formula (111) is now valid for arbitrary paths of
symplectic matrices starting at the identity, regardless if they are degenerate or
not. The reason why we extend the Conley-Zehnder index to degenerate paths
via the spectral flow formula and not the Maslov index is that via the spectral
flow formula the Conley-Zehnder index becomes lower semi-continuous where the
Maslov index is neither lower nor upper semi-continuous.

To prove Theorem 0.28 we first show a Lagrangian version of the spectral flow
theorem and then use the Lagrangian version to deduce the periodic version, namely
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Theorem 0.28, by looking at its graph. To formulate the Lagrangian version of the
spectral flow theorem we fix a smooth path S : [0, 1] → Sym(2n) of symmetric
matrices as before. The Hilbert space we consider consists however not of loops
anymore by of paths satisfying a Lagrangian boundary condition, namely

W 1,2
Rn ([0, 1],Cn) = {v ∈W 1,2([0, 1],Cn) : v(0), v(1) ∈ Rn}.

We consider the bounded linear operator

LS : W 1,2
Rn ([0, 1],Cn)→ L2([0, 1],Cn), v 7→ −J∂tv − Sv.

This is the same formula as for the operator AS but note that the domain of the
operator now changed. However, thanks to the Lagrangian boundary condition
one easily checks that the operator LS has the same properties as the operator
AS , namely it is a symmetric Fredholm operator of index 0, or considered as an
unbounded operator LS : L2([0, 1],Cn)→ L2([0, 1],Cn) a self-adjoint operator with

dense domain W 1,2
Rn ([0, 1],Cn). In particular, LS has the same spectral properties

as the operator AS . The eigenvalues of the operator L0 are π` for every ` ∈ Z
with corresponding eigenvectors v(t) = v0e

πi`t where v0 ∈ Rn. In particular, the
multiplicity of each eigenvalue is n. Just as in the periodic case we define the section
ηk for k ∈ Z to the spectral bundle. Just the normalization condition has to be
replaced by

(v’): The section ηk are normalized such that ηj(0) = 0 for j ∈ {1, . . . , n}.
We associate to S the path of Lagrangians

λS : [0, 1]→ Λ(n), λS(t) = ΨS(t)Rn.

We are now in position to state the Lagrangian version of the spectral flow theorem.

Theorem 0.30. Assume that ΨS(1)Rn ∩ Rn = {0}. Then

µRn(λS) = max{k : ηk(S) < 0} − n

2
.

Proof: Recall from (95) that the Lagrangian Grassmannian is stratified as

Λ =

n⋃
k=0

ΛkRn

where Λ1
Rn is the Maslov pseudo-cocycle whose closure is given by

Λ1
Rn =

n⋃
k=1

ΛkRn .

In particular,

Λ0
Rn =

(
Λ1
Rn
)c

is the complement of the closure of the Maslov pseudo-cocycle. Recall further that
Λ0
Rn is connected. Indeed, it was shown in (99) that

Λ0
Rn = S2(iRn)

the vector space of quadratic forms on iRn such that Λ0
Rn is actually contractible.

Note the following equivalences
(112)

0 /∈ S(LS)⇐⇒ kerLS = {0} ⇐⇒ ΨS(1)Rn ∩ Rn = {0} ⇐⇒ ΨS(1)Rn ∈ Λ0
Rn .
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For a path S ∈ C∞([0, 1],Sym(2n)) define

µ̃(S) := max{k : ηk(S) < 0}.

Consider a homotopy in P namely let S ∈ C∞([0, 1] × [0, 1],Sym(2n)) and abbre-
viate Sr = S(·, r) for the homotopy parameter r ∈ [0, 1]. Assume that during the
homotopy we never cross the closure of the Maslov pseudo-cocycle, namely

ΨSr (1)Rn ∈ Λ0
Rn , r ∈ [0, 1].

We conclude from (112) and the continuity of eigenvalues under perturbation that

µ̃(S0) = µ̃(S1).

By homotopy invariance of the intersection number we have as well

µRn(λS0
) = µRn(λS1

).

It was shown in Theorem 0.6 that the fundamental group of the Lagrangian Grass-
mannian satisfies π1(Λ) = Z with generator

t 7→


eiπt

1
. . .

1

Rn.

Because Λ0
Rn is connected it follows that each non-degenerate path λS = ΨSRn is

homotopic through a path with endpoints in Λ0
Rn to a path of the form

λk : [0, 1]→ Sp(n), t 7→


eiπ( 1

2 +k)t

ei
π
2 t

. . .

ei
π
2 t

Rn

for some k ∈ Z. If

Sk =
π

2


1 + 2k

1
. . .

1


then we obtain

λk = λSk .

In view of the homotopy invariance of µ̃ and µRn it suffices to show that

µRn(λk) = µ̃(Sk)− n

2
.

But both sides are equal to n
2 + k and hence the theorem is proved. �

We now use Theorem 0.30 to prove Theorem 0.28.

Proof of Theorem 0.28: Recall that if (V, ω) is a symplectic vector space,
then the diagonal ∆ = {(v, v) : v ∈ V } ⊂ V ⊕ V is a Lagrangian subspace in the
symplectic vector space (V ⊕ V,−ω ⊕ ω). If Ψ: [0, 1]→ Sp(V ) is a smooth path of
linear symplectic transformations starting at the identity, i.e., Ψ(0) = id, and ΓΨ is
the graph of Ψ, then this graph ΓΨ : [0, 1]→ Λ(V ⊕ V ) is a path in the Lagrangian
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Grassmannian with the property that ΓΨ(0) ∈ ∆. The Conley-Zehnder index of Ψ
is by definition

µCZ(Ψ) = µ∆(ΓΨ).

Choose further a complex structure J : V → V , i.e., a linear map satisfying J2 =
−id which is ω-compatible in the sense that ω(·, J ·) is a scalar product on V . Then
−J ⊕ J is a complex structure on V ⊗ V and

−ω ⊕ ω(·,−J ⊕ J ·) = ω(·, J ·)⊕ ω(·, J ·)
is a scalar product on V ⊕ V . Define a Hilbert space isomorphism

Γ: W 1,2(S1, V )→W 1,2
∆ ([0, 1], V ⊕ V )

which associates to v ∈W 1,2(S1, V ) the map

Γ(v)(t) =
(
v
(
1− t

2

)
, v
(
t
2

))
, t ∈ [0, 1].

Note that because v was periodic, i.e., v(0) = v(1), it holds that

Γ(v)(0) =
(
v(0), v(1)

)
=
(
v(0), v(0)

)
∈ ∆, Γ(v)(1) =

(
v
(

1
2

)
, v
(

1
2

))
∈ ∆

such that Γ(v) actually lies in the space W 1,2
∆ ([0, 1], V ⊕ V ). Moreover, Γ extends

to a map
Γ: L2(S1, V )→ L2([0, 1], V ⊕ V )

by the same formula. With respect to the L2-inner product Γ is an isometry up to
a factor

√
2, indeed

||Γ(v)||L2 =

(∫ 1

0

||Γ(v)(t)||2dt
)1/2

=

(∫ 1

0

(∣∣∣∣v(1− t
2

)∣∣∣∣2 +
∣∣∣∣v( t2)∣∣∣∣2)dt)1/2

=

(∫ 1/2

0

(∣∣∣∣v( 1
2 + t

)∣∣∣∣2 +
∣∣∣∣v(t)∣∣∣∣2)2dt

)1/2

=
√

2

(∫ 1

0

||v(t)||2dt
)1/2

=
√

2||v||L2 .

Abbreviate
P(V ) = C∞([0, 1],Sym(V ))

where Sym(V ) denotes the vector space of self-adjoint linear maps with respect to
the inner product ω(·, J ·). Define a map

Γ: P(V )→ P(V ⊕ V )

which associates to S ∈ P(V ) the path of self-adjoint linear maps in V ⊕ V

Γ(S)(t) =
1

2

(
S
(
1− t

2

)
, S
(
t
2

))
.

The operators

AS : W 1,2(S1, V )→ L2(S1, V ), LΓ(S) : W 1,2
∆ ([0, 1], V ⊕ V )→ L2([0, 1], V ⊕ V )

are related by
Γ(ASv) = LΓ(S)Γv, v ∈W 1,2(S1, V ).
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Moreover, v is an eigenvector of AS to the eigenvalue η if and only if Γ(v) is an
eigenvector of LΓ(S) to the eigenvalue η

2 , in consistence with the fact that Γ is an

isometry up to a factor
√

2 checked above. In particular, we have

S(LΓ(S)) =
1

2
S(AS).

We conclude that

max{k : ηk(S) < 0} = max{k : ηk(Γ(S)) < 0}
so that we obtain from Theorem 0.30

µ∆(ΨΓ(S)∆) = max{k : ηk(S) < 0} − dim(V ⊕ V )

2
(113)

= max{k : ηk(S) < 0} − dimV.

Note that the path of symplectomorphisms of V ⊕ V generated from Γ(S) satisfies

ΨΓ(S)(t) =
(
ΨS

(
1− t

2

)
ΨS(1)−1,Ψ

(
t
2

))
, t ∈ [0, 1].

Therefore, if we apply this formula to the diagonal, we obtain

ΨΓ(S)(t)∆ = Γ
ΨS(1)ΨS(1− t2 )−1ΨS(

t
2 )
.

Note that the path of symplectic matrices

t 7→ ΨS(1)ΨS

(
1− t

2

)−1
ΨS

(
t
2

)
, t ∈ [0, 1]

is homotopic with fixed endpoints to the path

t 7→ ΨS(t), t ∈ [0, 1]

via the homotopy

(t, r) 7→ ΨS(1)ΨS

(
1− t(1−r)

2

)−1
ΨS

( t(1+r)
2

)
, (t, r) ∈ [0, 1]× [0, 1].

Consequently, by homotopy invariance of the Maslov index it holds that

(114) µ∆(ΓΨS ) = µ∆(ΨΓ(S)∆).

Combining (113) and (114) we obtain

µCZ(ΨS) = µ∆(ΓΨS ) = max{k : ηk(S) < 0} − dimV.

This finishes the proof of the Theorem. �

The spectral flow theorem is difficult to apply directly since it requires that one
knows the numbering of the eigenvalues. But to obtain this numbering one has to
understand the bifurcation of the eigenvalues during a homotopy. A very fruitful
idea of Hofer, Wysocki and Zehnder [53] is to use the winding number to keep track
of the numbering of the eigenvalues. This only works if the dimension of the sym-
plectic vector space is two since otherwise the winding number cannot be defined,
however in dimension two this idea led to fantastic applications.

We now restrict our attention to the two dimensional symplectic vector space
(C, ω) and consider a smooth path of symmetric 2×2-matrices S ∈ C∞([0, 1],Sym(2)).
Recall the operator

AS : W 1,2(S1,C)→ L2(S1,C), v 7→ −J∂tv − S(t)v.

Suppose that η is an eigenvalue of AS and v is a eigenvector of AS for the eigenvalue
η, i.e.

ASv = ηv.
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This means that v is a solution of the linear first order ODE

−J∂tv = (S + η)v.

Since v as an eigenvector cannot vanish identically it follows from the ODE above
that

v(t) 6= 0 ∈ C, ∀ t ∈ S1.

Hence we get a map

γv : S1 → S1, t 7→ v(t)

||v(t)||
.

We define the winding number of the eigenvector v to be

w(v) := deg(γv) ∈ Z
where deg(γv) denotes the degree of the map γv. The following crucial Lemma of
Hofer, Wysocki and Zehnder appeared in [53].

Lemma 0.31. Assume that v1 and v2 are eigenvectors to the same eigenvalue
η. Then w(v1) = w(v2).

Proof: If v2 is a scalar multiple of v1 the Lemma is obvious. Hence we can
assume that v1 and v2 are linearly independent. Define

v : S1 → C, v(t) = v1(t)v2(t).

It follows that
deg(γv) = deg(γv1

)− deg(γv2
).

It therefore remains to show that

deg(γv) = 0.

This follows from the following Claim.

Claim: v(t) /∈ R, ∀ t ∈ S1.

To prove the Claim we argue by contradiction and assume that there exists t0 ∈ S1

such that
v(t0) ∈ R.

Hence there exists τ ∈ R \ {0} such that

v1(t0) = τv2(t0).

Define
v3 : S1 → C, v3 = v1 − τv2.

Since Av1 = ηv1 and Av2 = ηv2 it follows that

Av3 = ηv3

which implies that v3 is the solution of a linear first order ODE. On the other hand

v3(t0) = v1(t0)− τv2(t0) = 0

and therefore
v3(t) = 0, ∀ t ∈ S1.

By definition of v3 this implies that v1 and v2 are linearly dependent. This contra-
diction proves the Claim and hence the Lemma. �
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As a consequence of Lemma 0.31 we can now associate to every η ∈ S(AS) a
winding number, by

(115) w(η) := w(η, S) := w(v)

where v is any eigenvector of AS to the eigenvalue η. Indeed, Lemma 0.31 tells us
that this is well-defined, independent of the choice of the eigenvector. We refer to
w(η) as the winding number of the eigenvalue η.

Let us examine the case S = 0. In this case A0 = −J∂t, the eigenvalues are
2π` for every ` ∈ Z with corresponding eigenvectors v0e

2πi`t where v0 ∈ C. We
conclude that

(116) w(2π`, 0) = `.

In particular, we see that in the case S = 0 the winding is a monotone function in
the eigenvalue. This is true in general.

Corollary 0.32 (Monotonicity). Assume that S ∈ C∞([0, 1],Sym(2)). Then
the map

w : S(AS)→ Z, η 7→ w(η)

is monotone, i.e.,
η ≤ η′ =⇒ w(η) ≤ w(η′).

Proof: Consider the homotopy r 7→ rS for r ∈ [0, 1]. By (116) the assertion
is true for r = 0. Since the eigenvalues vary continuously under perturbation we
conclude that the assertion of the Corollary is true for every r ∈ [0, 1]. �

By our convention of numbering the eigenvalues we obtain from (116) that

(117) w(η2`) = w(η2`−1) = `− 1, ` ∈ Z.
Define

(118) α(S) := max
{
w(η, S) : η ∈ S(AS) ∩ (−∞, 0)

}
∈ Z

and the parity

(119) p(S) :=

{
0 if ∃ η ∈ S(AS) ∩ [0,∞), α(S) = w(η, S)
1 else.

The spectral flow theorem for two dimensional symplectic vector spaces gives rise
to the following description of the Conley-Zehnder index.

Theorem 0.33. Assume that S ∈ C∞([0, 1],Sym(2)). Then the Conley-Zehnder
index satisfies

µCZ(ΨS) = 2α(S) + p(S).

Proof: In view of Theorem 0.28 if ΨS is non-degenerate the Conley-Zehnder
index is given by

(120) µCZ(ΨS) = max{k : ηk(S) < 0} − 1

and if ΨS is degenerate we use this formula as definition of the Conley-Zehnder
index. By (117) we have

α(S) = w(η2α(S)+1) = w(η2α(S)+2).

Therefore
{η ∈ S(AS) : w(η) = α(S)} = {η2α(S)+1, η2α(S)+2}.
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Since ηk ≤ ηk+1 the definition of α(S) implies that

η2α(S)+1 < 0, η2α(S)+3 ≥ 0.

Therefore, by definition of the parity we get

p(S) =

{
0 if η2α(S)+2 ≥ 0
1 if η2α(S)+2 < 0.

Hence
max{k : ηk(S) < 0} = 2α(S) + 1 + p(S)

and the theorem follows from (120). �





CHAPTER 10

Convexity

Assume that S ⊂ Rn+1 is a closed, connected hypersurface. It follows that we
get a decomposition

Rn+1 \ S = M− ∪M+

into two connected components, where M− is bounded and M+ is unbounded. If
p ∈ S we denote by N(p) the unit normal vector of S pointing into the unbounded
component M+. This leads to a smooth map

N : S → Sn

referred to as the Gauss map which defines an orientation on S. Because TN(p)S
n

and TpS are parallel planes we can identify them canonically so that the differential
of the Gauss map becomes a linear map

dN(p) : TpS → TpS.

The Gauss-Kronecker curvature at p ∈ S is defined as

K(p) := det dN(p).

Note that if n = 2, i.e., S is a two dimensional surface, the Gauss-Kronecker
curvature coincides with the Gauss curvature of the surface which is intrinsic.

We write S as a level set, i.e., we pick f ∈ C∞(Rn+1,R) such that 0 is a regular
value of f and

S = f−1(0).

We choose f in such a way that

M− = {x ∈ Rn+1 : f(x) < 0}, M+ = {x ∈ Rn+1 : f(x) > 0}.
It follows that

N =
∇f
||∇f ||

.

We abbreviate by

Hf (p) : Rn+1 → Rn+1

the Hessian of f at p. We get for a point p ∈ S and two tangent vectors v, w ∈
TpS = ∇f(p)⊥ the equality

〈v, dN(p)w〉 =
1

||∇f(p)||
〈v,Hf (p)w〉.

In particular, if

Πp : Rn+1 → TpS

is the orthogonal projection we can write

dN(p) =
1

||∇f(p)||
ΠpHf (p)|TpS =

1

||∇f(p)||
ΠpHf (p)Π∗p

119
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implying that dN(p) is self-adjoint. We make the following definition

Definition 0.34. S is called strictly convex, if K(p) > 0 for every p ∈ S.

If the hypersurface is written as the level set of a function S = f−1(0) then
for practical purposes it is useful to note that strict convexity is equivalent to the
assertion that

det(ΠpHf (p)|∇f(p)⊥) > 0, ∀ p ∈ S.
However, observe that the notion of convexity only depends on S and not on the
choice of the function f .

Lemma 0.35. S is strict convex if and only if dN(p) is positive definite for
every p ∈ S.

Proof: The implication ”⇐= ” is obvious. It remains to check the implication
” =⇒ ”. Because dN(p) is self-adjoint it follows that dN(p) has n real eigenvalues
counted with multiplicity. If S(dN(p)) ⊂ R is the spectrum of dN(p) define

k : S → R, p 7→ min{r : r ∈ S(dN(p))}
the smallest eigenvalue of dN(p). Then k is a continuous function on S and we
claim

(121) k(p) > 0, ∀ p ∈ S.
We proof (121) in two steps. We first check

Step 1: There exists p0 ∈ S such that k(p0) > 0.

To prove the assertion of Step 1 we denote D(r) = {x ∈ Rn+1 : ||x|| ≤ r} for
r ∈ (0,∞) the closed ball of radius r and set

rS := min{r ∈ (0,∞) : S ⊂ D(r)}.
Because S is compact rS is finite. Moreover, there exists p0 ∈ ∂DrS = SnrS = {x ∈
Rn+1 : ||x|| = rS} the sphere of radius rS such that

kS(p0) ≥ kS
n
rS (p0) =

1

rS
> 0.

This finishes the proof of Step 1.

Step 2: We prove (121).

Because K(p) = det dN(p) > 0 for every p ∈ S it follows that k(p) 6= 0 for ev-
ery p ∈ S. Since S is connected and k is continuous we either have k(p) > 0 for
every p ∈ S or k(p) < 0 for every p ∈ S. By Step 1 we conclude that k(p) > 0 for
every p ∈ S. This establishes (121).

We are now in position to prove the Lemma. Because k(p) > 0 it follows that

S(dN(p)) ∈ (0,∞), ∀ p ∈ S.
Therefore dN(p) is positive definite for every p ∈ S and the Lemma is proved. �

For the following Lemma recall that M− ⊂ Rn+1 denotes the bounded region of
Rn+1 \ S.
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Lemma 0.36. Assume that S is strictly convex. Then M− is convex in the
sense that if x, y ∈ M− and λ ∈ [0, 1] then λx + (1 − λy) ∈ M−, i.e., the line
segment between x and y is contained in M−.

Proof: The assertion of the Lemma is true in any dimension. However, the
proof we present just works if n ≥ 2.

For p ∈ S we introduce the half-space

Hp := {x ∈ Rn+1 : 〈p− x,N(p)〉 > 0}.
We claim

(122) M− =
⋂
p∈S

Hp.

We first check

(123)
⋂
p∈S

Hp ⊂M−.

To prove that we note the following equivalences⋂
p∈S

Hp ⊂M− ⇐⇒ M+ ∪ S = M c
− ⊂

( ⋂
p∈S

Hp

)c
=
⋃
p∈S

Hc
p

⇐⇒ M+ =
⋃
p∈S

{
x ∈ Rn+1 : 〈x− p,N(p)〉 > 0

}
If x ∈M+ choose p0 ∈ S and consider the line segment

[0, 1]→ Rn+1, t 7→ (1− t)p0 + tx.

Define

t0 := max
{
t ∈ [0, 1] : (1− t)p0 + tx ∈ S

}
.

Because x ∈M+ it follows that

t0 < 1.

We set

p := (1− t0)p0 + t0x ∈ S.
Since x ∈M+ it follows that

〈x− p,N(p)〉 > 0.

This establishes (123). Note that for the proof of (123) we did not use yet the
convexity of S. We next check that

(124) M− ⊂
⋂
p∈S

Hp.

We need to show that for every p ∈ S it holds that

M− ⊂ Hp.

For u ∈ Sn = {x ∈ Rn+1 : ||x|| = 1} consider

Fu : Rn+1 → R, x 7→ 〈x, u〉
and abbreviate

fu := Fu|S : S → R
the restriction of Fu to S. We next discuss the critical points of fu. Recall from
the method of Lagrange multipliers that if F : Rn+1 → R is a smooth function
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and f = F |S , then p ∈ critf if and only if there exists λp ∈ R referred to as the
Lagrange multiplier such that

∇f(p) = λpN(p).

Moreover, if Πp : Rn+1 → TpS denotes the orthogonal projection the Hessian of f
at p is given by

Hf (p) =
(
ΠpHF (p)|TpS + λpdN(p)

)
: TpS → TpS.

In the case of our interest we have

∇Fu(p) = u, HFu(p) = 0

and therefore p ∈ critfu if and only if

u = λpN(p)

where

λp = ±1

because ||u|| = ||N(p)|| = 1. Moreover, the Hessian is given by

Hfu(p) = λpdN(p).

Because S is strictly convex Lemma 0.35 tells us that dN(p) is positive definite
for every p ∈ S. Therefore Hfu is either positive definite or negative definite for
every p ∈ S. We have shown that fu : S → R is a Morse function all whose critical
points are either maxima or minima. At this point we need the assumption that
n ≥ 2, i.e., that the dimension of S is at least two. Namely, because S is connected
it follows that in this case fu has precisely one strict maximum and precisely one
strict minimum and no other critical points.

For p ∈ S choose u = N(p). It follows that

p ∈ critfN(p)

with

λp = 1.

Therefore p is the unique strict maximum of fN(p). In particular, for every q ∈
S \ {p} we have

〈q,N(p)〉 = fN(p)(q) < fN(p)(p) = 〈p,N(p)〉
implying that

0 < 〈p,N(p)〉 − 〈q,N(p)〉 = 〈p− q,N(p)〉, ∀ q ∈ S \ {p}.
It follows that

S \ {p} ⊂ Hp

and consequently

M− ⊂ Hp.

This establishes (124) and therefore together with (123) we obtain (122).
In view of (122) the Lemma can now be proved as follows. Note that Hp is

convex for every p ∈ S. Because the intersection of convex sets is convex it follows
that

⋂
p∈S Hp is convex as well. Hence (122) implies the Lemma. �

Suppose that N ⊂ C2 is strictly convex. Because convexity is preserved under
affine transformations we can assume without loss of generality that 0 ∈ M−, the
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bounded part of C2 \N . Therefore by Lemma 0.36 M− is star-shaped. It follows
that the restriction λ|N of the standard Liouville form

λ =
1

2
(x1dy1 − y1dx1 + x2dy2 − y2dx2)

to N is a contact form on S.

The following Theorem appeared in [56]

Theorem 0.37 (Hofer-Wysocki-Zehnder). Assume that N ⊂ C2 is a strictly
convex hypersurface such that 0 lies in the bounded part of C2\N . Then the contact
manifold (N,λ|N ) is dynamically convex where λ is the standard Liouville form on
C.

As preparation for the proof suppose that N ⊂ C2 meets the assumption of
Theorem 0.37. For z ∈ C2 \{0} there exists a unique λz ∈ (0,∞) with the property
that

λzz ∈ N.
Define

FN : C2 \ {0} → R, z 7→ 1

λ2
z

.

It follows that

N = F−1
N (1).

We denote by XFN the Hamiltonian vector field of FN with respect to the standard
symplectic structure ω = dλ on C2 defined implicitly by the condition

dFN = ω(·, XFN ).

Lemma 0.38. For z ∈ N it holds that

XFN (z) = R(z)

where R is the Reeb vector field of (N,λN ).

Proof: For v ∈ TzN we compute

dλ(z)(XFN (z), v) = ωz(XFN , v) = −dFN (z)v = 0

where for the last equality we have used that N = F−1
N (1). It follows that

XFN |N ∈ kerdλ|N .

It remains to show that

λ(XFN )|N = 1.

Note that FN is homogeneous of degree 2, i.e.

FN (rz) = r2FN (z), z ∈ C2 \ {0}, r > 0.

Consequently

(125) dFN (z)z =
d

dr

∣∣∣∣
r=1

FN (rz) = 2rFN (z)
∣∣
r=1

= 2FN (z)

which is known as Euler’s formula. Note further that if z, ẑ ∈ C the equation

(126) λ(z)ẑ =
1

2
ω(z, ẑ)
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holds true. Using (125) and (126) we compute for z ∈ N = F−1
N (1)

λ(z)(XFN (z)) =
1

2
ω(z,XFN (z)) =

1

2
dFN (z)z = FN (z) = 1.

This finishes the proof of the Lemma. �

Suppose that γ ∈ C∞(S1, N) is a periodic Reeb orbit of period τ . Abbreviate
by

φtN : C2 → C2, t ∈ R
the flow of the vector field XFN . Because γ is a periodic Reeb orbit we have in view
of Lemma 0.38 for every t ∈ R

φτtN (γ(0)) = γ(t).

For t ∈ [0, 1] consider the smooth path of symplectic matrices

(127) Ψt
γ := dφτtN (γ(0)) : C2 → C2.

Lemma 0.39. The path Ψt
γ has the following properties

(i): Ψ0
γ = id,

(ii): Ψt
γ satisfies the ODE

∂tΨ
t
γ = JτHFN (γ(t))Ψt

γ ,

where J : C2 → C2 is multiplication by i and HFN is the Hessian of FN
which is positive definite by Lemma 0.35,

(iii): Ψ1
γ

(
R(γ(0))

)
= R(γ(0)) and Ψ1

γ

(
γ(0)

)
= γ(0).

Proof: Properties (i) and (ii) are immediate. To explain why the first equa-
tion of property (iii) holds note that because the Hamiltonian vector field XFN is
autonomous (time independent) its flow satisfies

φs+tN = φtNφ
s
N

and therefore

XFN ◦ φtN =
d

ds

∣∣∣∣
s=0

φs+tN =
d

ds

∣∣∣∣
s=0

φtNφ
s
N = dφtN (XFN ).

Because γ is a periodic Reeb orbit of period τ we have

φτN (γ(0)) = γ(0)

and therefore

R(γ(0)) = XFN (γ(0)) = dφτN (γ(0))
(
XFN (γ(0))

)
= Ψ1

γ

(
R(γ(0))

)
.

This explains the first equation in property (iii).

It remains to check the second equation in property (iii). We first recall that be-
cause FN is homogeneous of degree 2 Euler’s formula (125) holds for every z ∈ C.
Differentiating once more we obtain

d2FN (z)z + dFN (z) = 2dFN (z)

which implies that
d2FN (z)z = dFN (z).

In particular, we have
HFN (z)z = ∇FN (z)



10. CONVEXITY 125

and therefore

(128) JHFN (z)z = J∇FN (z) = XFN (z).

We claim that

(129) dφtN (z)z = φtN (z) ∈ C2, ∀ z ∈ C2.

To check this equation we fix z ∈ C2 and consider the path

w : R→ C2, t 7→ dφtN (z)z − φtN (z).

Note that

(130) w(0) = dφ0
N (z)z − φ0

N (z) = z − z = 0.

Moreover,

d

dt
w(t) =

d

dt
dφtN (z)z − d

dt
φtN (z)(131)

= JHFN (φtN (z))dφtN (z)z −XFN (φtN (z))

= JHFN (φtN (z))dφtN (z)z − JHFN (φtN (z))φtN (z)

= JHFN (φtN (z))(dφtN (z)z − φtN (z))

= JHFN (φtN (z))w(t).

Here we have used in the third equation (128). Combining (130) and (131) we
obtain

w(t) = 0, ∀ t ∈ R.
This proves (129). Setting t = τ and z = γ(0) we obtain

Ψ1
γ

(
γ(0)

)
= dφτN (γ(0))

(
γ(0)

)
= φτN (γ(0)) = γ(0).

This finishes the proof of the Lemma. �

For the next Lemma recall from Lemma 0.9 that if L ∈ Λ the Lagrangian Grass-
mannian we have a canonical identification

TLλ→ S2(L), L̂ 7→ QL̂

where S2(L) are the quadratic forms on L. Recall further that if Ψ ∈ Sp(n) is
a symplectic transformation then its graph ΓΨ is a Lagrangian in the symplectic
vector space (Cn ⊗ Cn,−ω ⊗ ω). We can now state the next Lemma.

Lemma 0.40. Suppose that Ψ: (−ε, ε)→ Sp(n) is a smooth path of symplectic
matrices. Then for

ΓΨ′(0) =
d

dt

∣∣∣∣
t=0

ΓΨ(t) ∈ TΓΨ(0)
Λ(Cn ⊗ Cn,−ω ⊗ ω)

the corresponding quadratic form

QΓΨ′(0) ∈ S2(ΓΨ(0))

is given for (z,Ψ(0)z) ∈ ΓΨ(0) where z ∈ Cn by

QΓΨ′(0)(z,Ψ(0)z) = 〈Ψ(0)z, SΨ0z〉

where

S = −JΨ′(0)Ψ(0)−1.



126 10. CONVEXITY

Proof: We choose as Lagrangian complement of ΓΨ(0) the Lagrangian

Γ−Ψ(0) =
{

(z,−Ψ(0)z) : z ∈ Cn
}
.

If z ∈ Cn and t ∈ (−ε, ε) we define wz(t) ∈ Cn by the condition that(
z,Ψ(0)z

)
+
(
wz(t),−Ψ(0)wz(t)

)
∈ ΓΨ(t)

or equivalently (
z + wz(t),Ψ(0)z −Ψ(0)wz(t)

)
∈ ΓΨ(t).

This implies that

Ψ(t)z + Ψ(t)wz(t) = Ψ(t)(z + wz(t)) = Ψ(0)z −Ψ(0)wz(t).

Differentiating this expression we get

Ψ′(t)z + Ψ′(t)wz(t) + Ψ(t)w′z(t) = −Ψ(0)w′z(t).

Because wz(0) = 0 we obtain from that

Ψ′(0)z + Ψ(0)w′z(0) = −Ψ(0)w′z(0)

implying

w′z(0) = −1

2
Ψ(0)−1Ψ′(0)z.

By definition of the quadratic from we compute taking advantage of the fact that
Ψ(0) is symplectic

QΓΨ′(0)
(
z,Ψ(0)z

)
= −ω ⊕ ω

(
(z,Ψ(0)z), (w′z(0),−Ψ(0)w′z(0)

)
= −ω(z, w′z(0))− ω(Ψ(0)z,Ψ(0)w′z(0))

= −ω(z, w′z(0))− ω(z, w′z(0))

= −2ω(z, w′z(0))

= ω(z,Ψ(0)−1Ψ′(0)z)

= ω(Ψ(0)z,Ψ′(0)z)

= ω(Ψ(0)z, JSΨ(0)z)

= 〈Ψ(0)z, SΨ(0)z〉.

This finishes the proof of the Lemma. �

Corollary 0.41. Assume that Ψ: [0, 1]→ Sp(n) is a smooth path of symplectic
matrices satisfying Ψ′(t) = JS(t)Ψ(t) with S(t) positive definite for every t ∈ [0, 1].
Then the crossing form C(ΓΨ,∆, t) is positive definite for every t ∈ [0, 1].

Proof: Be definition of the crossing form we have

C(ΓΨ,∆, t) = QΓΨ′(t) |∆∩ΓΨ(t)
.

The Corollary follows now from Lemma 0.40 and the assumption that S is positive
definite. �

Corollary 0.42. Assume that N ⊂ C2 is a strictly convex hypersurface and γ
is a periodic Reeb orbit of period τ on N . Then

µ∆(ΓΨγ ) ≥ 3 +
1

2
dim ker

(
dξφτR(γ(0))− id

)
≥ 3
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Proof: Using the definition of the Maslov index for paths (106),Corollary 0.41
and assertion (i) and (iii) in Lemma 0.39 we estimate

µ∆(ΓΨγ ) =
1

2
signC(ΓΨγ ,∆, 0) +

∑
0<t<1

signC(ΓΨγ ,∆, t) +
1

2
signC(ΓΨγ ,∆, 1)

=
1

2
dim

(
∆ ∩ ΓΨγ (0)

)
+
∑

0<t<1

dim
(
∆ ∩ ΓΨγ (t)

)
+

1

2
dim

(
∆ ∩ ΓΨγ (1)

)
=

1

2
dim

(
∆
)

+
∑

0<t<1

dim
(
∆ ∩ ΓΨγ (t)

)
+

1

2

(
2 + dim ker

(
dξφτR(γ(0))− id

))
= 3 +

∑
0<t<1

dim
(
∆ ∩ ΓΨγ (t)

)
+

1

2
dim ker

(
dξφτR(γ(0))− id

)
≥ 3 + dim ker

(
dξφτR(γ(0))− id

)
.

This proves the Corollary. �

Proof of Theorem 0.37: It follows Lemma 0.36) that N bounds a star-shaped
domain. Therefore N is diffeomorphic to the sphere S3. In particular, π2(N) = {0}
and therefore the homomorphism Ic1 : π2(N)→ Z vanishes for trivial reasons. As-
sume that γ is a periodic orbit on N of period τ . Because N is simply connected
γ is contractible so that we can choose a filling disk for γ, i.e., a smooth map
γ : D → N ⊂ C2 satisfying γ(e2πit) = γ(t) for every t ∈ S1. Note that the vector
bundle γ∗C2 → D splits as

(132) γ∗C2 = γ∗ξ ⊕ γ∗η

where we abbreviate

η = 〈X,R〉
where the vector field X is defined as

X(x) = x, x ∈ C2.

Note that we have a canonical trivialization

Tη : γ∗η → D × C, aX + bR 7→ a+ ib, a, b ∈ R.

It follows from Lemma 0.38 and Lemma 0.39 that the map Ψt
γ : C2 → C2 for

t ∈ [0, 1] respects the splitting (132), i.e.

Ψt
γ : ξγ(0) → ξγ(t), Ψt

γ : ηγ(0) → ηγ(t).

Indeed, we have

Ψt
γ |ξ = dξφtτR (γ(0))

and

Tη,γ(t)Ψ
t
γT
−1
η,γ(0) = id: C→ C.

Choose in addition a symplectic trivialization

Tξ : γ∗ξ → D × C.
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Hence we obtain a symplectic bundle map

T := Tξ ⊕ Tη : D × C2 → D × C2.

Because the disk D is contractible the map T is homotopic as a bundle map to
the identity map from D × C2 to itself. In particular, if we introduce the path of
symplectic matrices

ΨT
γ : [0, 1]→ Sp(2)

defined for t ∈ [0, 1] as

(ΨT
γ )t = Tγ(t)Ψ

t
γT
−1
γ(0) : C2 → C2

we obtain by homotopy invariance of the Maslov index and Corollary 0.42

(133) µ∆(ΓΨT
γ

) = µ∆(ΓΨγ ) ≥ 3 + dim ker
(
dξφτR(γ(0))− id

)
.

If (V1, ω1) and (V2, ω2) are two symplectic vector spaces, L1 ⊂ V1, L2 ⊂ V2 are
Lagrangian subspaces, λ1 : [0, 1] → Λ(V1, ω1) is a path of Lagrangians in V1, and
λ2 : [0, 1]→ Λ(V2, ω2) is a path of Lagrangians in V2 we obtain a Lagrangian

L1 ⊕ L2 ⊂ V1 × V2

and a path of Lagrangians

λ1 ⊕ λ2 : [0, 1]→ Λ(V1 ⊕ V2, ω1 ⊕ ω2).

The Maslov index satisfies

µL1⊗L2
(λ1 ⊕ λ2) = µL1

(λ1) + µL2
(λ2).

In view of the splitting

ΨT
γ = ΨT

γ |ξ ⊕ΨT
γ |η

we obtain

(134) µ∆(ΓΨT
γ

) = µ∆(ΓΨT
γ |ξ) + µ∆(ΓΨT

γ |η ).

Because ΨT
γ |η(t) = id for every t ∈ [0, 1] we conclude that

(135) µ∆(ΓΨT
γ |η ) = 0.

Combining (133), (134), and (135) we obtain the inequality

(136) µ∆(ΓΨT
γ |ξ) ≥ 3 + dim ker

(
dξφτR(γ(0))− id

)
.

We distinguish two cases

Case 1: The periodic orbit γ is non-degenerate.

In this case it follows from Definition of the Conley-Zehnder index that

µCZ(γ) = µ∆(ΓΨT
γ |ξ).

It now follows from (136) that

µCZ(γ) ≥ 3.

Case 2: The periodic orbit γ is degenerate.

In this case we consider for ε > 0 a smooth path of symplectic matrices Ψε : [0, 1 +
ε] → Sp(1) with the property that Ψε(t) = ΨT

γ |ξ(t) for every t ∈ [0, 1] and there
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are no further crossings of ΓΨε with the closure of the Maslov pseudo-cocycle Λ1
∆

in (1, 1 + ε]. It follows from the definition of the Maslov index for paths that

µ∆(ΓΨε) = µ∆(ΓΨT
γ |ξ) +

1

2
signC(ΓΨT

γ |ξ ,∆, 1)(137)

= µ∆(ΓΨT
γ |ξ) +

1

2
dim ker

(
dξφτR(γ(0))− id

)
≥ 3 +

1

2
dim ker

(
dξφτR(γ(0))− id

)
+

1

2
dim ker

(
dξφτR(γ(0))− id

)
= 3 + dim ker

(
dξφτR(γ(0))− id

)
.

Here we have used in the second equation Lemma 0.40 together with the assumption
that N is strictly convex and for the inequality we used (136). Because the path
ΓΨε is non-degenerate we have by Definition of the Conley-Zehnder index

(138) µ∆(ΓΨε) = µCZ(Ψε).

In view of the continuity of eigenvalues we have

µCZ(ΨT
γ ) ≥ lim

ε→0
µCZ(Ψε)− dim ker

(
AΨT

γ

)
(139)

= µCZ(Ψε)− dim ker
(
dξφτR(γ(0))− id

)
≥ 3 + dim ker

(
dξφτR(γ(0))− id

)
− dim ker

(
dξφτR(γ(0))− id

)
= 3

where for the second inequality we have used (137) and (138). Because µCZ(γ) =
µCZ(ΨT

γ ) inequality (139) finishes the proof of the theorem. �

0.1. Connected sum revisited: Hamiltonian flow near a critical point
of index 1. In this section we will see how a connected sum can give a dynamical
obstruction to convexity.

Consider a symplectic manifold (M4, ω) with Hamiltonian H : M → R. We
consider a non-degenerate critical point q0 of index 1, so we can write

H(x) = Q(x, x) +R(x),

where R(x) = o(|x|2), so limx→0
R(x)
|x|2 = 0.

We first investigate the Hamiltonian HQ : x 7→ Q(x, x), and then argue that
the results continue to hold qualitatively when R is sufficiently small.

Lemma 0.43. We consider a quadratic Hamiltonian HQ with a non-degenerate
critical point of index 1. Fix c > 0. Then every level set HQ = c has a unique simple
periodic orbit γc (up to reparametrization). This periodic orbit is transversely non-
degenerate and its Conley-Zehnder index equals 2.

Proof. By Proposition 6.1, we can find symplectic coordinates such that HQ

has the form

(ξ1, ξ2; η1, η2) 7−→ −2aη1η2 + b(ξ2
1 + ξ2

2)

with a, b > 0. The symplectic form is given by dη1 ∧ dη2 + dξ1 ∧ dξ2, so the
Hamiltonian vector field is given by

XHQ = 2a∂η1
− 2a∂η2

+−bξ2∂ξ1 + bξ1∂ξ2 .
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This is linear, so we obtain its time-t flow by exponentiating

φtHQ(η1, η2; ξ1, ξ2) =


e2at 0 0 0

0 e−2at 0 0
0 0 cos(bt) − sin(bt)
0 0 sin(bt) cos(bt)




η1

η2

ξ1
ξ2

 .

Clearly, if η1 or η2 at time t = 0 are non-zero, then the solution cannot be periodic:
|η1| is strictly increasing when non-zero and |η2| is strictly decreasing when non-
zero. This leaves initial conditions with η1 = η2 = 0. The solution is clearly
periodic in the latter case with period 2π/b. If we fix sc = (0, 0;

√
c
b , 0) as initial

point, then we find

γc(t) =

√
c

b
(0, 0; cos(bt), sin(bt).

To see that this orbit is transversely non-degenerate, we note that

TscΣc = span((1, 0, 0, 0), (0, 0, 1, 0), XH(sc)).

The linearized time-t = 2π/b flow sends (1, 0, 0, 0) 7→ (e4πa/b, 0, 0, 0) and (0, 1, 0, 0) 7→
(0, e−4πa/b, 0, 0), which clearly does not have any eigenvalue equal to 1.

That leaves the Conley-Zehnder index. Rather than explicitly trivializing the
contact structure over a disk, we use the following standard trick. First note that
the linearized flow extends to a path of symplectic matrices on (R4, ω0). Namely,
with respect to the standard symplectic basis of R4 we have

ψR4 : t 7−→


e2at 0 0 0

0 e−2at 0 0
0 0 cos(bt) − sin(bt)
0 0 sin(bt) cos(bt)

 .

For later use, let us call the path of abstract (not depending on basis) linear sym-
plectic maps the extended linearized flow and denote this path by ψ. Note each
symplectic matrix ψR4(t) has the direct sum decomposition

ψR4(t) =

(
e2at 0

0 e−2at

)
⊕
(

cos(bt) − sin(bt)
sin(bt) cos(bt)

)
.

We compute the Maslov index of the former path with the crossing formula. There
is only one crossing at t = 0, and its signature is zero, so we have

µ(

(
e2at 0

0 e−2at

)
, t = 0, . . . , 2π/b) =

1

2
· 0.

We use the following lemma to compute the Maslov index of the latter path.

Lemma 0.44. Consider a path of symplectic matrices of the form

Φ : t 7−→
(

cos(t) − sin(t)
sin(t) cos(t)

)
with t ranging from 0 to T . Then

µ(Φ) = b T
2π
c+ d T

2π
e.
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Proof. We use the crossing formula to compute the index. First note that
there are crossings at every integer multiple of 2π. At each crossing the crossing
form is defined on all of R2 and we have

signω0(·, d
dt

Φ·) = signω0(·, J0·) = 2,

so every interior crossing, meaning a crossing t with t ∈]0, T [, gives a contribution
of 2, and the crossings at t = 0 and t = T (if there is one) contribute 1. We now
count the crossings.

First we assume that T is not divisible by 2π. Then the number of interior
crossings equals bT/2πc. There is a crossing at t = 0, and none at t = T , so

µ(Φ) = 1 + 2 · bT/2πc = bT/2πc+ dT/2πe.
To see the last step, we just need to observe that bT/2πc is 1 smaller than dT/2πe
since T is not divisible by 2π. The case when T is divisible by 2π can be handled
similarly by taking care of an additional crossing at the end of the path of symplectic
matrices. �

Applying this lemma we find that µ(ψR4) = 2.
On the other hand, we want to compute the Conley-Zehnder index. Take a

spanning disk dc : D2 → Σc capping off γc. Choose a symplectic trivialization εξ
of the contact structure ξ along the disk dc(D

2). Furthermore, we fix the following
symplectic trivialization of the symplectic complement of ξ in TR4 with respect to
ω0,

εξω0 : D2 × R2 −→ d∗cξ
ω0

(z; a1, a2) 7−→ (dc(z); (Z ◦ dc(z), R ◦ dc(z)).
Here Z and R are the Liouville and Reeb vector field, respectively.

We write ψ with respect to the trivialization εξ ⊕ εξω0 , and obtain a path of
symplectic matrices

ψξ ⊕ ψξω0 .

Since c1(TR4) = 0, the Maslov index of the extended linearized flow ψ does not
depend on the choice of the trivialization of TR4 along dc(D

2), so we see that

µ(ψξ ⊕ ψξω0 ) = µ(ψR4) = 2.

On the other hand, we know by the direct sum axiom that

µ(ψξ ⊕ ψξω0 ) = µ(ψξ) + µ(ψξω0 ).

We compute the effect of extended linearized flow ψ on vector fields Z and R. We
find

TφtHQZ ◦ γc(0) = Z ◦ γc(t), and TφtHQR ◦ γc(0) = R ◦ γc(t),
which means that ψξω0 is the constant path. A constant path of symplectic matrices
has vanishing Maslov index, so knowing that γc is non-degenerate, we conclude that

2 = µ(ψξ ⊕ ψξω0 ) = µ(ψξ) + µ(ψξω0 ) = µ(ψξ) = µCZ(ψξ) = µCZ(γc).

�
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γcη1

η2

ξ

Figure 1. Orbits in the tube



CHAPTER 11

Finite energy planes

1. Holomorphic planes

We assume in this section that (N,λ) is a closed, oriented 3-dimensional positive
contact manifold, i.e., the contact form λ ∈ Ω1(N) satisfies

λ ∧ dλ > 0

, or in other words λ ∧ dλ is a volume form on N inducing the given orientation.
The hyperplane distribution

ξ = kerλ ⊂ TN
is referred to as the contact structure. The Reeb vector field R ∈ Γ(TN) is implicitly
defined by the conditions

λ(R) = 1, ιRdλ = 0.

The line bundle 〈R〉 over N spanned by the Reeb vector field together with ξ leads
to a splitting

TN = ξ ⊕ 〈R〉
of the tangent bundle of N . By abuse of notation we extend the contact form λ to
a one form λ ∈ Ω1(N × R) which at a point (p, r) ∈ N × R is given by

λp,r = erλp.

Its differential ω = dλ is a symplectic form for N × R. At a point (p, r) it is given
by

ωp,r = erdλp + erdr ∧ λp.
The noncompact symplectic manifold (N × R, ω) is called the symplectization of
the contact manifold (N,λ). The vector field ∂r is a Liouville vector field on the
symplectization, indeed, the Lie derivative of ω with respect to ∂r is given by
Cartan’s formula by

L∂rω = dι∂rω + ι∂rdω = dλ = ω

where we used ι∂rω = λ and dω = 0. By abuse of notation we extend the Reeb
vector field to Γ(N ×R) by

R(p, r) = R(p) ∈ TpN ⊂ TpN × R = T(p,r)(N × R), (p, r) ∈ N × R.

Similarly we extend the rank-2 bundle ξ ⊂ TN to a rank-2 subbundle ξ ⊂ T (N×R)
by

ξ(p,r) = ξp ⊂ TpN ⊂ TpN × R ⊂ T(p,r)(N × R).

We have the splitting

(140) T (N × R) = ξ ⊕ 〈∂r, R〉.
Note that this splitting is symplectic, i.e., both subbundles are symplectic subbun-
dles of TN and they are symplectically orthogonal to each other. Moreover, the

133
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symplectic form on ξ is up to the conformal factor er just the restriction of dλ to
ξ. Choose J ∈ End(ξ) a dλ-compatible almost complex structure on ξ invariant
under the natural R-action

R×N × R→ N × R, (s, p, r) 7→ (p, s+ r).

Again by abuse of notation we extend J to an ω-compatible almost complex struc-
ture on T (N × R) given for v ∈ ξ and a, b ∈ R by

J(v + a∂r + bR) = Jv − b∂r + aR.

Note that the extension is still R-invariant and respects the symplectic splitting
(140). We refer to such an almost complex structure J ∈ End(T (N × R)) as an
SFT-like almost complex structure. Here SFT stands for Symplectic Field theory
[31].

We now fix an SFT-like almost complex structure J on T (N×R). A (parametrized)
holomorphic plane

ũ : C→ N × R
is a solution of the following nonlinear Cauchy-Riemann equation

(141) ∂xũ+ J(ũ)∂yũ = 0

where z = x + iy. Recall that the group of direct similitudes is the semidirect
product

Σ = C∗ nC
with multiplication defined as

(ρ1, τ1)(ρ2, τ2) = (ρ1ρ2, ρ1τ2 + τ1).

It acts on C by

(ρ, τ)z = ρz + τ, (ρ, τ) ∈ C∗ nC, z ∈ C.

Geometrically this amounts to a combination of a rotation, a translation, and a
dilation of C. Every biholomorphism of C to itself is of this form. The group of
direct similitudes acts on solutions of (141) by reparametrization

(ρ, τ)∗ũ(z) = ũ(ρz + τ).

Note that this is actually a right action. We refer to an equivalence class [ũ] of
a holomorphic plane ũ under the action of the group of direct similitudes as an
unparametrized holomorphic plane.

While the group of direct similitudes acts on the domain of a holomorphic plane
there is an action of the group R on the target as well. For a holomorphic plane
write

ũ = (u, a), u : C→ N, a : C→ R.
Because the SFT-like almost complex structure J is R-invariant it follows that for
a solution ũ of (141) and r ∈ R the map

r∗(u, a) = (u, a+ r) : C→ N × R

is still a solution of (141). Note that the actions of the group Σ and R on solution
of (141) commute so that we obtain an action of the group Σ × R on solutions of
(141). In particular, the group R still acts on unparametrized holomorphic planes.
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2. The Hofer energy of a holomorphic plane

In order to describe the energy of a holomorphic curve we abbreviate

Γ := {φ ∈ C∞(R, [0, 1]) : φ′ ≥ 0}.

For φ ∈ Γ we define λφ ∈ Ω1(N × R) by

λφ(p,r) = φ(r)λp (p, r) ∈ N × R.

The following notion of energy of a holomorphic plane is due to Hofer [51]

(142) E(ũ) := sup
φ∈Γ

∫
C
ũ∗dλφ.

Note that the energy is invariant under the action of Σ × R on solutions of (141).
For the R-action this follows from the fact that R acts on Γ as well by

r∗φ(s) = φ(s− r), s ∈ R

for r ∈ R and φ ∈ Γ. The following lemma tells us that the energy of a holomorphic
plane is never negative.

Lemma 2.1. Assume that ũ is a solution of the nonlinear Cauchy-Riemann
equation (141). Then its energy satisfies

E(ũ) ∈ [0,∞].

Moreover, E(ũ) = 0 if and only if ũ is constant.

Proof: Pick φ ∈ Γ. At a point (p, r) ∈ N × R the exterior derivative of λφ is
given by

dλφ(p,r) = φ(r)dλp + φ′(r)dr ∧ λp.
Abbreviate by

π : TN → ξ

the projection along 〈R〉. By definition of the Reeb vector field we obtain

∂xu = π∂xu+ λ(∂xu)R

and therefore

∂xũ = π∂xu+ λ(∂xu)R+ ∂xa∂r.

Using (141) we conclude

∂yũ = J∂xũ = Jπ∂xu+ ∂xaR− λ(∂xu)∂r.

Putting this together we end up with the formula

(143) dλφ(∂xũ, ∂yũ) = φ(a)dλ(π∂xu, Jπ∂xu) + φ′(a)
(
(∂xa)2 + (λ(∂xu))2

)
.

Since the restriction of J to ξ is dλ-compatible it follows that dλ(π∂xu, Jπ∂xu) ≥ 0.
By definition φ(a) ≥ 0 and φ′(a) ≥ 0 so that it holds that

dλφ(∂xũ, ∂yũ) ≥ 0.

We showed that ∫
C
ũ∗dλφ ≥ 0, ∀ φ ∈ Γ

and therefore

E(ũ) ≥ 0.
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Now assume that ũ is not constant. That means that there exists z ∈ C such that

dũ(z) 6= 0.

Since ũ satisfies the Cauchy Riemann equation (141) it follows that

∂xũ(z) 6= 0.

It follows from (143) that we can choose φ ∈ Γ such that

dλφ(∂xũ, ∂yũ)(z) > 0.

Hence the energy satisfies
E(ũ) > 0.

This finishes the proof of the Lemma. �

The following Definition is due to Hofer [51].

Definition 2.2. A holomorphic plane ũ : C → N × R is called a finite energy
plane if

0 < E(ũ) <∞.

The motivation of Hofer to study finite energy planes came from its close re-
lation to the Reeb dynamics on the contact manifold (N,λ). In the following let
S1 = R/Z be the circle and R+ = {r ∈ R : r > 0} the positive real numbers. Recall
from Section 1 the following definition.

Definition 2.3. A (parametrized) periodic orbit of the Reeb vector field R is
a loop γ ∈ C∞(S1, N) for which there exists τ ∈ R+ such that the tuple (γ, τ) is a
solution of the problem

∂tγ(t) = τR(γ(t)), t ∈ S1.

Because γ is parametrized the positive number τ = τ(γ) is uniquely determined
by γ and is referred to as the period of γ. The following Theorem is due to Hofer.
To state it we introduce the following notation. If u : C→ N is a smooth maps and
s ∈ R we abbreviate

us : S1 → N, t 7→ u(e2π(s+it)).

Theorem 2.4. Assume that ũ = (u, a) : C → N × R is a finite energy plane.
Then there exists a periodic Reeb orbit γ and a sequence sk → ∞ such that the
sequence usk converges in the C∞-topology to γ.

For a proof of this fundamental theorem also referred to as the main result of
finite energy planes we refer to [51, Theorem 31] or [1, Chapter 3]. The original
interest in this result came from the fact that it enabled Hofer in [51] to deduce
from it the Weinstein conjecture for a broad class of three dimensional contact
manifolds. The Weinstein conjecture [107] asks if every closed contact manifolds
admits a periodic Reeb orbit. The paper by Hofer [51] was one of the important
breakthroughs concerning this conjecture. Later on Taubes [105] proved the Wein-
stein conjecture in dimension three completely using quite different methods than
finite energy planes, namely Seiberg-Witten invariants. In higher dimensions the
conjecture is still open in general, we refer to the paper by Albers and Hofer [7] and
the literature cited therein for partial progress in higher dimensions. The question
how far the Weinstein conjecture generalizes to noncompact manifolds is an active
topic of research as well. The interested reader might consult the paper by Berg,
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Pasquotto, and Vandervorst [15] or the paper by Suhr and Zehmisch [102]. An
intriguing point is that without the contact condition the conjecture might fail for
a general Hamiltonian system, see the paper by Ginzburg and Gürel [41] and the
literature cited therein.

3. The Omega-limit set of a finite energy plane

Theorem 2.4 does not claim that the asymptotic periodic Reeb orbit γ is unique.
Although we are not aware of an explicit example it is conceivable that asymptot-
ically a finite energy plane starts spiraling around a whole family of periodic Reeb
orbits. Let us introduce the Omega-limit set Ω(u) of the finite energy plane ũ as
follows. Namely Ω(u) consists of all periodic Reeb orbits γ for which there exists
a sequence sk going to infinity such that usk converges to γ in the C∞-topology.
Note that

Ω(u) ⊂ C∞(S1, N)

and we topologize it as a subset of the free loop space of N . As the notation suggest
Ω(u) only depends on the projection of the finite energy plane ũ to N . In particular,
the Omega-limit set is invariant under the R-action on finite energy planes. Hofer’s
theorem tells us that the Omega-limit set is never empty.

Lemma 3.1. Assume that ũ = (u, a) is a finite energy plane. Then its Omega-
limit set Ω(u) is compact and connected.

Proof: To prove the lemma we use a statement stronger then the one provided
by Theorem 2.4. Namely for a given sequence sk going to infinity there exists a
subsequence skj and a periodic Reeb orbit γ such that uskj converges to γ. However,
this improved statement can be shown along the same lines as Theorem 2.4, see [1,
Theorem 6.4.1]. Armed with this fact we are in position to prove the Lemma.

We first show that Ω(u) is compact. The free loop space C∞(S1, N) is metriz-
able. Therefore it suffices to show that Ω(u) is sequentially compact. Choose a
metric d on C∞(S1, N) which induces the given topology of the free loop space.
Let γν for ν ∈ N be a sequence in Ω(u). Since γν ∈ Ω(u) for every ν ∈ N there
exists a sequence {sνk}k∈N going to infinity with the property that

lim
k→∞

us
ν
k = γν .

Set k1 := 1 and define inductively for ν ∈ N

kν+1 := min

{
k : sν+1

k ≥ sνkν + 1, d
(
us

ν+1
k , γν+1

)
≤ 1

ν + 1

}
.

For ν ∈ N define

σν := sνkν .

It follows by construction that the sequence σν goes to infinity. By the improved
version of Hofer’s theorem discussed above there exists a subsequence νj and a
periodic Reeb orbit γ such that

lim
→∞

uσνj = γ.

We claim that

(144) lim
j→∞

γνj = γ.
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To see that pick ε > 0. Choose j0 = j0(ε) with the property that

νj0 ≥
2

ε
, d(uσνj , γ) ≤ ε

2
, ∀ j ≥ j0.

We estimate for every j ≥ j0

d
(
γνj , γ

)
≤ d
(
uσνj , γνj

)
+ d
(
uσνj , γ

)
≤ 1

νj
+
ε

2
≤ 1

νj0
+
ε

2
≤ ε.

This proves (144) and hence Ω(u) is compact.
It remains to show that Ω(u) is connected. We assume by contradiction that

Ω(u) is not connected and hence can be written as

Ω(u) = Ω1(u) ∪ Ω2(u)

where both Ω1(u) and Ω2(u) are nonempty, open and closed subsets of Ω(u) sat-
isfying Ω1(u) ∩ Ω2(u) = ∅. Since we already know that Ω(u) is compact the
sets Ω1(u) and Ω2(u) are compact as well and therefore there exist open sets
V1, V2 ∈ C∞(S1, N) with the property that

V1 ∩ V2 = ∅, Ω1(u) ⊂ V1, Ω2(u) ⊂ V2.

Since Ω1(u) and Ω2(u) are nonempty there exist γ1 ∈ Ω1(u) and γ2 ∈ Ω2(u). By
definition we can find sequences s1

k and s2
k going to infinity such that

lim
k→∞

us
1
k = γ1, lim

k→∞
us

2
k = γ2.

Set k1 = 1 and define inductively for ν ∈ N

kν+1 :=

{
min

{
k : s2

k > s1
kν

}
ν odd

min
{
k : s1

k > s2
kν

}
ν even.

Note that the sequence kν goes to infinity. For any ν consider the path

[skν , skν+1 ]→ C∞(S1, N), s 7→ us.

One of the endpoints of this path lies in Ω1(u) while the other one lies in Ω2(u).
Therefore there exists σν ∈ [skν , skν+1] with the property that

uσν ∈ C∞(S1, N) \ (V1 ∩ V2).

Observe that the sequence σν goes to infinity since skν goes to infinity. By the
improved version of Hofer’s theorem there exists a subsequence νj and a periodic
Reeb orbit such that

lim
j→∞

uσνj = γ.

By definition of the Omega-limit set we have

γ ∈ Ω(u).

On the other hand V1 and V2 were open subsets of the free loop space of N and
therefore

γ ∈ C∞(S1, N) \ (V1 ∪ V2) ⊂ C∞(S1, N) \ (Ω1(u) ∪ Ω2(u)) = C∞(S1, N) \ Ω(u).

This contradiction shows that Ω(u) is connected and the lemma is proved. �

There is a free action of the group S1 on the set of parametrized periodic Reeb
orbits by time-shift. Indeed, if γ ∈ C∞(S1, N) is a periodic Reeb orbit and r ∈ R/Z
the loop r∗γ defined as

r∗γ(t) = γ(r + t), t ∈ S1
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is again a periodic Reeb orbit. We refer to an orbit of this action as an un-
parametrized Reeb orbit, namely

Definition 3.2. An unparametrized Reeb orbit [γ] = {r∗γ : r ∈ S1} is an
equivalence class of a parametrized Reeb orbit γ under the equivalence relation given
by time-shift.

We say that a periodic Reeb orbit γ is isolated if [γ] is isolated in the space
of unparametrized loops C∞(S1, N)/S1. Note that a parametrized Reeb orbit can
never be isolated in the free loop space C∞(S1, N) since it always comes in a circle
family. If an isolated periodic Reeb orbit γ lies in the Omega-limit set of a finite
energy plane ũ = (u, a) it follows from Lemma 3.1 that

Ω(u) ⊂ [γ].

Therefore we abbreviate for an isolated periodic Reeb orbit γ

(145) M̂(γ) := M̂([γ]) :=
{
ũ = (u, a) finite energy plane, Ω(u) ⊂ [γ]

}
the moduli space of finite energy planes asymptotic to the unparametrized periodic
orbit [γ]. Recall that the group of direct similitudes Σ = C∗nC acts on finite energy
planes by reparametrization. If (ρ, τ) ∈ Σ with ρ = |ρ|e2πiθ ∈ C∗ and ũ = (u, a) is
a finite energy plane it follows that

Ω((ρ, τ)∗u) = θ∗Ω(u).

We conclude that the moduli space M̂(γ) is invariant under the action of Σ and
we abbreviate by

M(γ) := M̂(γ)/Σ

the moduli space of unparametrized finite energy planes asymptotic to [γ]. Note
that since the R-action on finite energy planes given by r∗(u, a) = (u, a + r)
commutes with the Σ-action we still have a R-action on the moduli space of un-
parametrized finite energy planes.

4. Non-degenerate finite energy planes

The situation becomes much nicer if we assume that the periodic Reeb orbit is
non-degenerate. To explain this notion let us abbreviate by φtR : N → N for t ∈ R
the flow of the Reeb vector field on N defined by

φ0
R = id,

d

dt
φtR(x) = R(φtR(x)), x ∈ N, t ∈ R.

Note that the contact form λ is invariant under the Reeb flow. Indeed, the Lie
derivative of λ with respect to R computes by Cartan’s formula to be

LRλ = ιRdλ+ dιRλ = 0

by the defining equation for the Reeb vector field. It follows that the differential of
the Reeb flow

dφtR(x) : TxN → TφtR(x)N

keeps the hyperplane distribution ξ = kerλ invariant so that we can define

dξφtR(x) : ξx → ξφtR(x), dξφtR(x) := dφtR(x)|ξx .

Again by the fact that λ and therefore dλ as well are invariant under the Reeb flow
we conclude that the map dξφtR(x) is a linear symplectic map from the symplectic
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vector space (ξx, dλ) to the symplectic vector space (ξφtR(x), dλ). In particular, if γ
is a periodic Reeb orbit of period τ we obtain a symplectic map

dξφτR(γ(0)) : ξγ(0) → ξγ(0).

Definition 4.1. A periodic Reeb orbit γ of period τ is called non-degenerate if

det(dξφτR(γ(0))− id) 6= 0.

Note that if γ is non-degenerate and [r] ∈ S1 = R/Z the reparametrized pe-
riodic orbit [r]∗γ is still non-degenerate. Indeed, since φtR is a flow we have the
relation

dξφτR(γ(r)) = dξφτr(γ(0))dξφτ (γ(0))dξφτr(γ(0))−1.

Therefore it makes sense to talk about a non-degenerate unparametrized periodic
orbit.

Definition 4.2. A finite energy plane ũ = (u, a) is called non-degenerate, if
there exists a non-degenerate periodic orbit γ such that γ ∈ Ω(u).

A non-degenerate periodic orbit γ is isolated and therefore by Lemma 3.1 it
holds that Ω(u) ⊂ [γ]. However, more can be shown [54]

Lemma 4.3. Assume that ũ = (u, a) is a non-degenerate finite energy plane,
then Ω(u) = {γ}, i.e., the Omega-limit set of a non-degenerate finite energy plane
consists of a unique parametrized non-degenerate periodic orbit.

How a non-degenerate finite energy plane converges to its by the above Lemma
unique asymptotic orbit has been described quite precisely by Hofer, Wysocki, and
Zehnder in [54]. We discuss this in the next section.

5. The asymptotic formula

Assume that γ ∈ C∞(S1, N) is a periodic Reeb orbit and J is an SFT-like
almost complex structure. Denote by Γ1,2(γ∗ξ) the Hilbert space of W 1,2-sections
in ξ and by Γ0,2(γ∗ξ) the Hilbert space of L2-sections in ξ. Consider the bounded
linear operator

Aγ := Aγ,J : Γ1,2(γ∗ξ)→ Γ0,2(γ∗ξ)

which for w ∈ Γ1,2(γ∗ξ) is given by

Aγ(w)(t) = −J(γ(t))dξφtτR (γ(0))∂t

(
dξφ−tτR (γ(t))w(t)

)
, t ∈ [0, 1].

Suppose that
T : γ∗ξ → S1 × C

is a unitary trivialization, i.e., an orthogonal trivialization, where orthogonality
refers to the bundle metric ω(·, J ·) on ξ and the standard inner product on C,
which interchanges multiplication by J on γ∗ξ with multiplication by i on C. The
trivialization T gives rise to a Hilbert space isomorphism

ΦT : Γ1,2(γ∗ξ)→W 1,2(S1,C), w 7→ Tw

which extends to a Hilbert space isomorphism

ΦT : Γ0,2(γ∗ξ)→ L2(S1,C)

by the same formula. Hence we obtain an operator

(146) AT
γ := ΦTAγΦ−1

T : W 1,2(S1,C)→ L2(S1,C).
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To describe AT
γ we write J0 for the standard complex structure on C given by

multiplication with i. For t ∈ [0, 1] we further abbreviate

Ψ(t) := Tγ(t)d
ξφtτR (γ(0))T−1

γ(0) ∈ Sp(1)

as well as

S(t) = −J0∂tΨ(t)Ψ(t)−1 ∈ Sym(2).

Assume v ∈W 1,2(S1,C) and t ∈ [0, 1]. We compute

(AT
γ )v(t) = −Tγ(t)J(γ(t))dξφtτR (γ(0))∂t

(
dξφ−tτR (γ(t))T−1

γ(t)v(t)
)

= −J0Tγ(t)d
ξφtτR (γ(0))∂t

(
dξφ−tτR (γ(t))T−1

γ(t)v(t)
)

= −J0Tγ(t)d
ξφtτR (γ(0))T−1

γ(0)∂t

(
Tγ(0)d

ξφ−tτR (γ(t))T−1
γ(t)v(t)

)
= −J0Ψ(t)∂t

(
Ψ(t)−1v(t)

)
= −J0∂tv(t) + J0∂tΨ(t)Ψ(t)−1v(t)

= −J0∂tv(t)− S(t)v(t).

That means that

AT
γ = AS

where AS is the operator defined in (109). Since the operator Aγ is conjugated
to the operator AT

γ it has the same spectral properties as AS , in particular, its
spectrum is discrete and consists of real eigenvalues of finite multiplicity.

The following notion is due to Siefring [100].

Definition 5.1. Assume that ũ is a non-degenerate finite energy plane with
asymptotic orbit γ of period τ and U : [R,∞) × S1 → γ∗ξ is a smooth map such
that U(s, t) ∈ ξγ(t) for all (s, t) ∈ [R,∞) × S1. The map U is called an asymp-

totic representative, if there exists a proper embedding φ : [R,∞) × S1 → R × S1

asymptotic to the identity such that

ũ(eφ(s,t)) = (expγ(t)U(s, t), τs)

where exp is the exponential map of the restriction of the metric ω(·, J ·) to N =
N × {0} ⊂ N × R.

The following result is due to Mora [85] based on previous work by Hofer,
Wysocki, and Zehnder [54].

Theorem 5.2. Assume that ũ is a non-degenerate finite energy plane with
asymptotic orbit γ. Then ũ admits an asymptotic representative. Moreover, there
exist a negative eigenvalue η of Aγ and an eigenvector ζ of Aγ to the eigenvalue η
such that the asymptotic representative can be written as

(147) U(s, t) = eηs
(
ζ(t) + κ(s, t))

where κ decays exponentially with all derivatives in the sense that there exist for
one and hence every metric constants Mi,j for 0 ≤ i, j <∞ and d > 0 such that

|∇is∇
j
tκ(s, t)| ≤Mi,je

−ds.
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In view of the requirement that the coordinate change of an asymptotic rep-
resentative is asymptotic to the identity an asymptotic representative is unique up
to restriction of the domain of definition. In particular, the eigenvalue η and the
eigenvector ζ are uniquely determined by the finite energy plane ũ. We denote the
eigenvalue by

ηũ ∈ S(Aγ) ∩ (−∞, 0)

and refer to it as the asymptotic eigenvalue and similarly we denote the eigenvector
by

ζũ ∈ Γ(γ∗ξ)

and refer to it as the asymptotic eigenvector.

Recall that if ũ = (u, a) is a finite energy plane then the group R acts on it by
r∗ũ = (u, a + r). For later reference it will be useful to now how the asymp-
totic eigenvalue and the asymptotic eigenvector transform under this action. To
compute this let U be an asymptotic representative of ũ for a proper embedding
φ : [R,∞) × S1 → R × S1 asymptotic to the identity. As usual τ stands for the
period of the asymptotic Reeb orbit. For r ∈ R define

Ur : [R+ r
τ ,∞)× S1 → γ∗ξ, (s, t) 7→ U(s− r

τ , t)

and

φr : [R+ r
τ ,∞)× S1 → R× S1, (s, t) 7→ φ(s− r

τ , t).

We compute

r∗ũ(eφr(s,t)) = r∗ũ(eφ(s− rτ ,t))

= (expγ(t) U(s− r
τ , t), τ(s− r

τ ) + r)

= (expγ(t) Ur(s, t), τs).

Using (147) we compute for Ur

Ur(s, t) = U(s− r
τ , t)

= eη(s− rτ )
(
ζ(t) + κ(s− r

τ , t)
)

= eηs
(
e−

ηr
τ ζ(t) + e−

ηr
τ κ(s− r

τ , t)
)
.

That means that the asymptotic eigenvalue is unchanged under the R-action while
the asymptotic eigenvector gets scaled by a factor e−

ηr
τ . We summarize this com-

putation in the following lemma.

Lemma 5.3. Assume that ũ = (u, a) is a non-degenerate finite energy plane
with asymptotic orbit γ of period τ . The asymptotic eigenvalue only depends on the
projection u, i.e.

ηu := ηũ

while the asymptotic eigenvector transforms under the R-action on ũ as

ζr∗ũ = e−
ηur
τ ζũ.

An important Corollary of Theorem 5.2 is the following result.

Corollary 5.4. If γ is a non-degenerate Reeb orbit, then the action of R on

the moduli space M̂(γ) of finite energy planes asymptotic to γ is a free action.
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Proof: Pick a finite energy plane ũ = (u, a) ∈ M̂(γ). In view of the fact that
ũ admits an asymptotic representative, it follows that the infimum of the function
a : C→ R is attained and we set

a := min{a(z) : z ∈ C} ∈ R.
Now suppose that r ∈ R satisfies r∗ũ = ũ. Since r∗ũ = (u, a+ r) we obtain

a+ r = a

implying that r = 0. This proves that the R-action on M̂(γ) is free. �





CHAPTER 12

The index inequality and fast finite energy planes

We first define the Conley-Zehnder index of a non-degenerate finite energy
plane ũ = (u, a) with asymptotic orbit γ of period τ . Consider the symplectic
bundle u∗ξ → C. Since C is contractible there exists a symplectic trivialization

T : u∗ξ → C× C.

In view of the asymptotic behavior of ũ explained in Theorem 5.2 we can arrange
the trivialization such that it extends asymptotically to a symplectic trivialization

T : γ∗ξ → S1 × C.

Recall that dξφtR(γ(0)) : ξγ(0) → ξγ(t) denotes the restriction of the differential of the
Reeb flow to the hyperplane distribution which turns out to be a linear symplectic
map. Hence we obtain a smooth path Ψ: [0, 1] → Sp(1) of symplectic maps from
C to itself by

Ψ(t) = Tγ(tτ)d
ξφtτR (γ(0))T−1

γ(0).

Note that Ψ(0) = id. Moreover, due to the assumption that the asymptotic Reeb
orbit γ is non-degenerate, the path of symplectic maps Ψ is non-degenerate in the
sense that

ker(Ψ(1)− id) = {0}.
We define the Conley-Zehnder index of ũ as

(148) µCZ(ũ) = µCZ(Ψ).

Note that since every two symplectic trivializations over the contractible base C are
homotopic it follows that the Conley-Zehnder index does not depend on the choice
of the trivialization T. Moreover, it depends only on the projection u so that we
can write as well

µCZ(u) := µCZ(ũ).

The following index inequality is due to Hofer, Wysocki, and Zehnder [53]

Theorem 0.5. Assume that ũ = (u, a) is a non-degenerate finite energy plane.
Then its Conley-Zehnder index satisfies the inequality

µCZ(u) ≥ 2.

Before starting with the proof of this theorem let us explain how this theorem
can be interpreted as an automatic transversality result. Denote by γ the asymptotic

Reeb orbit of ũ. Then we can think of ũ as an element of the moduli space M̂(γ) as
explained in (145). The unparametrized finite energy plane [ũ] is then an element

of the moduli space M(γ) = M̂(γ)/Σ where Σ = C∗ n C is the group of direct

145
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similitudes which acts on M̂(γ) by reparametrizations. We will see later in (210)
that the virtual dimension of the moduli space M(γ) at [ũ] is given by

virdim[ũ]M(γ) = µCZ(u)− 1.

Here the virtual dimension of the moduli space M(γ) is given by the Fredholm
index of a Fredholm operator L which linearizes the holomorphic curve equation in
normal direction of ũ. If the Fredholm operator L is surjective locally around [ũ]
the moduli space M(γ) is a manifold and the tangent space of M(γ) at [ũ] equals

T[ũ]M(γ) = kerL.

Hence if L is surjective we have

virdim[ũ]M(γ) = indL = dim kerL = dimT[ũ]M(γ).

Recall that the group R acts on finite energy planes by r∗(u, a) = (u, a+ r). Since
this action commutes with the reparametrization action of the group Σ the group
R still acts on the moduli space M(γ). Moreover, by Corollary 5.4 this action is
free. Therefore still assuming that L is surjective we get the inequality

dimT[ũ]M(γ) ≥ 1.

Combining these facts we end up with the inequality µCZ(u) ≥ 2 claimed in Theo-
rem 0.5. However, we point out that this reasoning only works under the assumption
that L is surjective. Geometrically the linearization operator L can be thought of
as follows. One interprets the moduli space M(γ) as the zero set of a section

s : B → E , M(γ) = s−1(0).

of a space B into a bundle E over B. The Fredholm operator L then arises as
the vertical differential of the section s at [ũ] and the question if L is surjective
can be rephrased geometrically as the question if the section s is transverse to the
zero section at [ũ]. That explains why one refers to Theorem 0.5 as an automatic
transversality result.

We mention that many transversality results for moduli spaces are so called
generic transversality results which hold for a generic choice of datas. In our set-up
the data is the SFT-like almost complex structure J . It is therefore highly remark-
able that Theorem 0.5 holds for any SFT-like almost complex structure J and not
just for a generic choice of it.

We now start with the preparations for the proof of Theorem 0.5. We assume
that ũ = (u, a) is a non-degenerate finite energy plane. We choose a trivialization

T : u∗ξ → C× C.
We further denote by

π : TN = ξ ⊕ 〈R〉 → ξ

the projection along the Reeb vector field R. The major ingredient in the proof of
Theorem 0.5 is the map

(149) Tπ∂xu : C→ C.
Here we denote by z = x+iy the coordinates on C. This map is smooth interpreted
as a real map from C = R2 to itself. Moreover, due to the fact that u is holomorphic
the map above is ”almost holomorphic” in a sense to be described more precisely
below.
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We first recall some facts about winding for a general smooth map f : C→ C.
We denote the regular set of f by

Rf := {z ∈ C : f(z) 6= 0}.

For a continuous loop γ : S1 → Rf the map t 7→ f(γ(t))
||f(γ(t))|| is a continuous map from

the circle S1 to itself. Hence we can consider its degree

(150) wγ(f) := deg
(
t 7→ f(γ(t))

||f(γ(t))||

)
∈ Z.

We refer to wγ(f) as the winding number of f along the loop γ. It has the following
properties.

Homotopy invariance: If γ : S1 × [0, 1] → Rf is a continuous map, then
γ0 = γ(·, 0) and γ1 = γ(·, 1) are two homotopic loops inRf and its winding numbers
are unchanged

wγ0
(f) = wγ1

(f).

Concatenation: Suppose that γ1 : S1 → Rf and γ2 : S1 → Rf are two con-
tinuous maps satisfying γ1(0) = γ2(0). Denote by γ1#γ2 its concatenation. The
winding number is additive under concatenation

wγ1#γ2
(f) = wγ1

(f) + wγ2
(f).

These two properties have the following consequences. Assume that the singular
set

Sf := {z ∈ C : f(z) = 0} = C \ Rf
is discrete. Pick z0 ∈ Sf . Because Sf is discrete, there exists ε > 0 such that the
intersection of Sf with Dε(z0) = {z ∈ C : ||z − z0|| ≤ ε}, the closed ε-ball around
z0, satisfies

Sf ∩Dε(z0) = {z0}.
Consider

γεz0 : S1 → Rf , t 7→ z0 + εe2πit.

Define the local winding number of f at the singularity z0 by

wz0(f) := wγεz0 (f).

Because of homotopy invariance of the winding number the local winding number
is well defined, independent of the choice of ε.

Suppose that R > 0 and that f(Re2πit) 6= 0 for every t ∈ S1, i.e., we get a loop
in the regular set of f

γR : S1 → Rf , t 7→ Re2πit.

We set

(151) wR(f) := wγR(f).

In view of the homotopy invariance and the concatenation property of the winding
number we can express this winding number as the sum of local winding numbers

(152) wR(f) =
∑

z∈DR(0)∩Sf

wz(f).
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Suppose now that f : C → C is holomorphic and does not vanish identically. We
claim that if f(z0) = 0 the local winding number satisfies

(153) wz0(f) ≥ 1.

To prove this inequality we can assume without loss of generality that z0 = 0. Since
f is holomorphic it is given by its Taylor series

f(z) =

∞∑
n=1

anz
n.

Abbreviate
` := min{n : an 6= 0}

the order of vanishing of f at zero. Since f does not vanish identically ` is finite.
We can write f now as

f(z) =

∞∑
n=`

anzn.

Choose ε > 0 such that
∞∑

n=`+1

|an|εn−` < |a`|.

Abbreviate

g(z) :=

∞∑
n=`+1

anz
n

so that we obtain
f(z) = a`z

` + g(z).

Consider the map from S1 to S1

t 7→ a`ε
`e2πit` + g(εe2πit`)

||a`ε`e2πit` + g(εe2πit`)||
.

This map is homotopic to the map from S1 to S1 given by

t 7→ a`ε
`e2πit`

||a`ε`e2πit`||
= e2πit`.

This implies that
w0(f) = ` ≥ 1.

In other words the local winding of a holomorphic function at a zero is given by
the order of vanishing of the function at this point. In combination with (152) we
have established the following lemma.

Lemma 0.6. Assume that f : C → C is holomorphic and R > 0 such that
f(Re2πit) 6= 0 for every t ∈ S1. Then wR(f) ≥ 0 and wR(f) = 0 if and only if
f(z) 6= 0 for every z ∈ DR(0).

We cannot apply Lemma 0.6 to the map Tπ∂xu : C → C from (149) because
this map is not actually holomorphic despite the fact that ũ was a holomorphic
plane. However, Tπ∂xu is close enough to be holomorphic that the reasoning which
established Lemma 0.6 still applies. This is made precise by Carleman’s similarity
principle. We first examine how far the map Tπ∂xu deviates from being holomor-
phic. We first recall Darboux’s Theorem for contact manifolds which roughly tells
us that a contact manifold has no local invariants, see [40]
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Theorem 0.7 (Darboux). Assume that (N,λ) is a three dimensional contact
manifold and p ∈ N . Then there exists an open neighborhood U of p and a diffeo-
morphism

Φ: U → V ⊂ R3

such that Φ(p) = 0 ∈ V and

Φ∗(dq1 + q2dq3) = λ.

In particular, the contact form λ looks locally like dq1 + q2dq3 the standard
contact form on R3. Since the question if the local winding numbers of the map
Tπ∂xu are positive is a local problem we can assume in view of Darboux’s theorem
without loss of generality that

λ = dq1 + q2dq3, dλ = dq2 ∧ dq3.

In these coordinates the Reeb vector field is given by

R = ∂q1 .

Moreover, a basis of the hyperplane distribution ξ = kerλ is given by the vectors

e1 = ∂q2 , e2 = −q2∂q1 + ∂q3 .

Note that

dλ(e1, e2) = 1

so that the basis {e1, e2} is a symplectic basis of ξ. If we write

u(x, y) =
(
q1(x, y), q2(x, y), q3(x, y)

)
we have

∂xu(x, y) =
(
∂xq1(x, y), ∂xq2(x, y), ∂xq3(x, y)

)
and therefore

πu(x,y)∂xu(x, y) =
(
− q2(x, y)∂xq3(x, y), ∂xq2(x, y), ∂xq3(x, y)

)
= ∂xq2(x, y)e1

(
u(x, y)

)
+ ∂xq3(x, y)e2

(
u(x, y)

)
.

Because all trivializations on a ball are homotopic we can in view of the homotopy
invariance of the winding number choose an arbitrary local trivialization to com-
pute the local winding number. We choose as local trivialization the symplectic
trivialization

Tu : ξu → C, (xe1 + ye2) 7→ x+ iy.

In this trivialization we obtain

Tπ∂xu = ∂xq2 + i∂xq3.

Because u is holomorphic the projection to the hyperplane distribution satisfies the
equation

(154) π∂xu+ J(u)π∂yu = 0.

As we computed above πu∂xu we get

πu∂yu = ∂yq2e1(u) + ∂yq3e2(u).

Abbreviate by J(x, y) the 2×2-matrix representing J(u(x, y)) in the basis {e1(u(x, y)), e2(u(x, y))}.
In particular, it holds that

J(x, y)2 = −id.
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With this notation (154) translates into(
∂xq2

∂xq3

)
+ J(x, y)

(
∂yq2

∂yq3

)
= 0.

This implies

∂x(Tπ∂xu) =

(
∂2
xq2

∂2
xq3

)
= −∂xJ

(
∂yq2

∂yq3

)
− J

(
∂x∂yq2

∂x∂yq3

)
= −(∂xJ)J

(
∂xq2

∂xq3

)
− J

(
∂y∂xq2

∂y∂xq3

)
Abbreviating

A = −(∂xJ)J

we can write this as

∂x(Tπ∂xu) = −A(Tπ∂xu)− J∂y(Tπ∂xu)

or equivalently

(155) ∂x(Tπ∂xu) + J∂y(Tπ∂xu) +A(Tπ∂xu) = 0.

We recall Carleman’s similarity principle from [34].

Lemma 0.8 (Carleman’s similarity principle). Assume that f : Bε = {z ∈ R2 :
|z| < ε} → R2 is a smooth map and J,A ∈ C∞(Bε,M2(R)) are smooth families
of 2 × 2-matrices such that J(z)2 = −id for every z ∈ Bε, i.e., J(z) is a complex
structure. Suppose that

∂xf + J∂yf +Af = 0, f(0) = 0.

Then there exists δ ∈ (0, ε), Φ ∈ C0(Bδ,GL(R2)), and σ : Bδ → C holomorphic
such that

f(z) = Φ(z)σ(z), σ(0) = 0, J(z)Φ(z) = Φ(z)i.

In view of (155) and Carleman’s similarity principle all local winding numbers
of Tπ∂xu are positive. Therefore the same reasoning which led to Lemma 0.6
establishes the following proposition.

Proposition 0.9. Assume that R > 0 such that π∂xu(Re2πit) 6= 0 for every
t ∈ S1. Then wR(Tπ∂xu) ≥ 0 and wR(Tπ∂xu) = 0 if and only if π∂xu(z) 6= 0 for
every z ∈ DR(0).

In view of the asymptotic behavior of a non-degenerate finite energy plane
explained in Theorem 5.2 there exists R0 > 0 such that for all R ≥ R0 it holds
that π∂xu(Re2πit) 6= 0 for every t ∈ S1. Moreover, again in view of the asymptotic
behavior it holds that

(156) wR(Tπ∂ru) = w(ηu)

where ηu is the asymptotic eigenvalue of the non-degenerate finite energy plane ũ.
Because ηu is negative this fact has interesting consequences as we will see soon.
However, let us first discuss how wR(Tπ∂xu) and wR(Tπ∂ru) are related. To see
that note that

Tπ∂xu = (Tπdu)∂x, Tπ∂ru = (Tπdu)∂r
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and for each z ∈ C the map Tπdu(z) is a linear map from C = R2 to itself. In
general, if A ∈ C∞(S1, GL(R2)) and v1, v2 ∈ C∞(S1,R2 \ {0}) the formula

(157) deg

(
t 7→ A(t)v2(t)

|A(t)v2(t)|

)
= deg

(
t 7→ A(t)v1(t)

|A(t)v1(t)|

)
+ wind(v1, v2)

holds true, where wind(v1, v2) is the winding of v2 around v1. Because

wind(∂x, ∂r) = 1

we obtain the relation

(158) wR(Tπ∂ru) = wR(Tπ∂xu) + wind(∂x, ∂r) = wR(Tπ∂xu) + 1.

Combining Proposition 0.9 with (156) and (158) we obtain

Theorem 0.10. Assume that ũ = (u, a) is a non-degenerate finite energy plane.
Then the winding number of its asymptotic eigenvalue meets the inequality

w(ηu) ≥ 1.

Moreover, w(ηu) = 1 if and only if π∂xu(z) 6= 0 for every z ∈ C.

Theorem 0.5 is a straightforward consequence of Theorem 0.10.

Proof of Theorem 0.5: Assume that ũ = (u, a) is a non-degenerate finite
energy plane. It follows from Theorem 0.10 that the winding number of its as-
ymptotic eigenvalue satisfies w(ηu) ≥ 1. Because ηu is negative it follows from the
definition of α from (118) that

α ≥ 1.

Because the parity (119) satisfies p ∈ {0, 1} we obtain from Theorem 0.33 that

µCZ(u) = 2α+ p ≥ 2α ≥ 2.

This finishes the proof of Theorem 0.5. �

Assume that ũ = (u, a) is a finite energy plane and π∂xu(z) 6= 0 for every z ∈ C.
Because ũ is holomorphic it holds that π∂xu + J(u)π∂yu = 0, hence because
π∂xu(z) 6= 0 we have that {π∂xu(z), π∂yu(z)} are linearly independent vectors
in ξu(z). This implies that

πdu(z) : TzC = C→ ξu(z)

is bijective. In particular, du(z) : TzC → Tu(z)N is injective and therefore u is an
immersion. Moreover, since TN = ξ ⊕ 〈R〉 the Reeb vector field is transverse to
the image of u. On the other hand, if u is an immersion transverse to the Reeb
vector field we must have π∂xu(z) 6= 0 for every z ∈ C. Therefore we obtain from
Theorem 0.10 the following Corollary.

Corollary 0.11. Assume that ũ = (u, a) is a non-degenerate finite energy
plane. Then the winding number of its asymptotic eigenvalues satisfies w(ηu) = 1
if and only if u is an immersion transverse to the Reeb vector field.

The following definition is due to Hryniewicz [58]

Definition 0.12. A non-degenerate finite energy plane ũ = (u, a) is called fast
if and only if u is an immersion transverse to the Reeb vector field.



152 12. THE INDEX INEQUALITY AND FAST FINITE ENERGY PLANES

The reason for this terminology is that in view of Theorem 0.5 the winding
number of the asymptotic eigenvalue satisfies w(ηu) ≥ 1 and as a consequence of the
monotonicity of the winding number from Theorem 0.32 a fast finite energy plane
has a fast asymptotic decay. In view of this notion we can rephrase Corollary 0.11
as

Corollary 0.13. A non-degenerate finite energy plane ũ = (u, a) is fast if and
only if w(ηu) = 1.

If ũ = (u, a) is a non-degenerate finite energy plane, then in view of the defini-
tion of α in (118) and Theorem 0.33 the winding number of ũ satisfies the inequality

w(ηu) ≤ α =
⌊µCZ(u)

2

⌋
where for a real number r we abbreviate by

brc := max{n ∈ N : n ≤ r}
the integer part of r. Combining this inequality with Theorem 0.10 we obtain
further the following Corollary.

Corollary 0.14. Assume that ũ = (u, a) is a non-degenerate finite energy
plane. Then the winding number of its asymptotic eigenvalue satisfies

1 ≤ w(ηu) ≤
⌊µCZ(u)

2

⌋
.

This has the further consequence.

Corollary 0.15. Assume that ũ = (u, a) is a non-degenerate finite energy plane
such that µCZ(u) ∈ {2, 3}. Then ũ is fast.



CHAPTER 13

Siefring’s intersection theory for fast finite energy
planes

1. Positivity of intersection for closed curves

Suppose that (M,J) is a 2n-dimensional almost complex manifold, i.e., J ∈
End(TM) is an almost complex structure which means that J2 = −id. We define
an orientation on M as follows. If x ∈ M we declare a basis of TxM the form
{v1, Jv1, v2, Jv2, . . . , vn, Jvn} to be positive. Equivalently, that means that the

basis {v1, v2, . . . , vn, Jv1, Jv2, . . . Jvn} is positive if n(n+1)
2 is even and negative

otherwise. It remains to explain that this notion is well-defined, i.e., independent
of the choice of {v1, . . . , vn}. To see that suppose that we have another basis
{v′1, Jv′1, v′2, Jv′2, . . . , v′n, Jv′n} of this form. Let B ∈ GL(Cn) be the basis change
matrix from the complex basis {v1, . . . , vn} to the complex basis {v′1, . . . , v′n}. Write

B = A1 + iA2

where A1 and A2 are real n× n-matrices. It follows that the real 2n× 2n-matrix

A =

(
A1 −A2

A2 A1

)
is the real basis change matrix from the basis {v1, . . . , vn, Jv1, . . . , Jvn} to the basis
{v′1, . . . , v′n, Jv′1, . . . , Jv′n}. The determinant of A satisfies

det(A) = det

(
A1 −A2

A2 A1

)
= det

((
id id
i · id −i · id

)−1(
A1 −A2

A2 A1

)(
id id
i · id −i · id

))

= det

(
1

2

(
id −i · id
id i · id

)−1(
A1 −A2

A2 A1

)(
id id
i · id −i · id

))

= det

(
A1 − iA2 0

0 A1 + iA2

)
= det(B) · det(B)

= |det(B)|2

> 0.

This proves that the basis {v1, . . . , vn, Jv1, . . . , Jvn} has the same sign as the basis
{v′1, . . . , v′n, Jv′1, . . . , Jv′n}. Consequently, the two bases {v1, Jv1, . . . , vn, Jvn} and
{v′1, Jv′1, . . . , v′n, Jv′n} have the same sign as well. This shows that the orientation
of the almost complex manifold (M,J) is well defined. In the following we always
endow an almost complex manifold with this orientation.

153
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Now assume that M = M4 is a four dimensional almost complex manifold and
(Σ1, i) and (Σ2, i) are two closed Riemann surfaces. Suppose that

u1 : Σ1 →M4, u2 : Σ2 →M4

are two holomorphic maps, i.e.,

duk ◦ i = Jduk, k ∈ {1, 2}.

We further assume that

u1 t u2,

i.e., the two curves intersect transversally, meaning that if (z1, z2) ∈ Σ1×Σ2 is such
that u1(z1) = u2(z2) it holds that

imdu1(z1) + imdu2(z2) = Tu1(z1)M = Tu2(z2)M.

Because M is four dimensional and Σ1 and Σ2 are two dimensional this is equivalent
to requiring

imdu1(z1)⊕ imdu2(z2) = Tu1(z1)M.

We now compute the intersection index at the intersection point (z1, z2) ∈ Σ1×Σ2.
Note that since Σ1, Σ2, andM are all almost complex manifolds they are canonically
oriented. Choose a positive basis {v1, iv1} of Tz1Σ1 and a positive basis {v2, iv2}
of Tz2Σ2. Using that u1 and u2 are holomorphic we get that

{du1(z1)v1, du1(z1)(iv1), du2(z2)v2, du2(z2)(iv2)} =

{du1(z1)v1, Jdu1(z1)v1, du2(z2)v2, Jdu2(z2)v2}

is a positive basis of Tu1(z1)M . Therefore the intersection index equals one for
every intersection point. In particular, the intersection number of u1 and u2 is
nonnegative and it vanishes if and only if there are no intersection points. This
phenomenon is referred to as positivity of intersection. It is a nontrivial fact due
to McDuff and Micallef-White that positivity of intersection continuous to hold
for perturbations of non-transverse intersection points. This is explained in [81,
Appendix E]. That means even without the assumption that u1 and u2 intersect
transversally their algebraic intersection number is still nonnegative and it vanishes
if and only if there are no intersection points.

2. The algebraic intersection number for finite energy planes

In the following we consider a closed 3-dimensional contact manifold (N,λ)
and fix an SFT-like almost complex structure J on N × R. We assume that γ is a
non-degenerate Reeb orbit and ũ and ṽ are two finite energy planes whose common
asymptotic orbit is γ and im(ũ) 6= im(ṽ). In this section we explain how to associate
to ũ and ṽ an algebraic intersection number

int(ũ, ṽ) ∈ N0 := N ∪ {0}.

The reason that int(ũ, ṽ) is nonnegative is because of positivity of intersection for
the two holomorphic curves. Even if ũ and ṽ intersect transversally it is a priori
not obvious that the numbers of intersection points is finite, since the domain C of
ũ and ṽ is not compact. The crucial ingredient which guarantees finiteness of the
algebraic intersection number is the following theorem due to Siefring [100].
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Theorem 2.1. Suppose that γ is a non-degenerate periodic Reeb orbit which
is the common asymptotic of two finite energy planes ũ and ṽ. Assume that
U, V : [R,∞)× S1 → γ∗ξ are two asymptotic representatives of ũ and ṽ. If U 6= V
then there exists η ∈ S(Aγ)∩(−∞, 0) and ζ an eigenvector of Aγ for the eigenvalue
η satisfying

V (s, t)− U(s, t) = eηs
(
ζ(t) + κ(s, t)

)
and there exist constants Mi,j , d > 0 for 0 ≤ i, j <∞ such that

|∇is∇
j
tκ(s, t)| ≤Mi,je

−ds.

Corollary 2.2. Assume that ũ and ṽ are two finite energy planes in N × R
asymptotic to the same non-degenerate periodic Reeb orbit γ. Suppose that ũ t ṽ.
Then the number of intersection points between ũ and ṽ is finite, i.e.,

#
{

(z1, z2) ∈ C× C : ũ(z1) = ṽ(z2)
}
<∞.

Proof: We prove the Corollary in 3 steps.

Step 1: There exists a compact subset K0 ⊂ C with the property that{
(z1, z2) ∈ Kc

0 ×Kc
0 : ũ(z1) = ṽ(z2)

}
= ∅

where Kc = C \K denotes the complement of K in C.

The proof of Step 1 is a bit involved since we have to deal with the possibility
that the asymptotic periodic orbit γ is multiply covered. We define the covering
number of γ as

cov(γ) := max
{
k ∈ N : γ

(
t+ 1

k

)
= γ(t), t ∈ S1

}
.

In view of uniqueness of a first order ODE we conclude that

(159) γ(t) 6= γ(t′), t− t′ /∈ 1

cov(γ)
Z.

By definition of an asymptotic representative there exists a compact subset K0 ⊂ C
such that there exists a bijection between the following two sets{

(z1, z2) ∈ Kc
0 ×Kc

0 : ũ(z1) = ṽ(z2)
}
∼={(

(s1, t1), (s2, t2)
)
∈
(
[R,∞)× S1

)
×
(
[R,∞)× S1

)
:(

γ(t1), U(s1, t1), s1τ
)

=
(
γ(t2), V (s2, t2), s2τ

)}
where τ > 0 is the period of the periodic orbit γ. Assume that (s1, t1) ∈ [R,∞)×S1

and (s2, t2) ∈ [R,∞)× S1 such that(
γ(t1), U(s1, t1), s1τ

)
=
(
γ(t2), V (s2, t2), s2τ

)
.

Because τ 6= 0 we conclude that

s1 = s2

and using (159) we infer that

t2 = t1 +
j

cov(γ)
, 0 ≤ j ≤ cov(γ)− 1.
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Therefore

(160) U
(
s1, t1

)
− V

(
s1, t1 + j

cov(γ)

)
= 0.

For j ∈ {0, . . . , cov(γ)− 1} define

ṽj : C→ N × R, z 7→ ṽ(e2πi j
cov(γ) z).

Note that ṽj is a finite energy plane and in view of the definition of cov(γ) the
asymptotic orbit of ṽj is γ as well. An asymptotic representative for ṽj is the map

Vj : [R,∞)× S1 → γ∗ξ, (s, t) 7→ V
(
s, t+ j

cov(γ)

)
.

Equation (160) can be reinterpreted as

U(s1, t1)− Vj(s1, t1) = 0.

Because ũ t ṽ we conclude that

U 6= Vj .

Hence by Theorem 2.1 there exists η ∈ S(Aγ) ∩ (−∞, 0) and ζ an eigenvector of
Aγ to the eigenvalue η such that

U(s, t)− Vj(s, t) = eηs
(
ζ(t) + κ(s, t)

)
where κ decays exponentially with all its derivatives. Because ζ is an eigenvector
of Aγ and therefore a solution of a first order ODE it follows that

ζ(t) 6= 0, ∀ t ∈ S1.

Because κ decays exponentially we can assume perhaps after enlarging K0 and R
that

sup
(s,t)∈[R,∞)×S1

|κ(s, t)| < min
{
|ξ(t)| : t ∈ S1

}
.

Hence we can assume that

U(s, t)− Vj(s, t) 6= 0, ∀ (s, t) ∈ [R,∞)× S1, ∀ 0 ≤ j < cov(γ).

Therefore

ũ(z1) 6= ṽ(z2), ∀ (z1, z2) ∈ Kc
0 ×Kc

0.

This finishes the proof of Step 1.

Step 2: There exists a compact subset K ⊂ C with the property that{
(z1, z2) ∈ C× C : ũ(z1) = ṽ(z2)

}
=
{

(z1, z2) ∈ K ×K : ũ(z1) = ṽ(z2)
}
.

If ũ = (u, a) and ṽ = (v, b) with u, v : C → N and a, b : C → R and K0 is as in
Step 1 we abbreviate

c := max
{
a(z), b(z) : z ∈ K0

}
.

In view of the asymptotic behavior there exists K ⊃ K0 compact such that

a(z) > c, b(z) > c ∀ z ∈ Kc.
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We decompose{
(z1, z2) ∈ C× C : ũ(z1) = ṽ(z2)

}
=

{
(z1, z2) ∈ Kc ×Kc : ũ(z1) = ṽ(z2)

}
∪
{

(z1, z2) ∈ Kc ×K : ũ(z1) = ṽ(z2)
}

∪
{

(z1, z2) ∈ K ×Kc : ũ(z1) = ṽ(z2)
}

∪
{

(z1, z2) ∈ K ×K : ũ(z1) = ṽ(z2)
}

=: A11 ∪A12 ∪A21 ∪A22.

Since K0 ⊂ K we have Kc ⊂ Kc
0 and therefore by Step 1

A11 ⊂
{

(z1, z2) ∈ Kc
0 ×Kc

0 : ũ(z1) = ṽ(z2)
}

= ∅.

The next two sets in the decomposition we decompose further, namely

A12 =
{

(z1, z2) ∈ Kc ×K0 : ũ(z1) = ṽ(z2)
}

∪
{

(z1, z2) ∈ Kc ×K \K0 : ũ(z1) = ṽ(z2)
}

⊂
{

(z1, z2) ∈ Kc ×K0 : a(z1) = b(z2)
}

∪
{

(z1, z2) ∈ Kc
0 ×Kc

0 : ũ(z1) = ṽ(z2)
}

= ∅

and similarly we obtain

A21 = ∅.
This finishes the proof of Step 2.

Step 3: We prove the Corollary.

Since ũ t ṽ the number of intersection points of ũ|K and ṽ|K is finite for every
compact set K. The Corollary now follows immediately from Step 2. �

In view of Corollary 2.2 if γ is a non-degenerate periodic Reeb orbit and ũ and
ṽ are two finite energy plane with common asymptotic γ which intersect transver-
sally we define the algebraic intersection number of ũ and ṽ as

(161) int(ũ, ṽ) := #
{

(z1, z2) ∈ C× C : ũ(z1) = ṽ(z2)
}
∈ N0.

If ũ and ṽ do not intersect transversally however satisfy

im(ũ) 6= im(ṽ)

we can still define the algebraic intersection number between ũ and ṽ as follows.
Because ũ and ṽ have different image the arguments in the proof of Corollary 2.2
together with the fact that the intersection points of two holomorphic curves with
different image are isolated (see [81, Appendix E]) imply that there exists a compact
subset K ⊂ C such that if ũ(z1) = ṽ(z2) we necessarily have (z1, z2) ∈ K×K. Now
perturb ũ to ũ′ and ṽ to ṽ′ such that there exists a compact subset K ′ ⊂ C such
that

ũ′|(K′)c = ũ|(K′)c , ṽ′|(K′)c = ṽ|(K′)c , ũ′ t ṽ′.

We do not require that positivity of intersection continuous to hold for ũ′ and ṽ′.
We define

ν :
{

(z1, z2) ∈ C× C : ũ′(z1) = ṽ′(z2)
}
→ {−1, 1}
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by

ν(z1, z2) =

 1 {∂xũ′(z1), ∂yũ
′(z1), ∂xṽ

′(z2), ∂y ṽ
′(z2)}

positive basis of Tũ′(z1)(N × R) = Tṽ′(z2)(N × R)
−1 else.

The algebraic intersection number of ũ and ṽ is defined as

(162) int(ũ, ṽ) =
∑

(z1,z2)∈C×C
ũ′(z1)=ṽ′(z2)

ν(z1, z2) ∈ Z.

By homotopy invariance the algebraic intersection number is independent of the
choice of the perturbations ũ′ and ṽ′, see [83]. Moreover, if ũ and ṽ intersect
transversally, then we do not need to perturb the two maps and since the two
maps are holomorphic positivity of intersection implies that (162) coincides with
(161) in this case. In particular, the algebraic intersection number is nonnegative if
ũ t ṽ. It is a nontrivial fact that this continues to hold if ũ and ṽ do not intersect
transversally but have just different images. In fact we can choose the perturbations
ũ′ and ṽ′ such that ν(z1, z2) = 1 for every intersection point (z1, z2) ∈ C× C of ũ′

and ṽ′. This is due to results of McDuff and Micallef-White, see [81, Appendix E].
In particular, we have the following theorem.

Theorem 2.3. Assume that ũ and ṽ are two finite energy planes with common
non-degenerate periodic Reeb orbit γ such that im(ũ) 6= im(ṽ). Then the algebraic
intersection number of ũ and ṽ satisfies

int(ũ, ṽ) ∈ N0.

Moreover, int(ũ, ṽ) = 0 if and only if ũ and ṽ do not intersect.

3. Siefring’s intersection number

Assume that ũ = (u, a) is a non-degenerate finite energy plane with asymptotic
orbit γ. Choose a trivialization T : u∗ξ → C × C which extends to a trivialization
T : γ∗ξ → S1×C. Such a trivialization gives rise to a nonvanishing section XT : C→
u∗ξ defined by

XT(z) = T−1
u(z)1 ∈ ξu(z).

Since ξ is transverse to the Reeb vector field there exists ε0 = ε0(γ,T) > 0 such
that for every 0 < ε ≤ ε0 it holds that

im(expγ εXT) ∩ imγ = ∅
where exp is the exponential map with respect to the restriction of the metric
ω(·, J ·) to N × {0} ⊂ N ×R. If ũ = (u, a) is a finite energy plane with asymptotic
orbit γ we set for ε ∈ (0, ε0]

uT,ε = expu εXT, ũT,ε = (uT,ε, a).

Now assume that ũ and ṽ are fast finite energy planes with asymptotic limit the
same non-degenerate Reeb orbit γ. We define Siefring’s intersection number for ũ
and ṽ as

sief(ũ, ṽ) = int(ũT,ε, ṽ) + 1 ∈ Z.
This definition is due to Siefring [101] based on previous work by Hutchings [62]
and [72]. Here int denotes the usual algebraic intersection number obtained by
the signed count of intersection points of ũT,ε and ṽ, maybe after a small generic
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perturbation which makes the two curves intersect transversally. Note that since
the curves ũT,ε and ṽ have disjoint asymptotics after a small generic perturbation
the number of intersection points is necessarily finite. By homotopy invariance
of the algebraic intersection number one observes that sief(ũ, ṽ) is independent of
the trivialization T and the choice of ε. Since the two curves ũT,ε and ṽ have
different asymptotics Siefring’s intersection number is a homotopy invariant which
is not clear for the algebraic intersection number int(ũ, ṽ). As for the algebraic one
Siefring’s intersection number is symmetric, i.e.,

sief(ũ, ṽ) = sief(ṽ, ũ).

4. Siefring’s inequality

The following inequality was discovered by Siefring in [101].

Theorem 4.1. Assume that ũ and ṽ are fast finite energy planes asymptotic
to the same non-degenerate periodic Reeb orbit γ such that im(ũ) 6= im(ṽ). Then

0 ≤ int(ũ, ṽ) ≤ sief(ũ, ṽ).

Before we embark on the proof of Theorem 4.1 let us make the following re-
marks. Since ũT,ε is not holomorphic anymore it is far from obvious that Siefring’s
intersection number turns out to be nonnegative. Later on we are mostly interested
in the case where sief(ũ, ṽ) is zero. Then it follows from Siefring’s inequality that
the algebraic intersection number int(ũ, ṽ) is zero as well which implies by positivity
of intersection that ũ and ṽ do not intersect. Interestingly, Siefring’s intersection
number is a homotopy invariant. Therefore if it vanishes fast finite energy planes
homotopic to ũ and ṽ still do not intersect unless their images coincide.

In [101] Siefring defined as well an intersection number for finite energy planes
which are not necessarily fast such that the assertion of Theorem 4.1 continues to
hold. However, in this case one has to add to the algebraic intersection number
of ũT,ε and ṽ a number bigger than 1. In the proof it will become clear that the
reason why one has to add 1 to fast finite energy planes is that 1 coincides with the
winding number of the asymptotic eigenvalue of fast finite energy planes.

We first prove a proposition which does not yet require that ũ and ṽ are fast.
Recall that if ũ and ṽ have the same non-degenerate asymptotic Reeb orbit γ but
different images, then there exists by Theorem 2.1 an eigenvalue of the asymptotic
operator Aγ such that the difference of asymptotic representatives decays exponen-
tially with weight given by this eigenvalue. Because the asymptotic representatives
are unique up to restriction of their domain of definition this eigenvalue depends
only on ũ and ṽ and we abbreviate it by

ηũ,ṽ = ηṽ,ũ ∈ S(Aγ).

We can now formulate the proposition as follows.

Proposition 4.2. Assume that γ is a non-degenerate periodic Reeb orbit and
ũ and ṽ are two finite energy planes with common asymptotic orbit γ such that
im(ũ) 6= im(ṽ). Then

int(ũT,ε, ṽ) = int(ũ, ṽ)− w(ηũ,ṽ).

Proof: In Step 2 of Corollary 2.2 we proved that there exists a compact subset
K ⊂ C with the property that

(163)
{

(z1, z2) ∈ C× C : ũ(z1) = ṽ(z2)
}

=
{

(z1, z2) ∈ K ×K : ũ(z1) = ṽ(z2)
}
.
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If ũ = (u, a) and ṽ = (v, b) with u, v : C→ N and a, b : C→ R we set

c := max
{
a(z), b(z) : z ∈ K

}
.

In view of the asymptotic behavior of non-degenerate finite energy planes there
exists a compact set K0 ⊃ K such that

a(z), b(z) > c, ∀ z ∈ Kc
0

where Kc
0 denotes as usual the complement of K0 in C. Now choose a third compact

subset K1 ⊃ K0 with the property that there exists a smooth cutoff function
β ∈ C∞(C, [0, 1]) such that

β|K0 = 0, β|Kc
1

= 1.

Abbreviate

uT,ε,β = expu βεXT, ũT,ε,β = (uT,ε,β , a).

Note that ũT,ε,β coincides on the complement of the compact subset K1 with ũT,ε
and therefore

(164) int(ũT,ε, ṽ) = int(ũT,β,ε, ṽ).

We write the last intersection number as a sum of four intersection numbers

int(ũT,β,ε, ṽ) = int(ũT,β,ε|Kc , ṽ|Kc) + int(ũT,β,ε|Kc , ṽ|K)(165)

+int(ũT,β,ε|K , ṽ|Kc) + int(ũT,β,ε|K , ṽ|K).

In order to compute these four terms we decompose as in the proof of Corollary 2.2
the set of intersection points of ũT,β,ε and ṽ into four disjoint subsets{

(z1, z2) ∈ C× C : ũT,β,ε(z1) = ṽ(z2)
}

= A11 ∪A12 ∪A21 ∪A22

where

A11 =
{

(z1, z2) ∈ Kc ×Kc : ũT,β,ε(z1) = ṽ(z2)
}

A12 =
{

(z1, z2) ∈ Kc ×K : ũT,β,ε(z1) = ṽ(z2)
}

A21 =
{

(z1, z2) ∈ K ×Kc : ũT,β,ε(z1) = ṽ(z2)
}

A22 =
{

(z1, z2) ∈ K ×K : ũT,β,ε(z1) = ṽ(z2)
}
.

The set A12 we decompose further

A12 =
{

(z1, z2) ∈ Kc
0 ×K : ũT,β,ε(z1) = ṽ(z2)

}
∪
{

(z1, z2) ∈ K0 \K ×K : ũT,β,ε(z1) = ṽ(z2)
}

=
{

(z1, z2) ∈ Kc
0 ×K : uT,β,ε(z1) = v(z2), a(z1) = b(z2)

}
∪
{

(z1, z2) ∈ K0 \K ×K : ũ(z1) = ṽ(z2)
}

⊂
{

(z1, z2) ∈ Kc
0 ×K : a(z1) = b(z2)

}
∪
{

(z1, z2) ∈ Kc ×K : ũ(z1) = ṽ(z2)
}

= ∅.

For the last equality we observed that the second set is empty in view of (163) and
the first set is empty since on the complement of K0 the function a takes values
bigger than c where one K the function b takes values less than or equal to c by
definition of the constant c and the choice of the set K0. We conclude that

(166) int(ũT,β,ε|Kc , ṽ|K) = 0.
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Since K ⊂ K0 and β vanishes on K0 we obtain for the set A21

A21 =
{

(z1, z2) ∈ Kc ×K : ũ(z1) = ṽ(z2)
}

= ∅

where we used again (163). This implies

(167) int(ũT,β,ε|K , ṽ|Kc) = 0.

We next examine the set A22. Again taking advantage that β vanishes on K and
using (163) we obtain

A22 =
{

(z1, z2) ∈ K ×K : ũ(z1) = ṽ(z2)
}

=
{

(z1, z2) ∈ C× C : ũ(z1) = ṽ(z2)
}

and therefore

(168) int(ũT,β,ε|K , ṽ|K) = int(ũ, ṽ).

It remains to compute int(ũT,β,ε|Kc , ṽ|Kc). Let U : [R,∞)×S1 → γ∗ξ be an asymp-
totic representative for ũ and V : [R,∞)×S1 → γ∗ξ be an asymptotic representative
for ṽ. Because ũ and ṽ have different images their intersection points are isolated,
see [81, Appendix E] and therefore U 6= V . It follows from Theorem 2.1 that there
exists η = ηũ,ṽ ∈ S(Aγ) ∩ (−∞, 0) and an eigenvector ζ of Aγ to the eigenvalue η
such that

U(s, t)− V (s, t) = eηs
(
ζ(t) + κ(s, t)

)
where κ decays with all its derivative exponentially with uniform weight. Therefore
maybe after choosing R larger we can assume that for every s ≥ R it holds that
U(s, t)− V (s, t) 6= 0 for every t ∈ S1 and

(169) deg

(
t 7→

T
(
U(s, t)− V (s, t)

)∣∣T(U(s, t)− V (s, t)
)∣∣
)

= w(Tζ) = w(η)

where w(η) is the winding of the eigenvalue η as explained in (115). Let γ ∈
C∞([R,∞), [0, 1]) be a smooth cutoff function satisfying

γ(s) =

{
0 s ∈ [R, 2R]
1 s ∈ [2R+ 1,∞)

Define

F : [R,∞)× S1 → C, (s, t) 7→ T
(
U(s, t)− V (s, t)

)
+ γ(s).

Abbreviate by

Z = [R,∞)× S1

the half-infinite cylinder which we identify with the zero section in the bundle Z×C.
Abbreviate further

ΓF = {(z, F (z)) : z ∈ Z} ⊂ Z × C
the graph of F . By homotopy invariance of the algebraic intersection number as
long as boundaries do not intersect we get

(170) int(ũT,β,ε|Kc , ṽ|Kc) = int(Z,ΓF ).

If s ∈ [R,∞) meets the condition that F (s, t) 6= 0 for every t ∈ S1 we introduce
the winding number

ws(F ) := deg

(
t 7→ F (s, t)

|F (s, t)|

)
∈ Z.
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Note that because U − V decays exponentially in the s-variable and γ is one for
s large enough, there exists S > R such that F (s, t) 6= 0 for all s ≥ S and for all
t ∈ S1. By homotopy invariance we have

ws(F ) = wS(F ), s ≥ S.

By the choice of R and the fact that γ(R) = 0 we further have F (R, t) 6= 0 for every
t ∈ S1 and therefore the winding number wR(F ) is well defined. It follows that

(171) int(Z,ΓF ) = wS(F )− wR(F ).

Using again that γ(R) = 0 we get from (169) that

(172) wR(F ) = w(η).

Moreover, because U − V decays exponentially, the map t 7→ F (S,t)
|F (S,t)| is homotopic

to the constant map t 7→ 1 and therefore

(173) wS(F ) = 0.

Combining (170) and (171) with (172) and (173) we obtain

(174) int(ũT,β,ε|Kc , ṽ|Kc) = −w(η).

The proposition now follows by combining (164) and (165) with (166), (167), (169),
and (174). �

The following Lemma enables us to estimate the winding number of ηũ,ṽ for fast
finite energy planes.

Lemma 4.3. Assume that ũ and ṽ are fast finite energy planes with common
asymptotic Reeb orbit γ such that im(ũ) 6= im(ṽ).

(a): Assume that the asymptotic eigenvectors of ũ and ṽ satisfy ζũ 6= ζṽ.
Then w(ηũ,ṽ) = 1.

(b): In general, w(ηũ,ṽ) ≤ 1.

Proof: We first prove assertion (a). In this case we have

ηũ,ṽ = max{ηu, ηv}.

Since ũ and ṽ are fast it follows from Corollary 0.13 that w(ηũ,ṽ) = 1. This proves
assertion (a).

To prove assertion (b) it suffices in view of the already proved assertion (a) to
consider the case ζũ = ζṽ. In this case we have

ηũ,ṽ < ηu = ηv.

Corollary 0.32 tells us that the winding number is monotone and hence using that
ũ is fast we get

w(ηũ,ṽ) ≤ w(ηu) = 1.

This finishes the proof of the Lemma. �

We are now in position to prove Siefring’s inequality

Proof of Theorem 4.1: The fact that int(ũ, ṽ) ≥ 0 is a consequence of positiv-
ity of intersection for holomorphic curves and was already stated in Theorem 2.3.
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To prove the second inequality we combine the definition of Siefring’s intersection
number with Proposition 4.2 and assertion (b) of Lemma 4.3 to get

(175) sief(ũ, ṽ) = int(ũT,ε, ṽ) + 1 = int(ũ, ṽ)− w(ηũ,ṽ) + 1 ≥ int(ũ, ṽ).

This finishes the proof of the theorem. �

In the proof of Theorem 4.1 we did not use assertion (a) of Lemma 4.3. Plug-
ging assertion (a) into (175) we see that in ”most” cases Siefring’s inequality is
actually an equality, namely

Theorem 4.4. Assume that ũ and ṽ are fast finite energy planes asymptotic to
the same non-degenerate periodic Reeb orbit such that their asymptotic eigenvectors
satisfy ζũ 6= ζṽ. Then

int(ũ, ṽ) = sief(ũ, ṽ).

Recall that R acts on a fast finite energy plane ũ = (u, a) by r∗(u, a) = (u, a+r).
Bringing the R-action into play we can give a quantitative statement what me mean
that in ”most” cases Siefring’s inequality is actually an equality.

Corollary 4.5. Assume that ũ = (u, a) and ṽ = (v, b) are two fast finite energy
planes with the same asymptotic Reeb orbit γ. Then there exists a C ⊂ R with the
property that #C ≤ 2 and for every r ∈ R \ C the algebraic intersection number
int(r∗ũ, ṽ) is defined and satisfies

int(r∗ũ, ṽ) = sief(r∗ũ, ṽ) = sief(ũ, ṽ).

Proof: That sief(r∗ũ, ṽ) = sief(ũ, ṽ) is an immediate consequence of the ho-
motopy invariance of Siefring’s intersection number and is true for any r ∈ R. To
prove the first equality we distinguish two cases.

Case 1: We assume that im(u) 6= im(v).

In this case we have

im(r∗ũ) 6= im(ṽ), ∀ r ∈ R.
Therefore the algebraic intersection number int(r∗ũ, ṽ) is defined for every r ∈ R.
Recall from Lemma 5.3 that the asymptotic eigenvector transforms under the R-
action as ζr∗ũ = e−

ηur
τ ζũ where τ > 0 is the period of the periodic Reeb orbit γ.

Therefore if we define

C := {r ∈ R : ζr∗ũ = ζṽ}
we conclude with the fact that asymptotic eigenvector ηu is different from zero that
the set C consists of at most one point. If r ∈ R \ C Theorem 4.4 implies that
int(r∗ũ, ṽ) = sief(r∗ũ, ṽ). This finishes the proof of the Corollary for Case 1.

Case 2: We assume that im(u) = im(v).

We first show that

(176) #{r ∈ R : im(r∗ũ) = im(ṽ)} ≤ 1.

To see that assume that

im
(
(r1)∗ũ

)
= im(ṽ) = im

(
(r2)∗ũ

)
, r1, r2 ∈ R.
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We have to show that r1 = r2. Without loss of generality assume that r1 = 0 and
r2 = r. Abbreviate

a := inf
z∈C

a(z).

In view of the asymptotic behavior of the fast finite energy plane ũ = (u, a) we
conclude that

a = min
z∈C

a(z) <∞.

Using that the image of ũ coincides with the image of r∗ũ = (u, a+ r) we conclude
that

a = a+ r = a+ r

and therefore r = 0. This establishes the truth of (176).

We now set
C0 := {r ∈ R : im(r∗ũ) = im(ṽ)}.

By (176) we have
#C0 ≤ 1.

Case 2 now follows by applying the reasoning of Case 1 to the set R \ C0. �

5. Computations and applications

Lemma 5.1. Assume that ũ = (u, a) is a fast finite energy plane with asymp-
totic Reeb orbit γ such that im(u) ∩ im(γ) = ∅. Then Siefring’s self-intersection
number of ũ vanishes, i.e.,

sief(ũ, ũ) = 0.

Proof: We argue by contradiction and assume that sief(ũ, ũ) 6= 0. By homo-
topy invariance of Siefring’s intersection number we get

sief(r∗ũ, ũ) 6= 0, ∀ r ∈ R.
It follows from Corollary 4.5 that there exists C ⊂ R of cardinality #C ≤ 2 such
that

int(r∗ũ, ũ) 6= 0, r ∈ R \ C.
That means for every r ∈ R \ C there exist zr1 , z

r
2 ∈ C with the property that

r∗ũ(zr1) = ũ(zr2).

Equivalently

(177) u(zr1) = u(zr2), a(zr1) + r = a(zr2), r ∈ R \ C.
In view of the asymptotic behavior the function a : C→ R is bounded from below.
It follows that

lim
r→∞

a(zr2) =∞

and therefore

(178) lim
r→∞

|zr2 | =∞.

In view of Step 2 of the proof of Corollary 2.2 there exists a compact subset K ⊂ C
such that

zr1 ∈ K, r ∈ R \ C.
Hence we can find a subsequence rν for ν ∈ N and z∗ ∈ K such that

lim
ν→∞

zrν1 = z∗ ∈ K.
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Taking advantage of (177) and (178) this implies that

u(z∗) = lim
ν→∞

u(zrν1 ) = lim
ν→∞

u(zrν2 ) ∈ im(γ).

In particular,

im(u) ∩ im(γ) 6= ∅.
This contradicts the assumption of the lemma and hence Siefring’s self-intersection
number of ũ has to vanish. �

The main idea in the proof of Lemma 5.1 was to take advantage of the R-action
on finite energy planes. A stronger result can be obtained by letting r go to infin-
ity and interpreting Siefring’s self-intersection number of a fast finite energy plane
with Siefring’s intersection number of the finite energy plane with the orbit cylinder
of its asymptotic Reeb orbit. This idea strictly speaking goes beyond the part of
Siefring’s intersection theory discussed here, since the orbit cylinder is not a finite
energy plane anymore but a punctured finite energy plane. The reader is invited
to have a look at Siefring’s article [101] to see how Siefring’s intersection theory
works as well for punctured finite energy planes. Using this technology one obtains
the following theorem which has Lemma 5.1 as an immediate Corollary.

Theorem 5.2. Assume that ũ = (u, a) is a fast finite energy plane with asymp-
totic Reeb orbit γ. Then Siefring’s self-intersection number of ũ can be computed
as

sief(ũ, ũ) = #
{

(z, t) ∈ C× S1 : u(z) = γ(t)
}
.

Proof: Abbreviate by τ > 0 the period of the periodic Reeb orbit γ. For
r ∈ R define

ũr : C→ N × R
by

ũr(e
2π(s+it)) =

(
u(e2π(s+r+it)), a(e2π(s+r+it))− τr

)
, (s, t) ∈ R× S1

and

ũr(0) =
(
u(0), a(0)− τr

)
= (−τr)∗ũ(0).

Then in view of the asymptotic behavior of ũ the restriction of ũr to C∗ = C \ {0}
converges in the C∞loc-topology to the orbit cylinder

γ̃ : C∗ → N × R, e2π(s+it) 7→ (γ(t), τs)

as r goes to infinity. In view of the homotopy invariance of Siefring’s intersection
number we have

sief(ũ, ũ) = sief(ũr, ũ), ∀ r ∈ R.
Hence by letting r go to infinity we obtain

(179) sief(ũ, ũ) = sief(γ̃, ũ).

Observe that the map

(z, t) 7→
(
z, e2π

(
a(z)
τ +it

))
gives rise to a bijection between intersection points{

(z, t) ∈ C× S1 : u(z) = γ(t)} ∼=
{

(z1, z2) ∈ C× C : ũ(z1) = γ̃(z2)
}
.
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Because ũ is fast u is an immersion transverse to the Reeb vector field R and
therefore

ũ t γ̃.

Since both ũ and γ̃ are holomorphic by positivity of intersection we obtain for the
algebraic intersection number

(180) int(ũ, γ̃) = #
{

(z, t) ∈ C× S1 : u(z) = γ(t)
}
.

The asymptotic eigenvector ζγ̃ of the orbit cylinder vanishes while the asymptotic
eigenvector ζũ does not vanish. Therefore it follows from (4.4) that

(181) int(ũ, γ̃) = sief(ũ, γ̃).

Combining (179, (180), and (181) the Theorem follows. �

One reason why the vanishing of Siefring’s self-intersection number of a fast fi-
nite energy plane ũ = (u, a) is so useful is the fact that it implies that u is an
embedding.

Theorem 5.3. Assume that ũ = (u, a) is a fast finite energy plane with as-
ymptotic orbit γ such that im(u) ∩ im(γ) = ∅. Then u : C→ N is an embedding.

Proof: Since ũ is fast the map u is already an immersion and hence it remains
to prove that it is injective. Hence assume that z, z′ ∈ C such that

(182) u(z) = u(z′).

We first show that

(183) a(z) = a(z′)

In order to prove (183) we argue by contradiction and assume a(z) 6= a(z′). Set
c = a(z′)− a(z). It follows that

c∗ũ(z) = (u(z), a(z) + c) = (u(z′), a(z′)) = ũ(z′).

But since c 6= 0 the maps ũ and c∗ũ have different images. Therefore their alge-
braic intersection number int(ũ, c∗ũ) is defined and by positivity of intersection we
conclude that

int(ũ, c∗ũ) ≥ 1.

Therefore by Theorem 4.1 we obtain

sief(ũ, ũc) ≥ 1.

Since Siefring’s intersection number is a homotopy invariant we get

sief(ũ, ũ) ≥ 1.

However, by assumption of the theorem we have im(u) ∩ im(γ) = ∅ and therefore
by Lemma 5.1 it follows that Siefring’s self-intersection number of ũ vanishes. This
contradiction proves (183).
It follows from equations (182) and (183) that

ũ(z) = ũ(z′).

A point z ∈ C is called an injective point of ũ if and only if ũ−1(ũ(z)) = {z} and
dũ(z) 6= 0. Abbreviate

I := {z ∈ C : z injective point of ũ}
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the set of injective points and let

S := C \ I
be its complement, i.e., the set of non-injective points. For a finite energy plane the
following alternative holds. Either the set S of non-injective points is discrete, or the
finite energy plane is multiply covered in the sense that there exists ṽ : C→ N ×R
a finite energy plane and a polynomial p satisfying deg(p) ≥ 2 such that

ũ = ṽ ◦ p.
For a proof of this fact we refer to [53, Appendix]. We also recommend to look
at the analogue of this fact in the closed case, see [81, Proposition 2.5.1,Theorem
E.1.2]. We next explain that if a finite energy plane ũ = (u, a) is fast it cannot be
multiply covered. To see that suppose by contradiction that there exists a finite
energy plane ṽ = (v, b) such that w̃ = ṽ ◦ p for a polynomial of degree at least 2. It
follows that

u = v ◦ p.
Since the polynomial p has degree at least 2 it must have a critical point, i.e., there
exists a point z ∈ C such that

dp(z) = 0.

It follows that
du(z) = dv(p(z))dp(z) = 0

contradicting the fact that u is an immersion, since it is fast. We have shown that ũ
cannot be multiply covered and therefore its set S of non-injective points is discrete.

In order to finish the proof of the theorem let us now assume that there exists
z 6= z′ ∈ C such that ũ(z) = ũ(z′). For ε > 0 let us abbreviate by Dε(z) = {w ∈ C :
||w − z|| ≤ ε} the closed ε-ball around z. Because the set S of non-injective points
of ũ is discrete we can find ε > 0 such that the following condition holds true

im(ũ|∂Dε(z)) ∩ im(ũ|∂Dε(z′)) = ∅.
In view of this fact the algebraic intersection number

int(ũ|Dε(z), ũ|Dε(z′)) ∈ Z
is well defined. Because ũ(z) = ũ(z′) it follows from positivity of intersection that

int(ũ|Dε(z), ũ|Dε(z′)) ≥ 1.

Choose c0 > 0 such that for every |c| ≤ c0 it holds that

im(ũ|∂Dε(z)) ∩ im(c∗ũ|∂Dε(z′)) = ∅.
By homotopy invariance of the algebraic intersection number we conclude that

int(ũ|Dε(z), c∗ũ|Dε(z′)) ≥ 1.

Hence by positivity of intersection if 0 < |c| ≤ c0 we obtain

int(ũ, c∗ũ) ≥ 1.

Again this implies that sief(ũ, ũ) ≥ 1 in contradiction to the assumption of the
theorem. This finishes the proof of the theorem. �

We will see later in Lemma 6.3 that the converse of Theorem 5.3 is true as well.
With the help of this Lemma we can give now the following characterization of fast
finite energy planes with vanishing Siefring self-intersection number.
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Theorem 5.4. Assume that ũ = (u, a) is a fast finite energy plane with as-
ymptotic orbit γ. Then the following assertions are equivalent.

(i): sief(ũ, ũ) = 0,
(ii): im(u) ∩ im(γ) = ∅,
(iii): u is embedded,
(iv): ũ is embedded.

Proof: The equivalence of (i) and (ii) follows from Theorem 5.2. That (ii)
implies (iii) is the content of Theorem 5.3. The implication (iii) ⇒ (iv) is obvious.
Finally the implication (iv) ⇒ (i) is proved in Lemma 6.3 below. �

A further important contribution of Siefring’s intersection number is that it can
be used to make sure that two fast finite energy planes do not intersect.

Corollary 5.5. Assume that ũ = (u, a) is a fast finite energy plane with as-
ymptotic orbit γ such that im(u)∩ im(γ) = ∅. Assume that ṽ is a fast finite energy
plane which is homotopic to ũ and such that im(ṽ) 6= im(ũ). Then

im(ũ) ∩ im(ṽ) = ∅.

Proof: By Lemma 5.1 we have

sief(ũ, ũ) = 0.

Hence by homotopy invariance of Siefring’s intersection number we obtain

sief(ũ, ṽ) = 0.

Because im(ũ) 6= im(ṽ) the algebraic intersection number int(ũ, ṽ) is well-defined
and by Theorem 4.1 we have

0 ≤ int(ũ, ṽ) ≤ sief(ũ, ṽ) = 0

so that we get
int(ũ, ṽ) = 0.

By positivity of intersection from Theorem 2.3 we conclude that

im(ũ) ∩ im(ṽ) = ∅.
This finishes the proof of the Corollary. �



CHAPTER 14

The moduli space of fast finite energy planes

1. Fredholm operators

Before explaining the class of operators we are interested we make some general
remarks about Cauchy-Riemann operators. Consider C with its standard complex
structure i but with a measure µ maybe different from the Lebesgue measure,
namely

µ = µh := hdx ∧ dy

where h : C→ R+ is a smooth positive function. Abbreviate by

∂̄ : C∞(C,C)→ C∞(C,C)

the standard Cauchy-Riemann operator on C which is given for ζ ∈ C∞(C,C) by

∂̄ζ = ∂xζ + i∂yζ.

Then we define the Cauchy-Riemann operator with respect to the measure µ as

∂̄µ :=
1√
h
∂̄ : C∞(C,C)→ C∞(C,C).

Of course

ker∂̄µ = ker∂̄.

The reason why it is natural to consider the operator ∂̄µ is, that if we endow
the target C with its standard inner product the norm ||∂̄µζ|| has an intrinsic
description, i.e., a description which only depends on µ, the complex structure i on
the domain C, and the inner product on the target C but not on the coordinates
on C used to define ∂̄. Why this is true is explained in the following lemma.

Lemma 1.1. Assume that z ∈ C and ẑ 6= 0 ∈ TzC = C is an arbitrary
nonvanishing tangent vector, then

||∂̄µζ(z)|| = ||dζ(z)ẑ + idζ(z)iẑ||√
µ(ẑ, iẑ)

.

Since ẑ is arbitrary, the right hand side is intrinsic.

Proof: For ẑ 6= 0 ∈ TzC we abbreviate

f(ẑ) =
||dζ(z)ẑ + idζ(z)iẑ||√

µ(ẑ, iẑ)
.

By definition we have

||∂̄µζ(z)|| = f(1).

169



170 14. THE MODULI SPACE OF FAST FINITE ENERGY PLANES

Therefore it remains to show that the function f is constant. For ẑ = x̂ + iŷ =

r̂ cos θ̂ + ir̂ sin θ̂ = r̂eiθ̂ 6= 0 ∈ TzC = C we compute

dζ(z)ẑ + idζ(z)iẑ = dζ(z)x̂+ dζ(z)iŷ + idζ(z)ix̂− idζ(z)ŷ

= dζ(z)x̂+ idζ(x)ix̂− i
(
dζ(z)ŷ − idζ(z)iŷ

)
= (x̂− iŷ)

(
dζ(z)1 + idζ(z)i

)
= r̂e−iθ̂∂̄ζ(z)

and therefore

||dζ(z)ẑ + idζ(z)iẑ|| = r̂||∂̄ζ(z)||.
Moreover,

µ(z)(ẑ, iẑ) = h(z)(dx ∧ dy)(x̂+ iŷ,−ŷ + ix̂)

= h(z)(x̂2 + ŷ2)

= r̂2h(z).

Combining these expressions we conclude that

f(ẑ) =
||∂̄ζ(z)||√

h(z)

is independent of ẑ. This proves the lemma. �

Choose a function γ ∈ C∞([0,∞), (0,∞)) satisfying

γ(r) =

{
1 r ≤ 1

2
1

4π2r2 r ≥ 1.

Define the function hγ ∈ C∞(C,R+) by

hγ(z) = γ(|z|).

In the following we endow the complex plane C with the measure µ = µhγ . The
measure µ has the following properties. If Dr = {z ∈ C : ||z|| ≤ r} denotes the ball
of radius r centered at the origin we have

µ|D 1
2

= dx ∧ dy.

Moreover, if φ : R× S1 → C \ {0} is the biholomorphism

φ(s, t) = e2π(s+it), (s, t) ∈ R× S1,

then we obtain

φ∗µ|C\D1
= ds ∧ dt.

That means on the cylindrical end C\D1 the measure µ coincides with the standard
measure on the cylinder.

Denote by M2(R) the vector space of real 2× 2-matrices. Let

S ∈ C∞(C,M2(R))

be a smooth family of 2× 2-matrices parametrized by C. Suppose that there exists

S∞ ∈ C∞(S1,Sym(2))
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a smooth loop of symmetric 2×2-matrices such that uniformly in the C∞-topology
it holds that

lim
s→∞

2πe2πsS(e2π(s+it)) = S∞(t).

We abbreviate by

(184) H1 := W 1,2(C, µ;C)

the Hilbert space of W 1,2-maps from C to C where the domain C is endowed with
the measure µ and the target with the standard inner product and similarly for the
L2-space

(185) H0 := L2(C, µ;C).

We consider the bounded linear operator

(186) LS : H1 → H0, ζ 7→ 1√
hγ

(∂̄ζ + Sζ) = ∂̄µζ +
1√
hγ
Sζ.

From the assumed behavior of S we also get an asymptotic operator

AS∞ : W 1,2(S1,C)→ L2(S1,C), ζ 7→ −J0∂tζ − S∞ζ.
Associated to the loop of symmetric matrices S∞ is the path of symplectic matrices

Ψ = ΨS∞ ∈ C∞([0, 1],Sp(1))

defined by
∂tΨ(t) = J0S∞(t)Ψ, Ψ(0) = id.

The following Theorem is due to Schwarz [97]

Theorem 1.2 (Schwarz). Assume that kerAS∞ = {0}, i.e., the path of sym-
plectic matrices ΨS∞ is non-degenerate. Then LS is a Fredholm operator and its
index computes to be

indLS = µCZ(ΨS∞) + 1.

Remark 1.3. The theorem of Schwarz is very reminiscent of the theorem of
Riemann-Roch. Indeed, by noting that the Euler characteristic of the complex plane
is one, the index formula of Schwarz can be interpreted as indLS = µCZ(ΨS∞) +
1 · χ(C). We refer to the thesis by Bourgeois [18, Section 5.2] for a derivation of
Schwarz theorem out of the Riemann-Roch formula.

We do not prove Schwarz theorem in detail, however, we next illustrate it for
a family of examples.

Illustration of Theorem 1.2: Pick a cutoff function β ∈ C∞(R, [0, 1]) sat-
isfying

β(s) =

{
1 s ≥ 1
0 s ≤ 0.

Choose further
µ ∈ R \ 2πZ.

Define S = Sµ : C→ Sym(2) by

S(e2π(s+it)) =
β(s)µ

2πe2πs
id.

We first examine the kernel of the operator LS . Suppose that ζ ∈ kerLS and set

η = ζ ◦ φ : R× S1 → C.
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It follows that η is a solution of the PDE

(187) ∂sη + i∂tη + βµη = 0.

Write η as a Fourier series

η(s, t) =

∞∑
k=−∞

ηk(s)e2πikt.

It follows from (187) that each Fourier coefficient is a solution of the ODE

∂sηk(s)− 2πkηk(s) + β(s)µηk(s) = 0, k ∈ Z.

Since β(s) = 1 for s ≥ 1 we get

ηk(s) = ηk(1)e(2πk−µ)(s−1), s ≥ 1.

Because η|[0,∞)×S1 ∈ L2([0,∞)× S1,C) we conclude

(188) ηk = 0, k >
µ

2π

Since β(s) = 0 for s ≤ 0 we conclude that

ηk(s) = ηk(0)e2πks, s ≤ 0.

Because ζ ∈ W 1,2(C, µ;C) it is continuous and the limit lims→−∞ η(s, t) = ζ(0)
exists. Therefore,

(189) ηk = 0, k < 0.

Denoting by b µ2π c = max{n ∈ Z : n ≤ µ
2π} the integer part of µ

2π we conclude from
(188) and (189) that

(190) dim(kerLS) =

{
2
(
b µ2π c+ 1

)
b µ2π c ≥ 0

0 else.

We next compute the dimension of the cokernel of LS . Suppose that η ∈ cokerLS =
(imLS)⊥H0 . That means that η ∈ H0 satisfies

(191) 〈LSζ, η〉H0
= 0, ∀ ζ ∈ H1.

We introduce the function

f ∈ C∞(R,R+), s 7→ 2πe2πs
√
γ(e2πs).

Note that f satisfies

f(s) =

{
2πe2πs s ≤ − ln(2)

2π
1 s ≥ 0.
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We compute using the coordinate change z = x+ iy = e2π(s+it)

〈LSζ, η〉H0
=

∫
C

〈
1√
γ(|z|)

(
∂xζ + i∂yζ + Sζ

)
, η

〉
γ(|z|)dxdy(192)

=

∫
R

∫ 1

0

〈
1

2πe2πs
√
γ(e2πs)

(
∂sζ + i∂tζ

)
, η

〉
4π2e4πsγ(e2πs)dsdt

+

∫
R

∫ 1

0

〈
1√

γ(e2πs)
Sζ, η

〉
4π2e4πsγ(e2πs)dsdt

=

∫
R

∫ 1

0

〈
∂sζ + i∂tζ, η

〉
f(s)dsdt+

∫
R

∫ 1

0

〈
βµζ, η

〉
f(s)2dsdt

=

∫
R

∫ 1

0

〈
∂sζ + i∂tζ, η

〉
f(s)dsdt+

∫
R

∫ 1

0

〈
βµζ, η

〉
f(s)dsdt

=

∫
R

∫ 1

0

〈
∂sζ + i∂tζ + βµζ, η

〉
f(s)dsdt

From (191) and (192) we obtain∫
R

∫ 1

0

〈
∂sζ + i∂tζ + βµζ, η

〉
f(s)dsdt = 0, ∀ ζ ∈ H1.

By elliptic regularity for the Cauchy Riemann equation this implies that the L2-
function η is smooth and therefore using integration by parts η is a solution of the
PDE

−∂sη + i∂tη +

(
µβ − ∂sf

f

)
η = 0

or equivalently
−∂sη + i∂tη +

(
µβ − ∂s(ln f)

)
η = 0.

By introducing the function

g ∈ C∞(R,R), s 7→ µβ − ∂s(ln f)

this can be written more compactly as

(193) −∂sη + i∂tη + gη = 0.

Note that the function g satisfies

g(s) =

{
−2π s ≤ −1
µ s ≥ 1.

We again write η as a Fourier series

η(s, t) =

∞∑
k=−∞

ηk(s)e2πikt.

By (193) we obtain for each Fourier coefficient the ODE

−∂sηk − 2πηk + gηk = 0, k ∈ Z.
Since g(s) = µ for s ≥ 1 we obtain

ηk(s) = ηk(1)e(µ−2πk)(s−1), s ≥ 1.

Because η|[0,∞)×S1 ∈ L2([0,∞)× S1,C) we conclude from this that

(194) ηk = 0, k ≤ µ

2π
.
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Using that g(s) = −2π for s ≤ −1 we get

ηk(s) = ηk(−1)e−2π−2πks+ 1 = ηk(−1)e−2π(k+1)(s+1)

and because η as a smooth function on C has to converge when s goes to −∞ we
must have

(195) ηk = 0, k ≥ 0.

Combining (194) and (195) we get for the dimension of the cokernel of LS the
formula

(196) dim(cokerLS) =

{
2
(
− b µ2π c − 1

)
b µ2π c < −1

0 else.

Combining (190) and (196) we obtain for the index of LS

indLS = dim(kerLS)− dim(cokerLS) = 2

(⌊ µ
2π

⌋
+ 1

)
= µCZ(ΨS∞) + 1.

This finishes the illustration of Theorem 1.2. �

2. The first Chern class

In this section we explain the first Chern class of complex vector bundles over
the two dimensional sphere. Suppose that E → S2 is a complex vector bundle,
satisfying rkCE = n. We decompose the sphere S2 = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 +

x2
3 = 1} into the union of the upper and lower hemisphere

(197) S2 = S2
+ ∪ S2

−

where

S2
± = {(x1, x2, x3) ∈ R3 : ±x3 ≥ 0}.

Note that both the upper and the lower hemisphere are diffeomorphic to a closed
disk. Therefore there exist complex trivializations

T± : E|S2
±
→ S2

± × Cn.

By endowing the vector bundle E with a Hermitian metric we can assume that T±
are actually unitary trivializations. Let

S = S2
+ ∩ S2

− ⊂ S2

be the equator which we identify with the circle S1 = R/Z via the map t 7→
(cos 2πt, sin 2πt, 0). If t ∈ S, we obtain a unitary linear map

T−,tT
−1
+,t : Cn → Cn

i.e.,

T−,tT
−1
+,t ∈ U(n).

We define the first Chern class of E as

c1(E) := deg
(
t 7→ det(T+,tT

−1
−,t)

)
∈ Z.

Note that since S2
± are contractible any two trivializations over the upper or lower

hemisphere are homotopic and therefore the first Chern class is independent of the
choice of T±. The first Chern class has the following properties

(i): If E = S2 × Cn is the trivial bundle, it holds that c1(E) = 0.
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(ii): If E1 → S2 and E2 → S2 are two complex vector bundles, the first
Chern class of their Whitney sum satisfies

(198) c1(E1 ⊕ E2) = c1(E1) + c1(E2)

and similarly for their tensor product

(199) c1(E1 ⊗ E2) = c1(E1) + c1(E2).

(iii): If L→ S2 is a complex line bundle, then c1(L) = e(L) the Euler num-
ber of L. In particular, c1(L) does not depend on the complex structure
of L.

To see why (198) is true choose unitary trivializations

T1
± : E1|S2

±
→ S2

± × Cn1 , T2
± : E2|S2

±
→ S2

± × Cn2

with n1 = rkCE1 and n2 = rkCE2. We obtain unitary trivializations

T1
± ⊕ T2

± : (E1 ⊕ E2)|S2
±
→ S2

± × Cn1+n2 .

For t ∈ S1 we get

det
(
(T1

+,t ⊕ T2
+,t)(T

1
−,t ⊕ T2

−,t)
−1
)

= det
(
T1

+,t(T
1
−,t)

−1 ⊕ T2
+,t(T

2
−,t)

−1
)

= det
(
T1

+,t(T
1
−,t)

−1
)
· det

(
T2

+,t(T
2
−,t)

−1
)
.

Therefore the first Chern class of the Whitney sum E1 ⊕ E2 satisfies

c1(E1 ⊕ E2) = deg
(
t 7→ det

(
T1

+,t(T
1
−,t)

−1
)
· det

(
T2

+,t(T
2
−,t)

−1
))

= deg
(
t 7→ det

(
T1

+,t(T
1
−,t)

−1
))

+ deg
(
t 7→ det

(
T2

+,t(T
2
−,t)

−1
))

= c1(E1) + c1(E2).

This proves (198) and (199) is proved similarly.

The first Chern class can be associated as well to a symplectic vector bundle
(E,ω) → S2, i.e., each fiber (Ez, ωz) for z ∈ S2 is a symplectic vector space.
In fact the space J (E,ω) consisting of all ω-compatible almost complex structures
J : E → E is nonempty and contractible. In particular, J (E,ω) is connected.
Hence we set

c1(E,ω) := c1(E, J), J ∈ J (E,ω)

and this is well defined by homotopy invariance of the first Chern class, since
J (E,ω) is connected.

Assume that E → S2 is a symplectic vector bundle. As usual we identify the
equator of S2 with the circle S1 = R/Z. Suppose that for t ∈ [0, 1] we have a
smooth family of symplectic linear maps

Φt : E[0] → E[t]

such that

Φ0 = id: E[0] → E[0]

and for Φ1 : E[0] → E[1] = E[0] the non-degeneracy condition

(200) ker(Φ1 − id) = {0}



176 14. THE MODULI SPACE OF FAST FINITE ENERGY PLANES

holds true. In this set-up we can associate to the path t 7→ Φt two Conley-Zehnder
indices. Namely, if

T+ : E|S2
+
→ S2

+ × Cn, 2n = rkRE

is a symplectic trivialization we define the smooth path

Ψ+ : [0, 1]→ Sp(n), t 7→ T+,[t]ΦtT
−1
+,[0]

and set

µ+
CZ(Φ) := µCZ(Ψ+)

which is independent of the trivialization T+ by homotopy invariance. Similarly we
define µ−CZ(Φ) for a symplectic trivialization over S2

−.

Lemma 2.1. The difference of the two Conley-Zehnder indices satisfies

µ+
CZ(Φ)− µ−CZ(Φ) = 2c1(E).

Proof: Choose J ∈ J (E,ω) and choose unitary trivializations T± : E|S2
±
→

S2
± × Cn with respect to J and ω(·, J ·) such that

T+,0 = T−,0 =: T0 : E0 → Cn.

For t ∈ [0, 1] abbreviate

U[t] := T+,[t]T
−1
−,[t] ∈ U(n)

so that we get a loop

U : S1 → U(n), [t] 7→ U[t].

We obtain

Ψ+([t]) = T+,[t]ΦtT
−1
+,[0] = T+,[t]T

−1
−,[t]T−,[t]ΦtT

−1
0 = U([t])Ψ−([t]).

In particular, the path Ψ+ is homotopic with fixed endpoints to the concatenation

(201) Ψ+ ∼= UΨ−(1)#Ψ−.

In view of the non-degeneracy condition (200) we have by definition of the Conley-
Zehnder index

(202) µ+
CZ(Φ) = µCZ(Ψ+) = µ∆(ΓΨ+)

where ∆ is the diagonal in the symplectic vector space (Cn×Cn,−ω⊕ω) and ΓΨ+

is the graph of Ψ+. By homotopy invariance and the concatenation property of the
Maslov index we conclude

µ∆(ΓΨ+
) = µ∆(ΓΨ−) + µ∆(ΓUΨ−(1))

Since U is a loop we can write this equation as

(203) µ∆(ΓΨ+
) = µCZ(Ψ−) + µ(ΓU ) = µ−CZ(Φ) + µ(ΓU ).

Since

ΓU =

(
U 0
0 id

)
∆

the Maslov index for the loop ΓU computes as
(204)

µ(ΓU ) = deg

(
det

(
U 0
0 id

)2
)

= deg
(
det(U)2

)
= 2deg

(
det(U)

)
= 2c1(E).

Combining (202), (203), and (204) the Lemma follows. �
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3. The normal Conley-Zehnder index

Assume that ũ : C→ N ×R is an embedded non-degenerate finite energy plane.
Set

C := ũ(C) ⊂ N × R.
Since ũ is an embedding C is a two dimensional submanifold of N × R. Because
ũ is holomorphic the tangent bundle TC is invariant under the SFT-like almost
complex structure J . The fiber of the normal bundle

NC → C

at a point c ∈ C is given by NcC := (TcC)⊥ where the orthogonal complement is
taken with respect to the metric ω(·, J ·). Because the almost complex structure J
is ω-compatible the normal bundle NC is invariant under J as well. Because C is
contractible we can choose a symplectic trivialization

TN : ũ∗NC → C× C.

Moreover, in view of the asymptotic behavior of ũ explained in Theorem 5.2 we can
arrange that TN extends smoothly to a symplectic trivialization

TN : γ∗ξ → S1 × C

where γ is the asymptotic Reeb orbit of ũ. We define the normal Conley-Zehnder
index of ũ as

µNCZ(ũ) := µCZ

(
t 7→ TN,td

ξφtτR (γ(0))T−1
N,0

)
.

Recall from (148) that the usual Conley-Zehnder index for ũ is defined as follows.
Choose a symplectic trivialization

Tξ : γ∗ξ → S1 × C

which extends to a symplectic trivialization

Tξ : γ∗ξ → S1 × C

and set

µCZ(ũ) = µCZ

(
t 7→ Tξ,td

ξφtτR (γ(0))T−1
ξ,0

)
.

Note that both the usual Conley-Zehnder index and the normal Conley-Zehnder
index are independent of the trivializations chosen, because over the contractible
space C all trivializations are homotopic. On the other hand although TN and
Tξ trivialize γ∗ξ there is no need that the two Conley-Zehnder indices agree, since
over the circle two trivializations do not need to be homotopic, in view of the fact
that the circle has a nontrivial fundamental group. The following theorem tells us
how the two Conley-Zehnder indices are related. It is due to Hofer, Wysocki, and
Zehnder, see [57].

Theorem 3.1. Assume ũ is an embedded non-degenerate finite energy plane.
Then

µNCZ(ũ) = µCZ(ũ)− 2.

As preparation for the proof of Theorem 3.1 we associate to an embedded
non-degenerate finite energy plane ũ two complex vector bundles over the two
dimensional sphere S2

`1 → S2, `2 → S2.
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Abbreviate by
η := 〈∂r, R〉 ⊂ T (N × R)

the subbundle of T (N × R) spanned by the Reeb vector field R and the Liouville
vector field ∂r. Note that this gives rise to a complex splitting of vector bundles

T (R×N) = η ⊕ ξ.
We decompose the sphere S2 into upper and lower hemisphere S2 = S2

+ ∪ S2
− as in

the discussion about the first Chern class in (197). If

S̊2
± = {(x1, x2, x3) ∈ S2 : 0 < ±x3 ≤ 1}

denotes the interior of S2
± we get diffeomorphisms

ψ± : S̊2
± → C, (x1, x2, x3) 7→ e2π arctan

π
√
x2
1+x2

2
2 (x1 + ix2).

Note that ψ+ is orientation preserving, while ψ− is orientation reversing. In view
of the asymptotic behavior of ũ explained in Theorem 5.2 we get a complex vector
bundle `1 over the sphere S2 which is characterized by

`1|S̊2
+

= ψ∗+ũ
∗TC = ψ∗+TC, `1|S̊2

−
= ψ∗−ũ

∗η.

Note that if we identify the equator S = S2
+ ∩ S2

− with the circle S1 by mapping
t ∈ S1 to (cos 2πt, sin 2πt, 0) we obtain

`1|S1 = γ∗η

where γ is the asymptotic Reeb orbit of the finite energy plane ũ. Similarly, we
define a complex line bundle `2 over the sphere S2 by

`2|S̊2
+

= ψ∗+ũ
∗NC, `2|S̊2

−
= ψ∗−ũ

∗ξ.

Over the equator this vector bundle satisfies

`2|S1 = γ∗ξ.

Lemma 3.2. The first Chern classes of the two complex line bundles `1 and `2
over S2 satisfy

1 = c1(`1) = −c1(`2).

Proof: We define two more vector bundles `′1 and `′2 over the sphere S2. The
vector bundle `′1 is characterized by the conditions

`′1|S̊2
+

= ψ∗+ũ
∗η, `′1|S̊2

−
= ψ∗−ũ

∗η

and therefore satisfies over the equator

`′1|S1 = γ∗η.

The vector bundle `′2 is determined by

`′2|S̊2
+

= ψ∗+ũ
∗ξ, `′1|S̊2

−
= ψ∗−ũ

∗ξ

and therefore meets
`′2|S1 = γ∗ξ.

In view of
ũ∗TC ⊕ ũ∗NC = ũ∗T (N × R) = ũ∗ξ ⊕ ũ∗η

we obtain
`1 ⊕ `2 = `′1 ⊕ `′2.
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Using the additivity of the first Chern class under Whitney sum (198) we get the
formula

(205) c1(`1) + c1(`2) = c1(`1 ⊕ `2) = c1(`′1) + c1(`′2).

We next claim that

(206) c1(`′1) = c1(`′2) = 0.

To see that c1(`′2) = 0 we first choose a nonvanishing section σ : S1 → γ∗ξ. We
extend σ to a transverse section σ : C→ ũ∗ξ. We define a section s ∈ Γ(`′2) by

s(x) =

 σ(ψ+(x)) x ∈ S̊2
+

σ(ψ−(x)) x ∈ S̊2
−

σ(t) t ∈ S1.

By construction all of the zeros of s lie in S̊2
+∪S̊2

− and they appear in pairs. Namely

to each zero x of s in S̊2
+ corresponds the zero ψ−1

− ψ+(x) ∈ S̊2
− and vice versa. Be-

cause ψ+ is orientation preserving and ψ− is orientation reversing the signs of the
two zeros cancel and therefore the Euler number of `′2 vanishes. Because the first
Chern class of a complex line bundle is just its Euler number we have shown that
c1(`′2) = 0. The same argument proves that c1(`′1) = 0 as well. However, the van-
ishing of c1(`′1) can be understood even easier by noting that the Reeb and Liouville
vector fields R and ∂r give rise to a trivialization of `′1. Formula (206) is established.

Combining (205) and (206) we conclude that

(207) c1(`1) = −c1(`2)

and it suffices to show that c1(`1) = 1. To see that we construct again a section
s ∈ Γ(`1) in order to compute the Euler number of `1. Since `1|S̊2

−
= ψ∗−ũ

∗η we

define s|S2
−

as the pullback of the Liouville vector field ∂r. Note that therefore s|S2
−

has no zeros. Using that ũ∗TC = TC we have to find for the extension to the upper
hemisphere a vector field on C which points outward asymptotically. For example
the vector field x∂x + y∂y meets this requirement. Note that this vector field has
one positive zero at the origin. Since ψ+ is orientation preserving we conclude that
there exists a section s ∈ Γ(`1) which has precisely one positive zero. That means
that the Euler number of `1 is one and therefore

(208) c1(`1) = e(`1) = 1.

Equations (205) and (206) prove the lemma. �

Proof of Theorem 3.1: By construction of `2 we have by Lemma 2.1

µNCZ(ũ)− µCZ(ũ) = 2c1(`2).

The Theorem now follows from Lemma 3.2. �

4. An implicit function theorem

Assume that γ is a non-degenerate periodic Reeb orbit. Recall that by M̂(γ) we
denote the moduli space of (parametrized) finite energy planes with unparametrized

asymptotic orbit [γ]. The group of direct similitudes Σ = C∗ n C acts on M̂(γ)
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by reparametrization and its quotient M(γ) = M̂(γ)/Σ is the moduli space of
unparametrized finite energy planes asymptotic to [γ]. We denote by

Π: M̂(γ)→M(γ), ũ→ [ũ]

the projection. Suppose that ũ ∈ M̂(γ) is embedded and set C = ũ(C). Choose
a unitary trivialization T = TN : NC → C × C, i.e., a trivialization which is com-
plex with respect to the SFT-like almost complex structure J and orthogonal with
respect to the inner product ω(·, J ·) and such that it extends to a trivialization
T : γ∗ξ → S1 × C. Define a smooth path

Ψ = ΨT : [0, 1]→ Sp(1)

by setting for t ∈ [0, 1]

Ψ(t) = Ttd
ξφtτR (γ(0))T−1

0 .

Note that Ψ(0) = id: ξγ(0) → ξγ(0) and Ψ is non-degenerate in the sense that
ker(Ψ(1)− id) 6= {0} because γ is non-degenerate. Let

S∞ = ST
∞ ∈ C∞([0, 1],Sym(2))

generate the path Ψ by

∂tΨ = J0S∞Ψ.

In [57] Hofer, Wysocki, and Zehnder construct a smooth map

(209) S = ST
ũ : C→M2(R)

which has the property that 2πe2πsS(e2π(s+it)) uniformly converges in the C∞-
topology to S∞(t), when s goes to infinity. Recall the Hilbert spaces H1 and H0

from (184) respectively (185). Then the map S gives rise to a bounded linear
operator

LS : H1 → H0

as defined in (186). One should think of the operator LS as the linearization of the
holomorphic curve equation modulo the action of the group of direct similitudes
Σ by reparametrization. That we mod out the reparametrization action is due to
the fact that we only consider variations in the normal direction. The importance
of the operator LS lies in the following implicit function theorem proved by Hofer,
Wysocki, and Zehnder in [57].

Theorem 4.1. Assume that ũ ∈ M̂(γ) is embedded and the operator LS : H1 →
H0 is surjective. Then locally around [ũ] the space M(γ) is a manifold and there
exists U ⊂ ker(LS) an open neighborhood of 0 and a map

F̂ : U → M̂(γ)

satisfying F̂(0) = ũ, such that the map

F = ΠF̂ : U →M(γ)

defines a local chart around [û]. Moreover, if ζ ∈ U the intersection points of ũ and

F̂(ζ) are related by{
(z, z′) ∈ C× C : ũ(z) = F̂(ζ)(z′)

}
=
{

(z, z) : z ∈ C, ζ(z) = 0
}
.
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Using Theorem 1.2 and Theorem 3.1 we can under the assumptions of Theo-
rem 4.1 compute the local dimension of the moduli space M(γ) at [ũ] by

dim[ũ]M(γ) = dim kerLS(210)

= indLS = µCZ(ΨS∞) + 1

= µNCZ(ũ) + 1

= µCZ(ũ)− 1.

5. Exponential weights

Suppose that γ is a non-degenerate Reeb orbit. Abbreviate by

M̂fast(γ) ⊂ M̂(γ)

the subspace of fast finite energy planes asymptotic to γ. Assume that ũ = (u, a) ∈
M̂fast(γ) is embedded. Recall that if U(s, t) ∈ ξγ(t) is an asymptotic representative
of ũ we can write

U(s, t) = eηs
(
ζ(t) + κ(s, t)

)
where κ decays with all its derivatives exponentially, η = ηu ∈ S(Aγ) ∩ (−∞, 0)
is a negative eigenvalue of the asymptotic operator and ζ = ζũ ∈ Γ(γ∗ξ) is an
eigenvector of the asymptotic operator Aγ to the eigenvalue η. Pick further a
unitary trivialization

Tξ : u∗ξ → C× C
which extends to a trivialization

Tξ : γ∗ξ → S1 × C.

In particular, Tξζ ∈ C∞(S1,C) and the winding of the eigenvalue η is defined as

w(η) = w(Tξζ) = deg

(
t 7→ Tξζ(t)

|Tξζ(t)|

)
.

Because ũ is fast we have by Corollary 0.13

w(η) = 1.

Recall further from Corollary 0.32 that the winding is monotone, i.e., if η ≤ η′,
then w(η) ≤ w(η′). If µCZ(u) ≥ 3 choose δ ≤ 0 such that

max
{
η ∈ S(Aγ) : w(η) = 1

}
< δ < min

{
η ∈ S(Aγ) : w(η) = 2

}
.

That a non-positive δ with this property exists is guaranteed by Theorem 0.33 in
view of the assumption that µCZ(u) ≥ 3. If µCZ(u) ≤ 2 it follows from Theorem 0.5
that µCZ(u) = 2 and we set in this case δ = 0. Because ũ is embedded we set
C = ũ(C) ∈ N × R and choose in addition a unitary trivialization

TN : u∗NC → C× C

which extends to a trivialization

TN : γ∗ξ → S1 × C.

This trivialization gives rise to a smooth map

S = STN
ũ : C→M2(R)
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as mentioned in (209). Recall that φ : R×S1 → C\{0} denotes the biholomorphism
(s, t) 7→ e2π(s+it). For δ ≤ 0 we introduce the Hilbert space

Hδ
1 =

{
ζ ∈ H1 : e−δsζ ◦ φ|[0,∞)×S1 ∈W 1,2

(
[0,∞)× S1,C

)}
,

i.e., the subvector space of functions in H1 introduced in (184) which decay on the
cylindrical end exponentially with weight |δ|. Similarly, we introduce

Hδ
0 =

{
ζ ∈ H0 : e−δsζ ◦ φ|[0,∞)×S1 ∈ L2

(
[0,∞)× S1,C

)}
.

We define the bounded linear operator

LδS : Hδ
1 → Hδ

0 , ζ 7→ ∂̄µζ +
1√
hγ
Sζ.

Note that LδS is given by the same formula as the operator LS introduced in (186),
however, its domain and target differ form the ones of LS . This fact can be ex-
pressed with the following commutative diagram

Hδ
1

��

LδS // Hδ
0

��
H1

LS // H0

where the vertical arrows stand for the inclusion maps.

The analogue of the implicit function Theorem (Theorem 4.1) in the fast case
can now be formulated as follows.

Theorem 5.1. Assume that ũ ∈ M̂fast(γ) is embedded and the operator LδS : Hδ
1 →

Hδ
0 is surjective. Then locally around [ũ] the spaceMfast(γ) is a manifold and there

exists U ⊂ ker(LδS) an open neighborhood of 0 and a map

F̂ : U → M̂fast(γ)

satisfying F̂(0) = ũ, such that the map

F = ΠF̂ : U →Mfast(γ)

defines a local chart around [û]. Moreover, if ζ ∈ U the intersection points of ũ and

F̂(ζ) are related by{
(z, z′) ∈ C× C : ũ(z) = F̂(ζ)(z′)

}
=
{

(z, z) : z ∈ C, ζ(z) = 0
}
.

Note that if ũ is an embedded fast finite energy plane and both LS : H1 → H0

and LδS : Hδ
1 → Hδ

0 are surjective, then locally around [ũ] bothM(γ) andMfast(γ)
are smooth manifolds and we have

ker(LδS) = T[ũ]Mfast(γ) ⊂ T[ũ]M(γ) = ker(LS).

Our next goal it to compute the Fredholm index of the operator LδS . The following
result is due to Hryniewicz [58].

Theorem 5.2. Assume that ũ = (u, a) is an embedded fast finite energy plane.
Then the Fredholm index of the Fredholm operator LδS satisfies

indLδS =

{
2 µCZ(u) ≥ 3
1 µCZ(u) = 2.
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Proof: If µCZ(u) = 2 we have chosen δ = 0 and hence in this case we have
LδS = LS . Hence by Theorem 1.2 and Theorem 3.1 we obtain

indLδS = µCZ(ΨS∞) + 1 = µNCZ(u) + 1 = µCZ(u)− 1 = 1.

Therefore we can assume in the following that

µCZ(u) ≥ 3.

In order to compute the Fredholm index of the operator LδS in this case we first
choose a smooth function ρ : R→ R satisfying

ρ(s) =

{
s s ≥ 1
0 s ≤ 0.

We define a Hilbert space isomorphism

Tδ : Hδ
1 → H1

which is given for ζ ∈ Hδ
1 by

Tδζ(e2π(s+it)) = e−δρ(s)ζ(e2π(s+it)), (s, t) ∈ R× S1, Tδζ(0) = ζ(0).

The isomorphism Tδ extends by the same formula to an isomorphism

Tδ : Hδ
0 → H0.

Note that its inverse is given by

T−1
δ = T−δ : Hi → Hδ

i , i ∈ {0, 1}.
We consider

TδL
δ
ST−δ : H1 → H0.

To describe this map we introduce Sδ ∈ C∞(C,M2(R)) by

Sδ(e
2π(s+it)) := S(e2π(s+it)) +

δρ′(s)

2πe2πs
· id, (s, t) ∈ R× S1.

If ζ ∈ H1 we compute

TδL
δ
ST−δζ(e2π(s+it)) = TδL

δ
S

(
eδρ(s)ζ(e2π(s+it))

)
= Tδ

1√
γ(e2πs)

(
∂x + i∂y + S

)(
eδρ(s)ζ(e2π(s+it))

)
= Tδ

1√
γ(e2πs)

(
1

2πe2πs
(∂s + i∂t) + S

)(
eδρ(s)ζ(e2π(s+it))

)
= Tδ

eδρ(s)√
γ(e2πs)

(
1

2πe2πs
(∂s + i∂t) + S +

δρ′(s)

2πe2πs

)
ζ(e2π(s+it))

=
1√

γ(e2πs)

(
1

2πe2πs
(∂s + i∂t) + S +

δρ′(s)

2πe2πs

)
ζ(e2π(s+it))

=
1√

γ(e2πs)

(
∂x + i∂y + S +

δρ′(s)

2πe2πs

)
ζ(e2π(s+it))

=
1√

γ(e2πs)

(
∂x + i∂y + Sδ

)
ζ(e2π(s+it))

= LSδζ(e2π(s+it)).

We showed
TδL

δ
ST−δ = LSδ .
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Note that

lim
s→∞

2πe2πsSδ(e
2π(s+it)) = lim

s→∞
2πe2πsS(e2π(s+it)) + δ · id

= S∞(t) + δ · id
=: Sδ∞(t).

From Theorem 1.2 we obtain

(211) ind(LδS) = ind(LSδ) = µCZ(ΨSδ∞
) + 1.

It remains to compute the Conley-Zehnder index of the symplectic path ΨSδ∞
.

Recall that the linear operator AS∞ = −J∂t−S∞ : W 1,2(S1,C)→ L2(S1,C) equals

AS∞ = ATN
γ =: AN

where the operator ATN
γ as explained in (146) is conjugated to the asymptotic

operator Aγ : Γ1,2(γ∗ξ)→ Γ0,2(γ∗ξ) via the trivialization TN . Because the winding
numbers of the eigenvalues of Aγ are computed with respect to the trivialization
Tξ we also need to consider the operator

Aξ := A
Tξ
γ .

Since both operators AN and Aξ are conjugated to Aγ they are conjugated to each
other as well. To see how AN and Aξ are conjugated we consider the loop of unitary
transformations t 7→ TN,tT

−1
ξ,t from C to itself. Because a unitary transformation of

C is just multiplication by a complex number of norm one we can think of TN,tT
−1
ξ,t

for each t ∈ S1 as a unit complex number. Recall from Lemma 3.2 that c1(`2) = −1
which implies that

deg
(
t 7→ TN,tT

−1
ξ,t

)
= −1.

Therefore by replacing the trivializations TN and Tξ by homotopic ones we can
assume without loss of generality that

TN,tT
−1
ξ,t = e−2πit.

Consider the Hilbert space isomorphism

Φ: W 1,2(S1,C)→W 1,2(S1,C)

which is given for v ∈W 1,2(S1,C) by

Φ(v)(t) = e2πitv(t), t ∈ S1

with inverse

Φ−1 : W 1,2(S1,C)→W 1,2(S1,C), Φ−1v(t) = e−2πitv(t), t ∈ S1.

Note that both Φ and Φ−1 extend to Hilbert space isomorphisms

Φ,Φ−1 : L2(S1,C)→ L2(S1,C).

Note that if v ∈W 1,2(S1,C) we have

ANv = TNAγT
−1
N v = TNT−1

ξ AξTξT
−1
N v = TNT−1

ξ Aξ(TNTξ)
−1v

so that we obtain

AN = Φ−1AξΦ.
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Now if η ∈ S(Aξ) is an eigenvalue of Aξ and v is an eigenvector of Aξ to the
eigenvalue η it follows that Φ−1v is an eigenvector of AN to the eigenvalue η.
However, note that the winding number changes under this transformation, namely

w(Φ−1v) = w(v)− 1.

Therefore although the spectra of the conjugated operators Aξ and AN agree if
η ∈ S(Aξ) = S(AN ) the corresponding winding numbers differ by

w(η,AN ) = w(η,Aξ)− 1.

Because Sδ∞ = S∞ + δ we have

ASδ∞ = AS∞ − δI = AN − δI =: ANδ

where I : W 1,2(S1,C)→ L2(S1,C) is the inclusion. We further abbreviate

Aξδ := Aξ − δI.

Note that

ANδ = Φ−1AξδΦ.

Therefore

α(Sδ∞) = max
{
w(η,ANδ ) : η ∈ S(ANδ ) ∩ (−∞, 0)

}
(212)

= max
{
w(η,Aξδ) : η ∈ S(Aξδ) ∩ (−∞, 0)

}
− 1.

Note that we have a bijection

S(Aξ) ∼= S(Aξδ), η 7→ η − δ.

Indeed, v is an eigenvector of the operator Aξ to the eigenvalue η if and only if v is

an eigenvector of the operator Aξδ to the eigenvalue η − δ. In particular,

w(η,Aξ) = w(η − δ, Aξδ).

Hence

max
{
w(η,Aξδ) : η ∈ S(Aξδ) ∩ (−∞, 0)

}
(213)

= max
{
w(η + δ, Aξ) : η ∈ S(Aξδ), η < 0

}
= max

{
w(η,Aξ) : η ∈ S(Aξδ), η < δ

}
= 1

by the choice of δ. Combining (212) with (213) we obtain

(214) α(Sδ∞) = 1− 1 = 0.

Recall that the parity is defined as

p(Sδ∞) =

{
0 ∃ η ∈ S(ANδ ) ∩ [0,∞) such that α(Sδ∞) = w(η, Sδ∞)
1 else.

By the choice of δ we have

(215) p(Sδ∞) = 1.

Combining (214) and (215) with Theorem 0.33 we obtain

(216) µCZ(ΨSδ∞
) = 2α(Sδ∞) + p(Sδ∞) = 1.
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In combination with (211) equation (216) implies

ind(LδS) = 2.

This finishes the proof of the theorem. �

6. Automatic transversality

We first explain the following local version of automatic transversality for fast
finite energy planes.

Lemma 6.1. Assume that ũ = (u, a) is an embedded fast finite energy plane
with asymptotic orbit γ satisfying µCZ(u) ≥ 3. Then locally around [ũ] the moduli
space Mfast(γ) is a two dimensional manifold.

To prove Lemma 6.1 we need the following result, see also [58].

Lemma 6.2. Assume that µCZ(ΨS∞) = 1, then LS is surjective.

Proof: Because µCZ(ΨS∞) = 1 we obtain from Theorem 1.2 that

ind(LS) = 2.

Hence it suffices to show that

dim kerLS ≤ 2.

Suppose that v 6= 0 ∈ kerLS . In view of the asymptotic behavior there exists
R0 > 0 such that for every R ≥ R0

deg

(
t 7→ v(Re2πit)

|v(Re2πit)|

)
= w(η)

where w(η) is the winding of a negative eigenvalue η ∈ S(AS∞) ∩ (−∞, 0). By
Theorem 0.33 we have

1 = µCZ(ΨS∞) = 2α(S∞) + p(S∞)

where the parity satisfies p(S∞) ∈ {0, 1}. Therefore

0 = α(S∞) = max{w(η) : η ∈ S(AS∞) ∩ (−∞, 0)}.
Therefore

deg

(
t 7→ v(Re2πit)

|v(Re2πit)|

)
≤ 0.

On the other hand since v ∈ kerLS it follows form Carleman’s similarity principle
in Lemma 0.8 that all local winding numbers of the map v : C→ C are positive so
that

deg

(
t 7→ v(Re2πit)

|v(Re2πit)|

)
≥ 0

and equality holds if and only if v(z) 6= 0 for every z ∈ C. We conclude that if
v ∈ kerLS does not vanish identically we necessarily have

v(z) 6= 0, ∀ z ∈ C.

Now suppose that v1, v2, v3 ∈ kerLS . It remains to show that the set {v1, v2, v3} is
linearly dependent. Pick z ∈ C. Then v1(z), v2(z), v3(z) ∈ C and therefore there
exist a1, a2, a3 ∈ R such that

a1v1(z) + a2v2(z) + a3v3(z) = 0.
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Because a1v1 + a2v2 + a3v3 ∈ kerLS we conclude that

a1v1 + a2v2 + a3v3 = 0.

This proves that {v1, v2, v3} is linearly dependent and hence dim kerLS ≤ 2. This
finishes the proof of the lemma. �

Proof of Lemma 6.1: By Theorem 5.1 and Theorem 5.2 it suffices to show
that the operator LδS : Hδ

1 → Hδ
0 is surjective. By (216) we have µCZ(ΨSδ∞

) = 1
and hence the Lemma follows from Lemma 6.2. �

The proof of Lemma 6.2 actually reveals more. Namely, if ζ 6= 0 ∈ kerLδS it
follows that ζ(z) 6= 0 for every z ∈ C. Therefore, if Φ: U → Mfast(γ) is the local
chart from Theorem 5.1 the assertion of the Theorem implies that

{(z, z′) ∈ C× C : ũ(z) = Φ(ζ)(z′)} = {(z, z) : z ∈ C : ζ(z) = 0} = ∅.
Therefore the algebraic intersection number of ũ with Φ(ζ) satisfies

int(ũ,Φ(ζ)) = 0.

Hence in view of Siefring’s inequality (Theorem 4.1)

sief(ũ,Φ(ζ)) = 0.

Because Siefring’s intersection number is a homotopy invariant we proved the fol-
lowing result.

Lemma 6.3. Assume that ũ is an embedded fast finite energy plane. Then its
Siefring self-intersection number satisfies

sief(ũ, ũ) = 0.

We mention that Lemma 6.3 was already used to prove Theorem 5.4. In combi-
nation with the local automatic transversality result obtained in Lemma 6.1 we are
now in position to prove the following global automatic transversality statement.

Theorem 6.4. Assume that (N,λ) is a closed three dimensional contact man-
ifold satisfying π2(N) = {0} whose symplectization is endowed with an SFT-like
almost complex structure. Suppose further that γ is a non-degenerate periodic Reeb
orbit with the property that there exists [ũ] ∈ Mfast(γ) such that ũ = (u, a) is
embedded and µCZ(u) ≥ 3. Then Mfast(γ) is a two dimensional manifold.

Proof: Suppose that [ṽ] ∈ Mfast(γ). Because π2(N) = {0} the fast finite
energy plane ṽ = (v, b) is homotopic to ũ. In particular,

µCZ(v) = µCZ(u) ≥ 3

and
sief(ṽ, ũ) = sief(ũ, ũ).

Because ũ is embedded it follows from Theorem 5.4 that ṽ is embedded as well.
In particular, we can apply the local automatic transversality result Lemma 6.1
to conclude that locally around [ṽ] the moduli space Mfast(γ) is a smooth two
dimensional manifold. Because [ṽ] was an arbitrary point in Mfast(γ) the theorem
is proved. �





CHAPTER 15

Compactness

1. Negatively punctured finite energy planes

Assume that (N,λ) is a closed three dimensional contact manifold. A punctured
holomorphic plane is a smooth map

ũ = (u, a) : C \ P → N × R

where P ⊂ C is a finite subset, such that ũ satisfies the nonlinear Cauchy Riemann
equation (141) at every point z ∈ C \ P . In particular, if P = ∅ the map ũ is
just a holomorphic plane. As in the unpunctured case the energy of a punctured
holomorphic plane is defined as

E(ũ) := sup
φ∈Γ

∫
C
ũ∗dλφ.

A puncture p ∈ P is called removable if there exists an open neighborhood of p in
C such that the restriction of a to this neighborhood is bounded. The reason for
this terminology comes from the fact that if the energy of ũ is finite, then by the
Theorem on removal of singularities [45, 81] the map ũ can be smoothly extended
over a removable puncture. If a puncture p ∈ P is not removable, then it is called
a non-removable puncture.

If one thinks of S2 = C∪{∞} then one can interpret a punctured holomorphic
plane ũ as a map

ũ : S2 \ (P ∪ {∞})→ N × R.
In particular, we might think of ũ as a punctured holomorphic sphere with the point
{∞} ∈ S2 an additional puncture.

Assume that ũ = (u, a) : C \ P → N × R is a punctured holomorphic plane
whose energy E(ũ) is finite and all of whose punctures are non-removable. It is
shown in [54] that for each puncture p ∈ P there exists an open neighborhood U
of p such that the restriction of a to U is either bounded from below or above. Of
course, since p is assumed to be a non-removable puncture in the first case a is
unbounded from above and in the second case a is unbounded from below. This
fact allows us to write the set of non-removable punctures of a holomorphic plane
of finite energy as a disjoint union

P = P+ ∪ P−
where P+ is the subset of punctures on which a remains bounded from below in a
small neighborhood and P− = P \P+ is the subset of punctures on which a remains
bounded from above in a small neighborhood. Elements p ∈ P+ are called positive
punctures, while elements p ∈ P− are called negative punctures. Interpreting ũ
as a punctured holomorphic sphere the same classification applies to the point at
infinity, so that {∞} is either a removable, positive or negative puncture.

189
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A special instance of a punctured holomorphic plane of finite energy is an orbit
cylinder. Namely if γ is a periodic Reeb orbit of period τ define γ̃ : C\{0} → N×R

γ̃(e2π(s+it)) = (γ(t), τs), (s, t) ∈ R× S1.

We are now in position to define

Definition 1.1. A negatively punctured finite energy plane ũ : C \P → N ×R
is a punctured holomorphic plane satisfying

(i): 0 < E(ũ) <∞,
(ii): All punctures p ∈ P are non-removable and negative.
(iii): If one interprets ũ as a punctured holomorphic sphere, the point at

infinity becomes an additional positive puncture.
(iv): ũ is not a reparametrization of an orbit cylinder, i.e., there does not

exist (ρ, τ) ∈ Σ = C∗nC and a periodic Reeb orbit γ such that (ρ, τ)∗ũ =
γ̃.

Remark 1.2. We mention that condition (iii) in the Definition of a negatively
punctured finite energy plane follows from condition (ii) and the maximum principle
for a holomorphic curve ũ = (u, a). The maximum principle says that the function
a does not attain a local maximum. Indeed, using that the almost complex structure
J is SFT-like one shows using the nonlinear Cauchy Riemann equation that the
Laplacian of a satisfies

∆a ≥ 0

which establishes the maximum principle.

2. Weak SFT-compactness

Assume that ũ = (u, a) : C\P → N ×R is a negatively punctured finite energy
plane. Hofer’s theorem (Theorem 2.4) can still be applied in the case where ũ is
punctured and we conclude that there exists a periodic Reeb orbit γ and a sequence
sk going to infinity such that

lim
k→∞

u(e2π(sk+it)) = γ(t)

uniformly in the C∞-topology. If γ is non-degenerate we refer to the negatively
punctured finite energy plane as a non-degenerate negatively punctured finite energy
plane. If ũ is a non-degenerate negatively punctured finite energy plane it still
admits an asymptotic representative. This asymptotic representative U can either
be chosen to decay exponentially like in (147) or to vanish identically. In particular,
we can associate to a non-degenerate negatively punctured finite energy plane ũ =
(u, a) with asymptotic period orbit γ an element

ηũ = ηu ∈ [−∞, 0)

where either ηu is a negative eigenvalue of the asymptotic operator Aγ such that
the asymptotic representative decays exponentially with weight ηu or ηu = −∞
and the asymptotic representative vanishes identically.

Theorem 2.1 (Weak SFT-compactness). Assume that γ is a non-degenerate

Reeb orbit and ũν = (uν , aν) ∈ M̂(γ) for ν ∈ N a sequence of finite energy planes
with asymptotic Reeb orbit γ. Then there exists a subsequence νj, a sequence of
gauge transformations (rj , (ρj , τj)) ∈ R×Σ and a negatively punctured finite energy
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plane ũ = (u, a) : C \ P → N ×R with positive asymptotic orbit γ as well such that
(rj , (ρj , τj))∗ũνj converges in the C∞loc-topology to ũ. Moreover,

(217) ηu ≤ ηuνj , j ∈ N.

This result is a special case of the SFT-compactness theorem, see [19, 52, 55].
We make the following remarks.

Remark 2.2. The fact that ũν ∈ M̂(γ) implies that

E(ũν) = τ

where τ is the period of the periodic orbit γ. In particular, the energy of the sequence
ũν is constant and therefore uniformly bounded.

Remark 2.3. That in the limit no positive punctures occur follows from the
maximum principle mentioned in Remark 1.2.

In view of Theorem 2.1 in order to show that the moduli space M̂(γ)/R×Σ =
M(γ)/R is compact it suffices to show that the limit has no negative punctures,
i.e., is a honest finite energy plane.

3. The systole

Assume that (N,λ) is a closed contact manifold. Denote by

R = R(N,λ) ⊂ C∞(S1, N)

the set of all periodic Reeb orbits of N , i.e., the set of all loops γ ∈ C∞(S1, N) for
which there exists a positive number τ = τγ , referred to as the period, such that
the tuple (γ, τ) is a solution of the ODE ∂tγ = τR(γ). The systole of (N,λ) is
defined as

sys(N,λ) = inf{τγ : γ ∈ R}.
Here we use the convention that infimum of the empty set equals infinity. However,
in view of Weinstein’s conjecture the systole of every closed contact manifold is
expected to be finite. In view of the result by Taubes [105] this is definitely true in
dimension three. Moreover, because our contact manifold is assumed to be closed
it follows from the Theorem of Arzelà-Ascoli that if a periodic Reeb orbit exists
the infimum is actually attained so that for a three dimensional contact manifold
we can define the systole as well as a minimum

sys(N,λ) = min{τγ : γ ∈ R}.

We further point out that if the contact manifold (N,λ) satisfies in addition

H1(N ;Q) = {0}

then the systole only depends on the Hamiltonian structure (N, dλ) and not on
the choice of the contact form λ. Indeed, if λ and λ′ are two contact forms on N
satisfying

dλ = dλ′

then since the first rational homology group of N vanishes there exists a smooth
function f ∈ C∞(N,R) such that

λ = λ′ + df.
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Now in view of Stokes theorem and the definition of the Reeb vector field we
compute for γ ∈ R

τγ =

∫
S1

γ∗λ =

∫
S1

γ∗λ′.

This proves that if the first rational homology group vanishes the systole only de-
pends on the Hamiltonian structure (N, dλ).

If γ ∈ R satisfies τγ = sys(N,λ) we say that the periodic Reeb orbit γ repre-
sents the systole of (N,λ). Note that the systole in general does not have a unique
representative. However, each representative of the systole necessarily has minimal
period among all periodic Reeb orbits.

Theorem 3.1. Assume that (N,λ) is a closed, three dimensional contact man-
ifold and γ is a non-degenerate Reeb orbit of (N,λ) which represents the systole.
Then the moduli space M(γ)/R is compact.

Proof: In view of Theorem 2.1 it suffices to show that each negatively punc-
tured finite energy plane ũ = (u, a) : C \ P → N ×R has no punctures, i.e., P = ∅.
We argue by contradiction and assume that P 6= ∅. Hence suppose

P = {p1, . . . , p`}

for ` ∈ N. Hofer’s theorem (Theorem 2.4) can as well be applied to negative
punctures. For a negative puncture at pj with j ∈ {1, . . . , `} it asserts that there

exists a sequence sjk going to −∞ and a periodic Reeb orbit γj such that

(218) lim
k→∞

u(e2π(sjk+it) + pj) = γj(t)

uniformly in the C∞-topology. Because the puncture at infinity is positive there
exists moreover a sequence sk going to infinity such that

(219) lim
k→∞

u(e2π(sk+it)) = γ(t)

uniformly in the C∞-topology. Because ũ is holomorphic as a special instance of
(143) it holds that

(220) u∗dλ = ||π∂xu||2 ≥ 0.

Abbreviate by DR(p) = {z ∈ C : ||z − p|| ≤ R} the disk of radius R centered at p.
There exists k0 ∈ N such that for every k ≥ k0 and every 1 ≤ j, j′ ≤ ` satisfying
j 6= j′ we have

D
e2πs

j
k
(pj) ∩D

e2πs
j′
k

(p′j) = ∅, D
e2πs

j
k
(pj) ⊂ De2πsk (0).

In view of Stokes theorem we conclude for every k ≥ k0

0 ≤
∫
D
e2πsk

(0)\
⋃`
j=1 D

e
2πs

j
k

(pj)

u∗dλ =

∫
∂D

e2πsk
(0)

u∗λ−
∑̀
j=1

∫
∂D

e
2πs

j
k

(pj)

u∗λ.

Since this is true for any k ≥ k0 we obtain in view of (201) and (202)

(221) 0 ≤
∫
S1

γ∗λ−
∑̀
j=1

∫
S1

γ∗j λ = τγ −
∑̀
j=1

τγj
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where τγj are the periods of the periodic orbits γj . Because γ represents the systole
the following inequalities hold true

(222) τγj ≥ τγ , 1 ≤ j ≤ `.

From (203) and (204) we conclude

` = 1, τγ1 = τγ .

In view of (220) we further get

π∂xu(z) = 0, z ∈ C

and because ũ is holomorphic we get as well

π∂yu(z) = 0 z ∈ C.

In particular, ũ is an orbit cylinder up to reparametrization, in contradiction to
assertion (iv) in Definition 1.1. This finishes the proof of the Theorem. �

Corollary 3.2. Suppose the assumptions of Theorem 3.1. Then the moduli
space Mfast(γ)/R is compact.

Proof: Recall from Corollary 0.13 that a non-degenerate finite energy plane
ũ = (u, a) is fast if and only if the winding number of its asymptotic eigenvalue
satisfies w(ηu) = 1. By Theorem 0.5 the inequality w(ηu) ≥ 1 holds. If ũ is the
limit of fast finite energy planes it follows from (217) that w(ηu) ≤ 1. Therefore,
it follows that w(ηu) = 1 and ũ is fast. We have shown that the moduli space
Mfast(γ)/R is closed in M(γ)/R. Now the Corollary follows from Theorem 3.1. �

4. Dynamical convexity

Recall that a periodic Reeb orbit γ ∈ C∞(S1, N) of period τ is called non-
degenerate if det(dξφτR(γ(0))− id) 6= 0.

Definition 4.1. A contact manifold (N,λ) is called non-degenerate, if all pe-
riodic Reeb orbits on (N,λ) are non-degenerate.

After a small perturbation we can always assume that a closed contact manifold
is non-degenerate. To make this statement precise, recall that if f ∈ C∞(N,R+)
is a smooth positive function on N , then the one form λf := fλ ∈ Ω1(N) is still
a contact form on N . Note that the contact structure ξ = kerλ = kerλf remains
unchanged under this procedure, although the Reeb vector field and therefore the
dynamics on N might change dramatically. The following result is due to Robinson
[96].

Theorem 4.2. Assume that (N,λ) is a closed contact manifold. Then there
exists a subset F ⊂ C∞(N,R+) which can be written as a countable intersection of
open and dense subsets of C∞(N,R+) such that for every f ∈ F the contact form
λf is non-degenerate.

Since F is a countable intersection of open and dense subsets it follows from
Baire’s theorem that F is dense itself. This explains why after small perturbation
we can assume that the contact manifold is non-degenerate.

Suppose that γ is a contractible closed Reeb orbit in a contact manifold (N,λ)
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of period τ . Since γ is contractible there exists a filling disk for γ, i.e., a smooth
map γ : D = {z ∈ C : |z| ≤ 1} → N such that

γ(e2πit) = γ(t), t ∈ S1.

Choose a symplectic trivialization

T : γ∗ξ → D × C.
We define the Conley-Zehnder index of the filling disk γ as

µCZ(γ) = µCZ

(
t 7→ Te2πitd

ξφtτR (γ(0))T−1
1

)
.

The Conley-Zehnder index is independent of the choice of the symplectic trivializa-
tion and depends only on the homotopy class of the filling disk γ. If γ′ is another
filling disk for γ, one obtains a sphere γ#(γ′)− by gluing γ and (γ′)−, the filling disk
γ′ with opposite orientation, along γ. In view of Lemma 2.1 the Conley-Zehnder
indices with respect to the two filling disks are related by

(223) µCZ(γ)− µCZ(γ′) = 2c1

(
(γ#(γ′)−)∗ξ

)
.

The first Chern class gives rise to a homomorphism

Ic1 : π2(N)→ Z, [v] 7→ c1(v∗ξ).

Suppose now that the homomorphism Ic1 is trivial. This for example happens
if π2(N) = {0}. Then it follows from (223) that the Conley-Zehnder index is
independent of the choice of the filling disk γ and only depends on the periodic
Reeb orbit γ. Hence under the assumption that Ic1 = 0 we can set

µCZ(γ) := µCZ(γ)

where γ is any filling disk for the contractible Reeb orbit γ.

Definition 4.3. A closed three dimensional contact manifold (N,λ) is called
dynamically convex if Ic1 = 0 and every closed contractible Reeb orbit γ of N
satisfies

µCZ(γ) ≥ 3.

If γ is a periodic Reeb orbit recall that the covering number of γ is defined as

cov(γ) = max
{
k ∈ N : γ(t+ 1

k ) = γ(t), ∀ t ∈ S1
}
.

Moreover, a periodic Reeb orbit γ is called simple if cov(γ) = 1. The following
theorem is due to Hryniewicz [58].

Theorem 4.4 (Hryniewicz). Assume that (N,λ) is a non-degenerate, dynam-
ically convex closed three dimensional contact manifold and γ is a simple periodic
Reeb orbit of N . Then the moduli space Mfast(γ)/R is compact.

Proof: Suppose that ũν = (uν , aν) is a sequence of fast finite energy planes
which asymptotic orbit γ which converge to a negatively punctured finite energy
plane ũ = (u, a) : C \ P → N × R with asymptotic orbit γ in the C∞loc-topology. It
remains to show that the set of negative punctures P is empty and that ũ is fast.
We first rule out the danger that ũ is a so called connector, namely a negatively
punctured finite energy plane satisfying

||π∂xu||2 =
1

2

(
||π∂xu||2 + ||π∂yu||2

)
= 0
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where π : TN → ξ is the projection along the Reeb vector field. If ũ is a connector
it follows that

ũ = γ̃′ ◦ p
where γ̃′ is the orbit cylinder over a periodic Reeb orbit γ′ and p : C → C is a
holomorphic map, which has to be a polynomial because the energy of ũ is fi-
nite. Because γ is simple it follows that γ′ = γ and p has degree one, i.e., ũ is
a reparametrization of an orbit cylinder which is forbidden by condition (iv) in
Definition 1.1. Therefore ũ is not a connector.

We now suppose by contradiction that the set of punctures is not empty, so that we
can write P = {p1, . . . , p`} for ` ∈ N. Because (N,λ) is non-degenerate and ũ is not
a connector the asymptotic description from Theorem 5.2 can now be applied to the
negative punctures as well. Namely for each 1 ≤ j ≤ ` there exists a periodic Reeb
orbit γj , a positive eigenvalue ηj of the operator Aγj and an eigenvector ζj of Aγj
to the eigenvalue ηj such that the puncture pj admits an asymptotic representative
of the form

Uj(s, t) = eηjs
(
ζj(t) + κj(s, t)

)
where κj decays with all derivatives exponentially with uniform exponential weight.
For negative punctures asymptotic representative means that there exists proper
embeddings φj : (−∞, Rj ]× S1 → R× S1 asymptotic to the identity such that

ũ
(
eφj(s,t) + pj

)
=
(

expγj(t) Uj(s, t), τjs
)

where exp is the exponential map for some Riemannian metric on N and τj are the
periods of the periodic orbits γj . Because ũ is the limit of the finite energy planes
ũν it follows that the periodic orbits γj are contractible. Hence we can pick for each
periodic orbit γj a filling disk γj . Pick unitary trivializations Tj : γj

∗ξ → D × C,
i.e., trivializations which are complex with respect to the complex structure J
on ξ and orthogonal with respect to the metric ω(·, J ·) on ξ. The restriction of
the trivializations to the periodic Reeb orbits γj gives rise to the bounded linear
operators

ATj
γj : W 1,2(S1,C)→ L2(S1,C)

as in (146). Because the operator A
Tj
γj is conjugated to the operator Aγj the eigen-

value ηj of the operator Aγj can also be interpreted as an eigenvalue of the operator

A
Tj
γj . As an eigenvalue of the operator A

Tj
γj it has a winding number

w(ηj , γj) ∈ Z.

As the notation indicates the winding number is independent of the choice of the
trivialization Tj . A priori it depends at least up to homotopy on the choice of the
filling disk γj . If γj

′ is another filling disk then the winding numbers are related by

w(ηj , γj)− w(ηj , γj
′) = c1

(
(γj#(γj

′)−)∗ξ
)
.

Because the contact manifold (N,λ) is dynamically convex by assumption the ho-
momorphism Ic1 : π2(N) → Z is trivial and therefore the winding number is inde-
pendent of the choice of the filling disk, so that we can set

w(ηj) := w(ηj , γj).
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Using again that (N,λ) is dynamically convex it holds that

µCZ(γj) ≥ 3, 1 ≤ j ≤ `.

Because ηj is positive we conclude in view of Theorem 0.33 and the monotonicity
of the winding number from Corollary 0.32 that

(224) w(ηj) ≥ 2, 1 ≤ j ≤ `.

By gluing the filling disks γj to u along γj for 1 ≤ j ≤ ` we obtain an open disk

u#
⋃̀
j=1

γj

whose closure is a filling disk for γ. Choose a trivialization

T : u∗ξ → (C \ P )× C

which extends at the positive puncture to a trivialization T : γ∗ξ → S1 × C and
coincides at the negative punctures with Tj : γ∗j ξ → S1 × C. Inspired by the proof
of Theorem 0.5 we consider the smooth map

Tπ∂xu : C \ P → C.

In view of (224) there exists ε > 0 such that for the loops

γεj : S1 → C, t 7→ pj + εe2πit

where 1 ≤ j ≤ ` the winding number as defined in (150) of the map Tπ∂ru along
these loops satisfies

wγεj (Tπ∂ru) ≥ 2.

In view of (157) we conclude that

wγεj (Tπ∂xu) ≥ 1.

Because ũ is not a connector it follows that ηu is finite and therefore an eigenvalue
of the asymptotic operator Aγ . Because ũ is the limit of fast finite energy planes
it follows from (217) and the monotonicity of winding established in Corollary 0.32
that

w(ηu) ≤ 1.

Hence there exists R > 0 such that

wR(Tπ∂ru) ≤ 1

where we recall from (151) that wR denotes the winding number of the loop t 7→
Re2πit. Again using (157) we conclude that

wR(Tπ∂xu) ≤ 0.

On the other hand since ũ is holomorphic we conclude using Carleman’s similarity
principle as in the proof of Theorem 0.5 that

0 ≥ wR(Tπ∂xu) ≥
∑̀
j=1

wγεj (Tπ∂xu) ≥ `.

This implies that ` = 0. Hence ũ has no negative punctures and is therefore a
finite energy plane. In view of Theorem 0.10 the winding number of its asymptotic
eigenvalue satisfies w(ηu) ≥ 1 and because ũ is the limit of fast finite energy planes
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it follows from (217) that w(ηu) = 1. This shows that ũ is fast and the theorem is
proved. �

5. Open book decomposition

The following theorem due to Godement can be found for example in [3, The-
orem 3.5.25].

Theorem 5.1. Assume that M is a manifold and R ⊂M×M is an equivalence
relation. Denote by p1 : M ×M → M the projection to the first factor. Suppose
that the following conditions hold

(i): R ⊂M ×M is a closed submanifold.
(ii): The restriction of the projection p1|R : R→M is a submersion.

Then the quotient space M/R is a manifold and the quotient projection π : M →
M/R is a submersion.

Remark 5.2. All manifolds in the theorem are assumed to satisfy the Hausdorff
separation axiom. If one does not require in assertion (i) that R ⊂M×M is closed,
then M/R is still a (not necessarily Hausdorff) manifold and the quotient projection
a submersion.

In the special case where G is a Lie group action on a manifold M and the
equivalence relation is the orbit relation, then

R = {(x, gx) : x ∈M, g ∈ G}.

If G acts freely on M , then R ⊂ M ×M is a manifold and assertion (ii) holds.
Hence we obtain the following Corollary.

Corollary 5.3. Assume that a Lie group G acts freely on a manifold M and
{(x, gx) : x ∈M, g ∈ G} is closed in M×M . Then the quotient M/G is a manifold
and the orbit projection a submersion.

5.1. Global surface of section to open book. Suppose that d : D2 → S3 is
a global disk-like surface of section for a Reeb vector field X. Let γ := d|∂ : S1 → S3

denote the periodic orbit that bounds the surface of section.

Proposition 5.4. Assume that γ is transversely non-degenerate and that µCZ(γ) ≥
3. Then there is an open book on S3 with binding γ whose pages are transverse to
X.

Proof: First of all, note that it is enough to exhibit for every point y ∈
int(D2) a return time t(y) depending smoothly on y such that the return map

y 7→ d−1 ◦ φt◦d(y)
X d(y) extends continuously to the boundary.

Step 1: We claim that there is a neighborhood ν(γ) of γ together with coordinates
ψ : S1 ×D2 → ν(γ) such that

ψ−1(ν(γ) ∩ d(D) ) = {(φ;x, 0) ∈ S1 ×D2) | φ ∈ S1, and x ≥ 0}.

The tubular neighborhood theorem gives us a neighborhood ν(γ) that is dif-
feomorphic to S1 × D2. We need to be a little more explicit here. We choose a
trivialization of the contact structure along γ, so a map S1 × R2 → γ∗ξ with the
property that the vector U , the image of (1, 0) is tangent to d along γ and pointing
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inward. Let V denote the image of the vector (0, 1). Extend the vector field U, V
to a neighborhood of γ. To find suitable coordinates, define the map

ψ : S1 ×D2 −→ ν(γ)

(φ;x, y) 7−→ ExpyV ◦ φxU ◦ d(eiφ).

Put y = 0 and take a sequence εn converging to 0. We get a curve φεU ◦ d(eiφ) to
which we apply the map φtX . This is the curve

φtX ◦ φεU ◦ d(eiφ)

whose equivalence class at ε = 0 is by definition

TφtX(Ud(eiφ)).

This is the time-t linearized flow of X acting on U .
Step 2: Bounding the return time Let θ denote the rotation number of γ with
respect to a trivialization of d∗ξ. By a standard formula for the Conley-Zehnder
index due to Long, µCZ(γ) equals 2b θ2π c+ 1 if γ is elliptic and θ

π if γ is hyperbolic.
As µCZ(γ) ≥ 3, the rotation number is more than 2π.

If τ is the period of γ we see the return time of the linearized flow is less than
τ . Since the actual flow φtX ◦ φεU ◦ d(eiφ) converges to the linearized flow as ε
converges to 0, we find for every y ∈ D2 with d(y) ∈ ν(γ) a minimal positive time
0 < t̃(x) < τ + δ such that

φ
t̃(y)
X ◦ d(y) ∈ D.

Let Di denote the set of points y ∈ D2 with d(y) /∈ ν(γ). Then Di is compact,
so by smooth dependence on initial conditions we find for all y ∈ Di a minimal
positive time t(y) such that

φ
t̃(y)
X ◦ d(y) ∈ D.

We conclude that t : D2 → R is a continuous function that is smooth in the interior.
Define the return map

rt : D2 −→ D2

x 7−→ d−1 ◦ φt(x)
X ◦ d(x).

We see that rt is homeomorphism that is smooth on the interior with the
property that it is conjugate to a map preserving the d∗dα-area. �
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