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Abstract—Many of the current bio-inspired delivery networks
set their focus on search, e.g., by using artificial ants. If the
network size and, therefore, the search space gets too large, the
users experience high delays until the requested content can be
consumed. In this paper we propose replication strategies to re-
duce this delay. Typical mechanisms, applied in unstructured P2P
networks, such as replication at the target (owner replication) and
replication on the travel path of content (path replication) are
either inefficient or the user experience suffers because of the long
distance between content and requester. Based on an previously
introduced self-organizing hormone-based delivery algorithm, we
compare seven existing and proposed replication mechanisms. We
show by simulation that the exploitation of local knowledge about
the desire for the requested content performs best in scale-free
and random networks. These results are expected to provide
a guide towards designing future self-organizing bio-inspired
networks.

I. INTRODUCTION

The emergence of large networked databases and increas-
ingly dynamic access patterns have led to new challenges for
content delivery, i. e., the combination of searching, routing
and replica placement in the network. One example from
multimedia is a live sports event such as the Ironman Triathlon.
Visitors produce masses of multimedia content, either photos
or short videos. With the advent of social networks like Flickr,
or YouTube much of this content is shared. However, on site
the visitors have to rely on video walls with content provided
from the organizers. It is not possible to share their content at
the event directly with other visitors a few kilometers away.
Assuming visitors have smart phones and tablet computers, di-
rect access to the Internet would be challenging for multimedia
delivery. This was shown in a similar scenario by Stiemerling
et al. in [1]. The authors propose an ad-hoc WLAN network
for sharing content in combination with some nodes connected
to the Internet. For our purposes, we assume an unstructured
peer-to-peer network as a basis, however, how this network is
built is out of scope of this paper.
A scenario like the Ironman is dynamic on several levels. First,
the production of multimedia content is dynamic at several
places of the network. Second, since the content is rather
small, users are likely to consume a number of videos in a
row. However, there is no notion of sequentiality, such as at a
movie. It is not predictable which video is watched first and
it is further not known if a number of users choose the same

order of videos to be presented.
Such dynamics can be best handled by robust and adaptive
systems [2]. However, current delivery systems concentrate
either on search or on transport. One example for the first
case is ant-based search, such as applied for peer-to-peer
by Michlmayr in [3]. It allows for the adaptive handling of
network changes, but content may not be found or can only
be delivered with high delays if the search space is too large.
BitTorrent is an example for outsourcing search to other
facilities and to concentrate on the delivery of content. If
BitTorrent is used a visitor of a live sports event might need
another near visitor with the required content to experience
the needed QoS for multimedia presentation.
Our idea is to combine search and transport and handle
dynamics by introducing a self-organizing delivery algorithm.
Our algorithm introduced in [4] is inspired by ant-based search
as introduced as SemAnt in [3] and hormone-based task allo-
cation as described by Brinkschulte et al. in [5]. SemAnt is an
implementation of Ant Colony Optimization [6] for keyword
based query routing in peer-to-peer systems. Brinkschulte
et al. propose a hormone-based system for distributed task
allocation. A hormone indicates the goodness of a node for
executing a task. The current hormone value of a node is called
eager value. This value can be increased by the accelerator
value or decreased by a suppressor value. The eager value
is recalculated based on the suppressors and accelerators and
disseminated to the network. The node with the highest eager
value executes the task and broadcasts suppressors to avoid
duplicate execution of a task.
We adopted the keyword search from SemAnt and introduce
one type of hormone by keyword. The hormone value ex-
presses the current demand (the “goodness”, as adopted from
Brinkschulte et al.) for the corresponding keyword. So, the
search is done by spreading hormones over the network.
Accelerators represent a periodical increase of hormones by
the requester until the content is delivered. Suppressors are
implemented by an evaporation mechanism. If the content
is placed at fixed nodes, such as assumed by SemAnt, the
search space gets very large. In order to reduce the search
space and to limit the necessity of global knowledge, in our
work, content is attracted by hormones and transported hop-
by-hop (such as in Freenet [7]). On the intermediate nodes the
content can be replicated. In our former implementation the
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replication mechanism was limited, i.e., a video or photo was
only replicated if it is currently consumed by the client. In this
paper we evaluate existing and proposed replication methods
that support our main goal – the placement of content where
it is needed, but before it is requested. Since not only the
production of content is dynamic, but also the consumption,
the popularity of content is dynamic as well. The provided
discussion should not only target our proposed algorithm, but
should also be a design guide for future bio-inspired delivery
systems.

II. RELATED WORK

In this section we give a short overview of existing
replication strategies in unstructured P2P networks. We
focus on algorithms that aim at improving search efficiency.
The following categorization is based on the surveys from
Androutsellis et al. [8] and Yamamoto et al. [9].
Owner Replication. The content is replicated at the
requester’s node [10] and is also referred to as passive
replication. Typically, this replication technique is used in
file sharing systems based on BitTorrent [11], because no
intermediate peers exist during download.
Path Replication. In a multi-hop network where content is
transported indirectly such as in Freenet [7], it is possible
to cache a replica of the content in transmission in each
intermediate node. Since the intermediate nodes are acting as
caches, the path replication is also referred to as cache-based
replication. It is assumed that intermediate nodes provide
storage space for replicas even if they are not interested in the
content. Path replication leads to a high number of unused
replicas.
Therefore, an improved approach replicates the content on an
intermediate node according to a fixed replication rate (path
random replication [9]). The advantage of this approach is
a compromise between a higher replica usage and limited
hop distance to other replicas. The difficulty of this approach
is to specify a suitable replication rate for each file in
advance, which is hard if the files are not known at system
startup. Therefore, an alternative is to specify a node specific
replication probability, where nodes decide ad-hoc if a file
is replicated or not. The replication probability is dependent
on the peer’s resource status and optionally refers to the
replication rate, too. The authors in [9] refer to this strategy
as path adaptive replication.
Active Replication. The goal is to place the right number
of replicas at the right locations before they are requested.
Researchers investigated therefore the optimal number of
replicas. In [12] and [10] the authors investigate random,
proportional, and square root replication. When applying
random replication a uniform number of replicas are created.
Proportional replication creates replicas proportional to their
query rate. The authors showed that square root replication
determines the optimal replication rate ri for object i, which
is calculated as ri = λ

√
qi, with λ = R/(

∑
i

√
qi), where

q is the query rate and R is the number of object replicas
in the system. Square-root replication does not consider the
location of replicas. All strategies require global knowledge
on the number of currently existing replicas and the current

Fig. 1. Interplay of diffusion and unit movement in hormone-based delivery

query rate for each of the replicas.
To reach square-root replication with limited knowledge
researchers proposed Pull-then-Push Replication introduced
in [13]. This replication method consists of two phases. The
first phase regards the search of the content, with any existing
algorithm. The second phase regards the replication of content
to the neighbor nodes. To reach square root replication, the
authors suggest that for the pull and push phase the same
algorithms are used, because the number of replicas should
be equal to the number of nodes visited during search. The
authors evaluated typical algorithms, such as flooding and
random walks. Their focus is set on robustness even on
updates. As multimedia content is usually not updated after
creation and this algorithm does only consider the number
and not the location of content, this approach is out of scope
of this paper.
For our evaluations we refer to replication mechanisms that
do not need global knowledge, i.e., owner replication, path
replication, and path adaptive replication.

III. HORMONE-BASED DELIVERY

The proposed algorithm is distributed and self-organizing
and allows to handle the complexity of requests and the search
for units in the network with comparably simple decision
algorithms based on local knowledge.
The idea of our algorithm [4] is to guide units to the right
places by spreading hormones, in opposite to the ant algorithm,
which guides queries through the network.
The algorithm consists of two phases: search and delivery.
Search consists of the hormone creation for indicating the
demand for a content, and hormone diffusion to spread the
demand over the network. The delivery involves the movement
of units guided by the corresponding hormone. The stronger
the hormone on a node the more likely the unit will move
towards this node.
A simple example shown in Figure 1 depicts the general
behavior of the algorithm. Assuming a network consisting of
7 peers, and P1 wants to have a unit that is located at P7.
P1 only knows its direct neighbors P2,P3 and P4. Peer P1

creates periodically new hormones for the desired unit. A unit
is attracted by a higher hormone level, therefore it is necessary



to get a hormone trail with the highest hormone level at the
requester. So, each node forwards only parts of its hormones
until the corresponding unit is found or if no hormone is left to
forward. A node differentiates its neighbors by their provided
QoS (e.g., the lowest link load, or lowest round trip time). The
neighbor with the best provided QoS gets the highest hormone
value (in the figure marked with thicker lines).
If a unit is found the second phase starts and the unit will be
transported towards the requester. In the depicted example the
unit will be moved from P7 to P5,P2 and finally to P1.
The negative impact (suppressor value) is implemented by
periodical hormone evaporation, which is needed to reduce
hormones on alternative paths. On the movement path the
hormones are deleted on the current peer to avoid the attraction
of replicas.
The hormone-based delivery creates a feedback loop between
network conditions. The network conditions influence hor-
mone diffusion, the hormone diffusion influences unit move-
ment, which in turn creates network traffic and changes the
network conditions.
Multiple requests for different units lead to a set of different
hormones being handled in parallel by the network. Requests
for the same unit result in a superimposed hormone landscape
for that unit. In this case, a unit might be attracted by two
hormone trails. Without replication the unit has to move first
to the first requester and afterwards to the second requester.
Which requester gets the unit first depends on the strength of
hormone reaching the unit. In order to avoid such detours, an
intelligent replication mechanism has to take care of this issue.

IV. HORMONE AND POPULARITY-BASED REPLICATION
STRATEGIES

The basis for our proposed replication mechanisms is owner
replication, since the units are consumed for some time and
therefore need to be replicated to be further usable by other
nodes. Units replicated at the requester can only be supportive
for the immediate neighborhood. To serve future requests,
replicas should also be created on the delivery path. If the
hormone level of a neighbor attracts a stored unit, the peer
has to decide whether to move or to copy the unit. The
simplest solution would be to apply path replication, but then
the utilization of replicas would drop and the storage space is
not used efficiently. Therefore, the goal is to find a replication
mechanism that balances replica utilization and delay without
the need of global information.
Beyond owner replication, path replication, and path adap-
tive replication we evaluate the following four replication
mechanisms. These mechanisms exploit local knowledge on
popularity and hormone levels collected from neighbors.

1) Simple Hormone. If a unit is requested by peers from
opposite parts of the network, the unit has to move first
to one requester and afterwards to the other requester.
This can lead to long traveling paths, which can be
avoided by replicating a unit if more than one neighbor
holds hormones for it. Note that it is not possible to
differentiate if hormones on the neighbor are created by
different peers. Thus, in a situation as depicted in Figure
1 the replica would be created unnecessarily.

2) Local Popularity. Each node uses the local request
history of the corresponding content to decide if it is
likely to be requested again in the future. If the rank of
a content is among the best 30 % the corresponding unit
is kept. So popular units are more likely to be replicated,
but popularity information from neighbors is ignored.
The communication effort is minimized.

3) Neighbor Popularity Ranking. After collecting the
popularity ranks for a content from the neighbors, the
peer decides if it is worth to replicate the corresponding
unit. The ranks are aggregated to a region rank (intro-
duced in [14]), which is calculated as follows:

R =
1

n

n∑
1

ln(ri)

If the region rank R is lower than a given threshold (e.g.,
the best 30 % at all neighbors) the unit is replicated. n
represents the number of neighbors and r is the rank of
the specific unit at this neighbor. To reduce the impact of
peak ranks (e.g., one unit is best ranked at two nodes,
but worst ranked on the third node) the logarithm is
used. The cooperation of neighbors is advantageous if
their taste diverges.

4) Neighbor Hormone Ranking. Analogue to the popular-
ity ranking the units can also be ranked by their hormone
values at the neighbors. The higher the hormone value
for a unit on a neighbor is, the better is the unit’s rank.
The collected ranks can be aggregated as before and if
the region rank is lower than a given threshold (e.g., the
best 30 %), the unit is replicated.

V. EVALUATION SETTINGS

We implemented a time-triggered discrete simulator. In
such a simulation, the peer’s actions (requests, hormones, unit
movement) are guided by a cyclic schedule, which gives a
comprehensive overview of the processes and dependencies
of the simulated system [15].
The detailed settings are described in the following.

A. Network Topology

We assume for small overlay networks of 50 nodes a
connected Erdős-Rényi random graph with a diameter of 6.
For larger networks, e.g., with 1,000 nodes, we assume a
scale-free network topology. To generate such a network the
Eppstein Power Law Algorithm [16] is used. The algorithm
gets as input a random graph and by repetitively removing
and adding edges a power law distribution is reached. The
network diameter of the scale-free graph is 13. The bandwidth
was set to 100 Mbit/s. Note that further bandwidth scenarios
and parameter studies are target of future work.

B. Initial Storage

Each node creates units up to a predefined initial storage
limit. At the beginning only one instance of each unit exists.
We expect that in a scenario with 50 motivated persons, each
person is contributing with equal probability. In a scenario with
1,000 visitors we expect that there are few highly motivated



persons and a high number of less motivated persons. We
further assume that each person is represented by one peer.
We generate 5,000 units for the 50 peers scenario, and 15,000
units for the 1,000 peers scenario.
The average size of a unit is 2.6 MB, whereas the maximum
size is 16 MB and the minimum size is 190 KB, with a
playback bit rate of 1 Mbit/s. These sizes are the result of
an analysis of a use case event performed at our university,
where visitors were encouraged to contribute their videos and
photos taken at the event.

C. Request Generation
Units are considered to be of different content types, which

we mapped to a three dimensional array (in a real setting
the array can also have more dimensions). Each dimension
contains an integer index of a different category (e.g., swim,
run, bike, people,...). Due to this mapping the similarity can
be calculated by applying the Euclidean Distance. One of
such arrays may describe a number of units. How many
units are mapped to one content array is dependent on the
content’s popularity (Zipf-like distribution). Content arrays
describe video units like keywords.
A user has a specific taste described by a content array. Based
on this taste requests for similar content are generated. A
request consists of a number of content arrays and is fulfilled
if for one content at least one unit can be presented. Hormones
are generated for each of the content arrays and not for the
distinct units. We further implemented a taste change, i.e., if a
user likes the content just watched, the taste for future requests
might be similar to the currently watched unit.
In this paper we do not consider any order of the units, thus,
if a requested unit arrives, it is presented to the user. Further
possible patterns, such as presentation of one unit after another
(sequential) or all starting at the same time are (parallel) are
out of scope of this paper, but are under investigation.
Additionally, we introduce a deadline for each unit, until which
it has to be delivered. The deadline is dependent on the size,
the link bandwidth and a constant multiplier (the maximum
number of hops a unit can travel). If a deadline is missed, no
further hormones for that unit are created to stop attracting
content.
A request is considered as failed if none of the requested units
could fulfill their deadline. A user can only submit one request
at a time. If this request is fulfilled or failed, a new request
will be generated.

D. Simulation Parameters
The delivery algorithm is a very adaptive, robust and flex-

ible method, however, depends on proper parameter settings
for amount of hormone creation, diffusion factor, migration
threshold, etc. These parameters and thresholds are highly
dependent on each other. E.g., if a low number of hormones
is created and forwarded, a high evaporation rate might slow
down the movement of the corresponding unit. Therefore, we
used an evolutionary algorithm for generating a parameter set
such as found in [17]. The fitness function was chosen to
maximize the number of successful requests. The optimized
parameter set is used for both random and scale-free network

hormone initial 3.95
hormones increased p. sec 4.39
% hormones diffused p. sec 45
hormones evaporated p. sec 0.16
migration threshold 0.23
% of storage used to trigger cleanup 60

TABLE I
PARAMETER SETTINGS

scenarios.
In Table I the resulting parameters are shown. On creation
the hormone value is high, leading to a wider travel range.
The diffusion of 45 % of the hormones supports longer travel
distances, too. The evaporation rate is in comparison to the
creation number rather low, which means the hormones last
for some time. The evaporation hormones are a fixed value
subtracted from the current hormone level. The migration
threshold describes the minimum hormone difference between
two nodes to make a unit move. In this case the difference is
very low in comparison to the creation amount of hormones.
This leads to a very dynamic behavior of the units. The clean-
up is triggered by a node if its current storage level exceeds
60 %.

E. Metrics

We want to evaluate the request fulfillment on the one
hand and the utilization of replicas on the other hand. The
fulfillment of requests is represented by the delay. The
delay is measured from the request time of a unit until the
arrival of that unit on the node. A delay of 0s̃ means that
the unit was already on the node. The delay is presented as
cumulative distribution function (CDF) over the simulation
time. The deadline missed rate represents the rate of units
(not requests), for which the deadline is missed. If a unit
missed its deadline, the delay is calculated as deadline minus
request time (max. delay). The request failed rate indicates
requests from which all units missed their deadline.
A unit is presented for some time, and we measure the rate
of units that currently started with presentation. The more
unit presentations started in comparison to the number of
their replicas, the better the unit utilization. The utilization
and the request failed rate will be depicted as box plot with
1.5 interquartile range whiskers.

VI. EVALUATION

We conducted extensive simulations for the random and the
scale-free network topology. We performed each simulation
in 10 runs for 500 simulated seconds. Each run started with a
different seed for the random number generator. The random
number generator has an impact on the network topology and
the request generation and anything further that needs random
input. The results of these runs are averaged. Since the
performance difference of each run is negligible, we reduced
the evaluation runs for the scale-free network. The delay
stabilizes after an initial simulation time of app. 100-200
seconds, a run time of 500 seconds for the random network



and 700 seconds for the scale-free network is therefore
sufficient.

A. Scenario 1: 50 nodes random network
For this scenario we first show the impact of the single

replication methods on utilization and delay. Afterwards we
evaluate the robustness of selected algorithms in case of peer
churn.

1) Impact of Replication Methods: In this part we evaluate
the impact of replication, which takes place in a best effort
manner until no storage space is available anymore. A full
storage space on a peer prevents forwarding of further units.
The goal is therefore to find an intelligent replication mecha-
nism.
In Figure 2 the delay development for all replica mechanisms
is depicted. Hormone ranking (hranking) outperforms path
replication (path), although path replication generates more
replicas. The placement of hormone ranking is more efficient,
leading to less overloaded nodes and therefore more requests
can be fulfilled. Local popularity (pop) has a lower delay
than popularity ranking (pranking), because the best 30 %
for popularity may contain more units than the best 30%
of popularity ranking, thus popularity ranking creates less
replicas. An adaptive threshold for popularity ranking might
lead to better results. The path adaptive replication mechanism
(path adapt) shows that random decisions can also lead to
good results. The hormone replication mechanism (hormone)
tries to replicate if there are currently further requests for that
unit from somewhere else. This leads to a low number of
replicas if the hormones do not reach the current location of
the unit. This graph shows that the number of replicas has
a high impact on the service quality. If too many replicas
are created, the storage used inefficiently and if full, it blocks
further transport. If the number of replicas is too low, the delay
is high, because of long distance transport.
A more detailed view on the storage efficiency is shown by
the utilization rate. Note that it is collected only once, at
the playback start. Figure 3 shows interesting results. Owner
replication has the best utilization, which is explainable by
the low number of replicas. On the first sight one might say
that the more replicas created the lower the utilization. But
the hormone ranking mechanism creates less replicas than
the path replication mechanism. The difference in utilization
can be explained by comparing the delay of these replication
mechanism. The hormone ranking replication has a far lower
delay than the path replication. Since a request is sent after
another is fulfilled or failed a lower delay means that more
requests can be submitted and therefore more replicas can be
generated, which results in lower utilization. In general the
utilization is a metric that has to be evaluated in combination
with delay and request failed rate.
The request failed rate is depicted as box plot in Figure 4. It
shows that hormone ranking and path replication perform 50%
better in comparison to owner replication. This indicates that
the placement of units is well developed. The outliers (marked
with x in the figure) are experienced during the first few
seconds of the simulation, when the unit placement is random.

Fig. 2. Delay distribution in the best effort scenario

Fig. 3. Utilization comparison

After that the failed requests go fast down to approximately
5-10 %.
An ideal replication mechanism would be lowest in delay and
best at utilization. Until now, none of the described replication
mechanisms matches this pattern. Thus, there are further
strategies necessary. As an example, clean-up mechanisms can
be used (such as least recently used) to increase the utilization,
by taking care of unneeded units.

Fig. 4. Failed Request Rate



Fig. 5. Delay distribution of Hormone Ranking if 5,10, 20 nodes fail

Fig. 6. Delay distribution of path adaptive if 5, 10, 20 nodes fail

2) Impact of Peer Churn: We decided to simplify the peer
churn scenario to periodical random peer deletion. In case of
peer addition and removal the hormone trail is disrupted. By
removing nodes from the network such trail disruptions can be
simulated. Since hormones are spread over the neighborhood,
in both cases a unit can travel over alternative paths. The prob-
ability that a request cannot be fulfilled because no fitting unit
exists is minimized because of keyword search and replication.
In this section we investigate two of our before mentioned
replication mechanisms to show their robustness. We select
hormone ranking and path adaptive replication. The first,
because it shows the best results in the best effort scenario and
the second because it performs similar to path replication, but
offers better utilization. Additionally, path adaptive replication
is applicable to any bio-inspired delivery approach without
further knowledge of the implemented system.
Figure 5 shows the delay distribution of the hormone ranking
algorithm. One can see that the replication algorithm and the
delivery algorithm are capable of handling loss. At the first
sight an interesting delay scenario is shown. The delay of the
churn scenarios for 5 and 10 nodes is lower than in the non-
churn case. In the non-churn case nodes consume replicas and
units until their storage space is full. Therefore, such nodes
may block the transport of a unit. If such a node is removed
from the network, units have to move over alternative paths.

Fig. 7. Delay Distribution of Hormone Ranking if 100, 200, 500 nodes fail

Fig. 8. Delay distribution of path adaptive if 100,200, 500 nodes fail

The 20 nodes failure is still capable, however, the delay starts
to drop. Path adaptive replication seems to be more robust
against churn than hormone replication, which is shown in
Figure 6. However, the delay of the 5 nodes failure is higher
than the 10 node failure case. This indicates that units are
removed from the network for which no replicas exist or nodes
that block the network are not removed.
For both replication algorithms a clean-up mechanism would
reduce the number of nodes with filled storage and could result
in a lower delay. Additionally, the utilization is expected to
increase.

B. Scenario 2: 1000 nodes scale-free network
In this section we evaluate the applicability of our delivery

algorithm for scale-free networks. Again, we use hormone
ranking and path adaptive replication. It is shown that the
parameters for the 50 node network also work for the 1,000
peer network. This can be explained by the low diameter of the
1,000 nodes network. If the diameter is larger, more hormones
have to be created to reach a high number of nodes. The
dependency between network diameter and parameters can be
solved by adaptively learning how many hormones should be
created and spread.
In Figure 7 it is depicted that the delay is increased by around
500 ms in comparison to the small network for the hormone
ranking algorithm. Furthermore, if 100, 200 and even 500



Fig. 9. Failed request rate in case of peer churn

nodes fail over time the delay does not increase considerably.
Note that also high degree nodes may fail, because the nodes
leaving the network are chosen randomly. Figure 8 shows that
with this network structure the algorithm is robust against
peer churn. In these two graphs the problem with blocked
nodes does not appear. Because of the high number of nodes
the unit distribution is more efficient. Both algorithms show
a slight increase of request failures in the presence of peer
churn (see Figure 9). In comparison to the small network the
request failure rate doubles, which can be explained by the
larger network diameter.

VII. CONCLUSION AND FUTURE WORK

In this paper we compared a number of existing replication
from the area of unstructured P2P networks. We evaluated their
applicability for a self-organizing bio-inspired delivery algo-
rithm. The delivery algorithm is targeted at highly dynamic
networks and uses multi-hop transport of requested content
for adaptive replication to reduce search space and improve
the robustness. The basis for all our replication mechanisms
is owner replication, since we assume multimedia content is
consumed for a while and should be available during this time
also for other peers.
Uninformed replication such as path replication is resource-
wasteful. Path adaptive replication showed to be a good com-
promise. Thus, for networks without knowledge about current
demands, path adaptive replication can be recommended. The
evaluation of local popularity replication and popularity rank-
ing showed that popularity aging has to be considered since
in dynamic environments the popularity can change quickly.
Therefore, we address the hormone as dynamic and latest
information about popularity of a content. By additionally
including the neighborhood into the decision, the performance
increases as well. A clean-up mechanism would further reduce
the delay by limiting the number of nodes that block delivery.
The mechanisms are as applicable for small random networks
as for large scale-free networks. Furthermore, the delivery
algorithm in combination with replication is robust against
peer churn up to 50 %.
Future work targets the parameters of the delivery algo-
rithm. If the number of peers is unknown in advance there

is performance gain potential if the hormones created and
diffused as well as the thresholds can be optimized over
time. For this an impact study of the single parameters is
planned. Additional work regards the investigation of different
user request models. We want to define disadvantages and
advantages of our algorithm in comparison to direct-download
(1) if peers are clustered according to their interests and (2)
if the interests are widely spread.
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