
A Locality-Aware Software Transactional Memory

Patrick Marlier, Anita Sobe, Pierre Sutra
University of Neuchâtel

first.last@unine.ch

The advent of chip level multiprocessing in commodity hardware has pushed
applications to be more and more parallel in order to leverage the increase of
computational power. However, the art of concurrent programming is known
to be a difficult task, and new paradigms are required to help the program-
mer. Among those paradigms, software transactional memory (STM) is widely
considered as a promising direction. The two key factors contributing to the
popularity of STM are its simplicity and that STM is at heart a non-blocking
technique.

The engine that orchestrates concurrent transactions run by the application,
i.e., the concurrency manager, is one of the core aspects of a STM implemen-
tation design. A large number of concurrency manager implementations exists,
ranging from pessimistic lock-based implementations to completely optimistic
ones, with, or without, multi-version support. Because application workloads
exhibit in general a high degree of parallelism, these designs tend to favor opti-
mistic concurrency control. In particular, a widely accepted approach consists
in executing tentatively the read operations and validating them on the course
of the transaction execution to enforce consistency.

One of the very first STM design validates the read set at each step of
the transaction, resulting in a quadratic-time validation complexity. More ad-
vanced techniques employ time-based validation. In a nutshell, this approach
uses a global clock to track causality relations between transactions. When
a transaction starts its execution, it retrieves a starting timestamp from the
global clock, and re-validates its read set only if it encounters an object storing
a higher timestamp.

In every time-based STM, the critical path of a transaction contains at least
two global operations. Global operations are expensive in multi-core/multi-
processors architecture, due to the synchronization wall. In particular, computer
designs that exploit data locality with multiple cache levels, such as non-uniform
memory architectures (NUMA), have to reduce the amount of global operations
to improve application performance.

A few solutions exist to relieve time-based STM implementation from the
usage of a global clock. However, to the best of our knowledge, they either
increase storage cost, execute a high number of invalidations, or ensure weak
consistency criteria. This talk addresses these shortcomings with a novel flexible
STM design. Our implementation supports invisible reads, lazy snapshots, and
it can be tailored to leverage data locality (from disjoint access parallelism
to NUMA-awareness). Our design aims at maximizing the native workload
parallelism, while leveraging locality of computer architectures to reduce the
number of invalidations. Several experiments assess that our locality-aware
design is in favorable cases close to the optimum, and that in the other ones, its
performance are similar to existing STM solutions.


