Speculative Concurrent Processing with
Transactional Memory in the Actor Model

Yaroslav Hayduk, Anita Sobe, Derin Harmanci,
Patrick Marlier, and Pascal Felber
first.last@unine.ch

University of Neuchatel, Switzerland

Abstract. The actor model has been successfully used for scalable com-
puting in distributed systems. Actors are objects with a local state, which
can only be modified by the exchange of messages. One of the fundamen-
tal principles of actor models is to guarantee sequential message process-
ing, which avoids typical concurrency hazards, but limits the achievable
message throughput. Preserving the sequential semantics of the actor
model is, however, necessary for program correctness.

In this paper, we propose to add support for speculative concurrent ex-
ecution in actors using transactional memory (TM). Our approach is
designed to operate with message passing and shared memory, and can
thus take advantage of parallelism available on distributed and multi-core
systems. The processing of each message is wrapped in a transaction exe-
cuted atomically and in isolation, but concurrently with other messages.
This allows us (1) to scale while keeping the dependability guarantees
ensured by sequential message processing, and (2) to further increase
robustness of the actor model against threats due to the rollback ability
that comes for free with transactional processing of messages. We vali-
date our design within the Scala programming language and the Akka
framework. We show that the overhead of using transactions is hidden by
the improved message processing throughput, thus leading to an overall
performance gain.

Keywords: Concurrency, actors, transactional memory, speculative processing.

1 Introduction

The actor model, initially proposed by Hewitt [1], is a successful message-passing
approach that has been integrated into popular frameworks [2]. The actor model
introduces desirable properties such as encapsulation, fair scheduling, location
transparency, and data consistency to the programmer. It also perfectly uni-
fies concurrent and object-oriented programming. While the data consistency
property of the actor model is important for preserving application safety, it is
arguably too conservative in concurrent settings as it enforces sequential pro-
cessing of messages, which limits throughput and hence scalability.

In this paper, we address this limitation by proposing a mechanism to boost the

performance of the actor model while being faithful to its semantics [2]. The
key idea is to apply speculation, as provided by transactional memory (TM),
to handle messages concurrently as if they were processed sequentially. In cases
where these semantics might be violated, we rely on the rollback capabilities of
TM to undo the operations potentially leading to inconsistencies.

We see a high potential for improvement in scenarios where actors maintain state
that is read or manipulated by other actors via message passing. With sequential
processing, access to the state will be suboptimal when operations do not con-
flict (e.g., modifications to disjoint parts of the state, multiple read operations).
TM can guarantee safe concurrent access in most of these cases and can handle
conflicting situations by aborting and restarting transactions.

Speculation can also significantly improve performance when the processing of
a message causes further communication. Any coordination between actors re-
quires a distributed transaction, which we call coordinated transaction. We com-
bine coordinated transactions and TM to concurrently process messages instead
of blocking the actors while waiting for other transactions to commit.

We have implemented our approach in the Scala programming language and
the integrated Akka framework [3]. Since this implementation cover changes
to the Akka framework only, the developer is not affected at all. We evaluate
our approach using a distributed linked list benchmark already used with other
concurrent message processing solutions [4]. We show that concurrent message
processing and non-blocking coordinated processing can considerably reduce the
execution time for both read-dominated and write-dominated workloads.

The rest of the paper is organized as follows. We first give an overview of the
actor models, transactional memory, and related work in Section 2. We then
discuss the limits of the sequential message processing in Section 3 and propose
improvements to sequential message processing in Section 4. We describe our im-
plementation in Section 5 and present evaluation results in Section 6. We finally
conclude in Section 7.

2 Background and Related Work

Actor models are inherently concurrent. They are widely used for implementing
parallel, distributed, and mobile systems. An actor is an independent, asyn-
chronous object with an encapsulated state that can only be modified locally
based on the exchange of messages. It comprises a mailbox in which messages
can be queued, as well as a set of dedicated methods for message processing [5].
The actor model provides macro-step semantics [6] by processing messages se-
quentially. As a consequence, it also guarantees the following properties:
Atomicity. The state of an actor can only be observed before or after opera-
tions took place, therefore changes on the state are perceived either all at once
or not at all.

Isolation. The actor model forbids any concurrent access to the local state of
an actor. This means that any operation on the state of the actor is done as if
it were running alone in the system.

These characteristics make actor models particularly attractive and contribute
to their popularity. Numerous implementations of actor models exist in many
languages like Java, C, C++, and Python. We decided to use Scala, which is a
general-purpose language that runs on top of the JVM and combines functional
and object-oriented programming patterns. The recent versions of Scala integrate
the Akka Framework [3] for realizing actors. They also supports transactional
memory (TM) [7], a programming model that provides atomicity, isolation, and
rollback capabilities within transactional code regions [8]. The programmer sim-
ply has to demarcate the blocks of instructions that must execute atomically
and the TM performs all the necessary bookkeeping to ensure that the target
code is executed in a transaction, i.e., the consistency of data accessed within the
block are not affected by concurrent accesses. TM provides built-in support for
check-pointing and rollback, which we exploit for controlling concurrent message
processing.

Existing actor frameworks such as surveyed by Karmani et al. in [2] do not in-
clude TM and differ regarding the way they handle parallelism. As an example,
implementations of Habanero-Scala and Habanero-Java [4] introduce parallelism
by mixing the actor model with a fork-join design (async-finish model). Actors
can start concurrent sub-tasks (async blocks) for the handling of a single mes-
sage.

Since the processing of a message terminates only when all sub-tasks are fin-
ished, this approach enforces sequential handling of messages. To alleviate this
restriction and improve scalability, Habanero also allows messages to be pro-
cessed in parallel. To ensure that the actor’s state is not accessed concurrently,
a pause and resume model that works similar to wait and notify is used. While
processing a message, the actor can spawn external sub-tasks it must then pause
to avoid intermediate modification to its state. When the sub-tasks finish with
changing the state, the actor resumes its operation and can process further mes-
sages. While this approach avoids concurrent access to an actor’s state, it must
be used carefully as it provides no protection against synchronization hazards
such as data races and deadlocks.

Parallel actor monitors (PAM) [9] support concurrent processing by scheduling
multiple messages in actor queues. Using PAM, the programmer must under-
stand the concurrency patterns within the application and define application-
specific schedulers. This may prove particularly challenging for applications
where concurrency patterns vary during execution. In contrast, our approach
(see Section 4) removes any programmer intervention and automatically allows
concurrent executions when possible. Further, we do not break the original actor
semantics at any time, while using an inappropriate scheduler with PAM can
cause inconsistencies.

3 Problem Statement

Despite its inherent concurrency, the actor model requires sequential message
processing. While this requirement is a deliberate choice to avoid synchronization

Queuing delay Coordination delay Hiding queuing delay Hiding coordination delay

Queueing delay Coordination delay messages do processing Additional message(s)

not wait terminates DFOCG_SSE_G within
in the queue earlier coordination delay

Fig. 1. Sequential (left), concurrent and non-blocking coordinated processing (right)
and their effect on execution time.

hazards, it unnecessarily limits the performance (i.e., throughput) of individual
actors, in particular when they execute on multi- or many-core computers.

We elaborate the problem of sequential processing with the help of the examples
depicted in the left part of Figure 1. They involve three actors (A, B and C)
performing operations as illustrated on their respective time lines (horizontal
dashed line). The transfer of a message between actors is indicated by an arrow
and its processing is indicated by thick solid lines, where we explicitly mark the
beginning and end of processing with brackets. In our examples, the actors are
responsible for maintaining a distributed linked list of ordered integers. Actor B
stores the first part of the list and actor C the second part, while actor A acts
as a client and performs operations on the list (e.g., search, insert, remove).
Sequential processing in the actor model limits performance in two ways:
Queuing delay: In the first block of Figure 1 we depict the delay that is intro-
duced upon arrival of multiple messages on a single actor. If actor A and B send
messages to actor C, which is busy, both messages are stored in a queue. The
queuing delay is the time a message has to wait at a given actor from arrival to
the start of its processing.

Coordination delay: In the second block of Figure 1 we depict a common
communication pattern.

Consider that actor A wants to move the value z from the list of actor B to
the list of actor C. For doing so, it sends messages remove(x) to actor B and
insert(x) to actor C. To fulfill the macro-step semantics in actor A, the list
operations have to be part of a coordinated transaction, which commits when
all three actors successfully finish their task. The coordinated commit protocol
defines a barrier on which actors B and C block until they can resume processing
other messages. Hence, the coordination delay describes the time actors have to
wait after finishing their own tasks until the distributed transaction commits.

4 Message Processing Model

Queuing delays are inherent to the structure of the actor model and its sequential
processing operation; their reduction may become particularly important for
actors that receive many messages. Further, upon coordination delay, actors

Dispatcher

Methods Method schedule
User messages Demux (message processing (assuming system messages arrived later) Thread pool

code sections)
S C
S
System messages O

S
S C"\\/It%

el se]

]

121 N72] N7o) N72)
ololololo

Embedding meséaée processing
in transactions (S: Start, C: Commit) ™

Fig. 2. Implementation of concurrent message processing.

block and thus cannot perform any useful work. We claim that these delays are
unnecessarily long and can be significantly reduced by thoughtful changes to the
message processing of actors.

Our main idea is based on the observation that we can guarantee atomicity and
isolation if we encapsulate the handling of messages inside transactions. Thanks
to the rollback and restart capability of transactions, several messages can be
processed concurrently, even if they access the same state. We call this approach
concurrent message processing. Additionally, we exploit the characteristics of
transactions to avoid blocking actors while waiting for a coordinated commit
(non-blocking coordinated processing).

To explain the principle of our two optimizations, consider the same example as
in Figure 1 with actor A performing operations on a list stored on actors B and
C. The right part of Figure 1 illustrates how the delays caused by sequential
processing can be reduced.

Queuing delay: By processing several messages concurrently on a single actor,
we can reduce the queuing delay as shown in the first block of Figure 1. Therefore,
if A and B send a message to C, which is currently busy, the messages do not
have to wait. If the transactions do not conflict and can immediately commit,
the queuing delay is avoided.

Coordination delay: Actor A wants to move a value from the list of actor B
to the list of actor C, which requires both an insertion and a removal action.
This is typically achieved using a coordinated transaction. To ensure consistency,
however, participating actors cannot process new messages until the coordinated
transaction commits. By treating messages speculatively, one can avoid blocking
the actors and allow concurrent execution of non-conflicting transactions (e.g.,
as in actors B and C in the second block of Figure 1), therefore hiding the
coordination delay.

5 Implementation

To hide the delays as explained before, we extend Scala version 2.10.2. Specifi-
cally, we concentrated on two parts of Scala: the Akka framework version 2.10.0

Coordinated transaction N

(consists of x,y,z) } Queue for N
M k
b—]
|
Actors y E — 1.1 Dedicated
\/ a4 thread
S 2D
z
Commits for
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, x,yand z
XY and z are
" all committed
at this point

Fig. 3. Sketch of the implementation of non-blocking coordinated processing.

and the Scala-STM [10] library version 0.7. Akka provides a clean and efficient
implementation of the actor model for the JVM. Scala-STM supports transac-
tional memory in Scala and, while it adds some overhead for checkpointing and
concurrency control, it is particularly non-invasive and well integrated in the
language. In the following we describe the specific changes we made to Akka and
Scala-STM to realize the proposed optimizations.

Concurrent processing of messages. The concurrent message processing
only involves changes of the message handling provided by the Akka framework.
Specifically, we changed the behavior of the actor’s mailbox. In the original Akka
implementation a dispatcher is responsible for ensuring that the same mailbox is
not scheduled for processing messages more than once at a given time. Another
particularity of Akka is that every actor has one mailbox with two queues: the
first one stores user messages, i.e., messages received from other actors, while
the second one is used for maintaining system messages specific to Akka, which
control lifecycle operations (i.e., start, stop, resume). Once a user message is
scheduled, the dispatcher checks first if there are any system messages. Then, all
existing system messages are treated before the user message. The same is done
after the processing of the user message. As system messages are rare, actors
spend most of their time processing user messages.

To facilitate concurrent message processing, we reimplemented the mailbox and
message treatment as shown in Figure 2. System messages are handled as in the
sequential case, before and after user messages, but instead of processing user
messages one at a time, we process them concurrently in batches. Each user
message from a batch is submitted to a thread-pool for execution. The actual
message processing is performed concurrently inside a transaction, as indicated
by the start (S) and commit (C) events in the figure. For the transactional han-
dling of messages we use the default Scala-STM. If the concurrent operations do
not conflict, we can hide the queuing delay as illustrated in Figure 1.
Non-blocking coordinated transactions. The non-blocking coordinated trans-
action alters the commit behavior of the Scala-STM. By default, a coordinated
transaction is blocking (see Figure 1). All actors participating to a coordinated
transaction must reach a commit barrier before any other message can be pro-

cessed.

Consider the case of a transaction that executes a block of code corresponding to
the processing of a message. After the transactional code is executed, the STM
makes an attempt to commit the changes, possibly rolling back and trying again
upon failure. In the process of a commit, several steps are performed: (1) locks for
the variables accessed in the transaction are obtained; and (2) if the transaction
belongs to a coordinated transaction, an external decider is consulted. The co-
ordinated transaction’s commit barrier blocks as long as some of its transactions
are still executing. Once they have all successfully completed, the commit bar-
rier is unlocked and control is returned to the caller. After the external decider
returns, the transaction does final sanity checks and flushes outstanding writes
to main memory. In our implementation, illustrated in Figure 3, we perform
the following operations instead of blocking the thread when waiting for other
parties to arrive at the barrier. We first save the current transaction descriptor
in a queue (queue for N). Then, we return from the atomic block immediately,
bypassing any additional logic associated with the commit operation. By doing
so, we do not fully commit the transaction; we instead suspend its commit at
the point where it would normally block.

While an actor is busy with a coordinated transaction, it can handle other mes-
sages concurrently, hiding the coordination delay as illustrated on transactions
k, I, and m in Figure 3. If concurrent messages are independent, they can com-
mit immediately. If there is a write-write conflict, the processing of one of the
messages rolls back. Read-write conflicts represent a special case: if the coordi-
nated transaction reads a value and a concurrent message wants to write the
same value, we delay the commit of the write until the coordinated transaction
completes.

In a system comprising multiple actors, it is likely that several coordinated trans-
actions execute concurrently. Each coordinated transaction uses its own queue to
store its suspended pre-committed transactions (N corresponds to the identifier of
the coordinated transaction in the figure). Hence, we do not mix pre-committed
transactions belonging to different coordinated transactions. To resume the com-
mit, a dedicated thread is notified when all the parties belonging to the same
coordinated transaction have completed their work.

6 Evaluation

Our optimizations are expected to be most useful in applications where state
is shared among distributed actors. Hence, to evaluate our approach, we use a
benchmark application provided by Imam and Sarkar [4] that implements a state-
ful distributed sorted integer linked-list. The architecture considers two types of
actors: request and list actors. Request actors only send requests such as lookup,
insert, remove, and sum. List actors are responsible for handling a range of val-
ues (buckets) of a distributed linked list. In a list with [actors, where each actor
can store at most n elements representing consecutive integer values, the 7" list
actor is responsible for elements in the [(i — 1) - n, (i - n) — 1] range, e.g., in a list

with 4 actors and 8 entries, each actor is responsible for two values. A request
forwarder matches the responsible list actors with the incoming requests. We ex-
tend this benchmark to evaluate different facets of our proposed optimizations.
We evaluate different workloads, different numbers of actors holding elements of
the list, etc. For the sum operation, each actor holds a variable that represents
the current sum of all its list elements, called partial_sum, which is updated
upon insertion and removal. When computing the sum of the whole list, we only
accumulate the partial sum of each list actor without the need of traversing all
list elements. While the lookup, insert, and remove operations execute on a sin-
gle list actor, the sum operation needs to traverse all the list actors in order to
return the partial sums. Hence, the sum operation involves multiple list actors.
The original benchmark did not initially ensure atomicity of the sum operation;
we therefore changed the implementation so that the computation of the sum is
performed within a coordinated transaction.

We execute the benchmark on a 48-core machine equipped with four 12-core
AMD Opteron 6172 CPUs running at 2.1GHz. Each core has private L1 and L2
caches and a shared L3 cache. The sizes of both instruction and data caches are
64KB at L1, 512KB at L2, and 5MB at L3.

We apply each of the extensions—concurrent message processing and non-blocking
coordinated processing—to a read-dominated workload and then to a write-
dominated workload. Each sample corresponds to the geometric mean of 7 runs.
We first evaluate both extensions separately to better assess their benefits and
drawbacks, i.e., for the first results, non-blocking coordinated processing does
not include concurrent message processing. Then, we conduct experiments with
both approaches combined. Their performance is compared against sequential
message processing, i.e., using default Akka/Scala constructs without transac-
tions for read and write operations. The sum operation is put into a coordinated
transaction as provided by Akka/Scala. We finally complete our evaluation with
a comparison against the Habanero-Scala implementation.

Our experiments are either read-dominated (lookup) or write-dominated (in-
sert, remove). These workloads additionally contain a number of sum opera-
tions, which are treated as coordinated messages. More precisely, each actor
performs R = % reads, W = y% writes, and S = 2% sum operations, where
R+ W + S = 100%. Since sum requests are likely to be rare in comparison
with other operations, we keep this parameter constant at S = 1%. For read-
dominated workloads, we choose R = 97% and W = 2%. The write-dominated
workload is configured with R = 1% and W = 98%.

Insert and remove operations are handled independently and are chosen at ran-
dom, but each evaluation run gets the same input. We vary the number of list
and request actors, each of the latter sending 1,000 requests. The request actors
wait for a response before sending the next message. The list can contain a max-
imum of 41,216 integers split evenly between actors. For instance, if there are
32 list actors, each will be responsible for 1,288 buckets. The list is pre-filled to
20 % of its capacity.

o
[S]

Sequential
T T

Concurren

Non-blocking coordinated
T

list actor

- 1

—= 2 list actors
— 4 list actors
-5 8 list actors
=1
- 3

o
T

6 list actors
2 list actors

Execution time (s)

o

500 125 250 375

Request actors

250 375 500

Request actors

500 125 250 375

Request actors

Fig. 4. Execution time for sequential, concurrent, and non-blocking message processing
on a read-dominated workload.

1 list actor 8 list actors 32 list actors
- i T T r T T i T T =
2 100 o .
£ _— __a
£ 10l* - =L o 1F a—" 4 - Sequential
S - — —= Concurrent
= = i
3 1L 11] =% Non-blocking
53 coordinated
w 01 L L L L L L L L L L L L

500 125 250 375

Request actors

250 375
Request actors

500 125 250 375

Request actors

Fig. 5. Execution time for sequential, concurrent, and non-blocking message processing
using 1, 8, and 32 list actors on a read-dominated workload.

6.1 Read-dominated workload

Figure 4 presents the results for the three separate scenarios: sequential message
processing, concurrent message processing, and non-blocking coordinated pro-
cessing. On the x-axis we show the effects of increasing the number of request
actors (125-500), while the y-axis displays the execution time in seconds (log
scale), i.e., the time needed to finish processing all requests. The lower the exe-
cution time, the better. One can see in all cases that adding more request actors
leads to higher execution times, which is not surprising because the workload
becomes higher.

The concurrent execution time (Figure 4, center) is lower than the sequential
scenario up to 16 list actors, which indicates that allowing multiple messages
to be processed concurrently introduces an immediate performance gain. In our
linked-list example, messages sent from request actors R1 and R2 to a list ac-
tor L1 will be treated within a transaction. If there are no conflicts—which is
likely in a read-dominated workload—concurrent transactions commit success-
fully. Therefore, the time required to process a batch of messages will be equal
to the execution time of the longest associated transaction (max (77,75,...))
instead of the sum of all execution times (> 7T;). The performance with 16 and
32 actors starts to degrade because the workload provides less exploitable con-
currency. With 32 list actors the performance is even worse than with a single
list actor.

When considering non-blocking coordinated message processing (Figure 4, right),
the explanation for the increase of the execution time for concurrent processing
with 16 and 32 list actors is clear: when the number of list and request actors is
high, coordinated transactions are likely to fail because of increased contention.

Non-blocking coordinated message processing allows us to reduce this execution
time considerably. Actors can process other messages while the sum operation is
in progress. The reduction of execution time is especially high for read-dominated
workloads, because a lookup operation and the read of the partial sum are non-
conflicting operations. With large numbers of list and request actors, however,
the likelihood of insert and remove operations increases significantly.

Figure 5 shows a more detailed comparison for an increasing number of list
actors. The left graph in presents the execution time for a single list actor.
One can see that concurrent message processing improves the execution time
considerably, while non-blocking coordinated processing exhibits worse perfor-
mance than sequential message processing. Indeed, since there is only one list
actor, no coordinated transactions are executed, i.e., the sum operation only
returns the partial sum of the current list actor. Hence, the execution time of
the non-blocking coordinated processing shows the overhead of executing all
operations inside transactions. When increasing the number of list actors, this
overhead is compensated by the benefits of non-blocking coordinated process-
ing. When increasing the number of list actors to at least 8 (Figure 5, center),
the contention of coordinated transactions increases and non-blocking processing
performs even better than concurrent message processing. When the number of
coordinated transactions and write-write conflicts becomes too high, concurrent
message processing yields performance similar to sequential processing, as can be
observed in the right graph of Figure 5 for 32 list actors. In contrast, non-blocking
coordinated transactions lead to significantly lower execution times than both
sequential and concurrent message processing.

To summarize our findings so far, concurrent message processing has the highest
impact if the number of list actors is low because each will have more mes-
sages to process, i.e., the penalty from serialization is more important and the
workload provides more exploitable concurrency. The opposite trend can be ob-
served with non-blocking coordinated transactions: they benefit most when the
number of list actors is high because coordinated transactions become longer,
i.e., the penalty of the blocking operation is higher and contention is relatively
low. Therefore, the combination of both techniques is expected to provide good
overall performance for all considered scenarios.

6.2 Write-dominated workload

We expect to observe more conflicts with a write-dominated workload because
each insert and remove operation also modifies the value of the partial sum. As
a consequence the execution time generally increases in comparison with the
read-dominated load, as shown by the graphs in Figure 6.

Sequential processing (Figure 6, left) performs similarly to the read-dominated
workload case. The execution time first improves when adding more list ac-
tors. Then, we observe similar execution times for 8 and 16 list actors, and the
degradation starts for 32 actors as the impact of coordinated transactions be-
comes more significant. Concurrent processing (Figure 6, center) provides better
overall performance, but the best improvement is obtained with 16 list actors

Sequential Concurren Non-blocking coordinated
T T T

% 1000 F 1F e iF 9]
j:’ —e — M — 1 list actor
£ 100 2 list actors
= 4 list actors
S 10 8 list actors
£ 16 list actors
] 1 32 list actors
i 0.1

T o125 250 375 500 125 250 375 500 125 250 375 500

Request actors Request actors Request actors

Fig. 6. Execution time for sequential, concurrent, and non-blocking message processing
on a write-dominated workload.

1 list actor 8 list actors 16 list actors

@ 1000 [T T — T T — T T —
£ 100} 1]
= —e— Sequential
o 10 + F —= Concurrent
g —— Non-blocking
9] 1F ir r coordinated
w 0 1 L L L L L L L L L L L L

125 250 375 500 125 250 375 500 125 250 375 500

Request actors Request actors Request actors

Fig. 7. Execution time for sequential, concurrent, and non-blocking message processing
using 1, 8, and 16 list actors on a write-dominated workload.

when there is sufficient exploitable concurrency. Finally, with non-blocking co-
ordinated processing, performance improves with the number of list actors. The
execution time is better than concurrent processing starting from 4 list actors.
The reason is that sum operations are read operations. Thus, for coordinated
transactions a write-write conflict is not possible. We expect that write opera-
tions in coordinated transactions conflicting with other writes lead to execution
times close to concurrent processing.

Figure 7 shows the execution times of sequential, concurrent, and non-blocking
coordinated processing for various sizes of list actors. With a single list ac-
tor (Figure 7, left), we observe that concurrent and non-blocking coordinated
processing perform poorly due to the many write-write conflicts and resulting
aborts.

With 8 list actors (Figure 7, center) the performance of non-blocking coordinated
processing becomes close to sequential processing, whereas concurrent process-
ing still has a higher execution time. Finally, with 16 list actors the advantage
of non-blocking coordinated processing is obvious, while concurrent processing
now performs similarly to sequential processing because the coordination delays
dominate.

Summing up the write-dominated workload results, we conclude that concurrent
processing becomes less beneficial when the likelihood of write conflicts is high.
In some cases, the high number of roll backs becomes high enough that sequential
processing should be preferred. Coordinated transactions have a high influence
on the execution time and significantly improve performance with many list ac-
tors. Therefore, a write-dominated workload can benefit more from non-blocking
coordinated transactions than concurrent ones, and it is debatable whether the

Read dominated workload Write dominated workload

8 list actors 16 list actors
C 0 ‘ ‘ 110 ¢ ‘ ‘ ,f—/ri* —e— Sequential
® _a—— = Concurrent
= — —*- Non-blocking
5 11 1L | —&— Concurrent
] non-blocking
o
Q
>
w 0.1 L L L 101 I |) A

125 250 375 500 125 250 375 500
Request actors Request actors

Fig. 8. Execution time for sequential, concurrent, non-blocking, and combined message
processing.

latter extension should be used at all when the number of write-write conflicts
becomes very high.

6.3 Non-blocking concurrent processing

We conducted the same experiment as before, but combined concurrent and non-
blocking coordinated message processing, which we call non-blocking concurrent
processing, for the read and write-dominated workload. In the read workload,
concurrent processing leads to lower execution times when the number of list ac-
tors is below 16. Indeed, one can observe that the performance of non-blocking
concurrent processing is even better than non-blocking coordinated processing
(Figure 8, left). When we increase the number of list actors, we see again the
same behavior as for the write-dominated workload. The combination is thus
useful when both concurrent and non-blocking coordinated processing lead to a
lower execution time than sequential processing.

The results for the write-dominated workload show that concurrent processing
does not have much influence on the execution time (Figure 8, right). In the
16 buckets scenario, pure concurrent processing has execution times similar to
sequential processing, while non-blocking concurrent processing results in per-
formance close to non-blocking coordinated processing.

To fully exploit the capabilities of the proposed mechanisms, it is therefore nec-
essary to properly understand the nature of the workload. If it is read-dominated
and the number of list actors is high, one should favor non-blocking coordinated
processing. If the number of list actors is low, one should rather use non-blocking
concurrent processing. Finally, with a write-dominated load, one should prefer
non-blocking coordinated processing or even switch back to sequential process-
ing.

6.4 Comparison to Habanero-Scala

In the original Habanero-Scala benchmark shown in Figure 20 in [4], the authors
ran their experiments with 64 list actors, each responsible for 400 buckets. Ad-
ditionally, the authors used a workload with a balanced mix of reads and writes
(50:50). 50 read actors are used to access the list elements, with 32,000 accesses

Read - 32 list actors Write - 2 list actors Write - 16 list actors

Z 100

GE) —e— Sequential
= 10 [1L i Habanero

S ./———Ji:::::” - —=— Concurrent
£ E/g//ﬁ7‘§ =%~ Non-blocking
g L3 H3 3 = Concurrent
] non-blocking

01 o - . . .
125 250 375 500 125 250 375 500 125 250 375 500
Request actors Request actors Request actors

Fig. 9. Execution time comparison with Habanero-Scala.

by actor. For these settings, Habanero-Scala (LightActor implementation) per-
formed slightly better than default sequential processing (Akka). Note that the
Light Actor implementation of the list benchmark does not spawn any sub-tasks.
It use a finish construct instead of the default countdown latch for coordinating
list and request actors of the list. Thus, the difference in performance is due
to their lightweight implementation of actors, a custom task scheduler, and a
different thread-pool implementation.

To show the full capabilities of our approach, we executed our experiments with
Habanero-Scala. For this, we use the default Habanero-Scala constructs for read
and write operations (no transactions). The behavior of the sum operation is
provided by a barrier implemented in the list actors using the DataDriveFuture
construct (including sub-tasks) of Habanero-Scala.

For the read-dominated workload, Habanero-Scala performs similarly to sequen-
tial message processing, except for 32 buckets where Habanero-Scala performs
better by approximately 40%. There, the difference is higher, because of the
penalty of the blocking coordinated sums used in the sequential implementation.
As seen in the left graph of Figure 9, our approach outperform Habanero-Scala
by 50 to 70%.

In the write-dominated workload, Habanero-Scala performs again similarly to
sequential message processing. With our speculative extensions, the contention
is too high for less than 8 list actors. With 16 list actors the improvement of our
approach is significant (Figure 9, right).

6.5 Discussion

Our approach, which combines concurrent and non-blocking coordinated pro-
cessing, guarantees the same correctness as the original actor model. We perform
the processing of messages within transactions, which means that concurrent op-
erations on the actor’s state will execute atomically and in isolation. Therefore,
conflicting operations will be serialized, but non-conflicting messages should be
processed concurrently.

It is important to note that the actor model does not impose any order on
the processing of messages that are in its incoming queues. Therefore the non-
deterministic order in which transactions will commit does not break the seman-
tics of the actor model. If ordering were required, we could extend the STM as
proposed in [11] to enable parallel processing but commit transactions in order.
As we rely on transactional memory to process messages equivalently to a serial

execution and we preserve the original actor model, concurrent processing also
provides the same correctness guarantees. The same applies for non-blocking co-
ordinated processing. All messages are handled within transactions, which means
that the conflicts are handled as for concurrent message processing. However, for
read-write conflicts (e.g., concurrent sum and insert operations) the order will
be preserved by our delayed commit mechanism. An issue that currently limits
our approach is that the code of ”transactified” message processing should not
contain any action that is not under the control of the TM, such as I/O or OS
library code (irrevocable code). Strategies for supporting irrevocable actions are
left to the responsibility of the underlying TM and are not specific to our exten-
sions.

Our approach has the important benefit of being adaptable. The transactional
processing of a message can be aborted at any time without side effects on the
current state of the actors. This implies that each of our extensions can be en-
abled or disabled at any time during execution, and one can switch from one
extension to the other within the same execution. Such flexibility can be ex-
ploited to play with trade-offs between performance and resource utilization. On
the performance side, messages need to be processed anyways, either sequentially
or concurrently. Hence, if we have idle resources and we can process messages
concurrently, the overall task can be completed in a shorter time. On the re-
source utilization side, the adaptability of our approach allows us, for example,
to apply simple energy-efficiency strategies that enable or disable transactional
execution, possibly even temporarily switching off some cores, in order to fit the
consumption of the application to the desired energy requirements.

7 Conclusion

The actor model implements synchronization by the means of message passing.
This decoupled communication paradigm is particularly scalable since it allows
multiple actors to perform independent computations concurrently as they do
not share state. However, each actor processes arriving messages sequentially.
To address this limitation, we proposed an approach that combines transactional
memory (TM) and actors as implemented by the Akka Framework. Incoming
messages are dequeued in batches and processed speculatively inside transac-
tions. The atomicity, consistency, and isolation properties of TM guarantee that
messages do not interfere when being processed concurrently. In addition, as the
actor model does not impose any order on the handling of user messages in the
incoming queues, our approach preserves its semantics.

To further improve concurrency, we also extended the coordinated transaction
mechanism of Scala-STM to support non-blocking operations. The traditional
design prevents actors involved in a coordinated transaction to process any ad-
ditional message until the transaction commits. The resulting delays can be
especially high when actors are distributed on several nodes and communication
has non-negligible latency. We solve this issue by speculative concurrent message
processing.

Together, these two mechanisms can significantly lower the queuing and coor-
dination delays, and hence increase concurrency. We implemented both mecha-
nisms in the Scala language using the integrated Akka framework. Experiments
on a 48-core server show that our extensions provide important performance
benefits over sequential processing on both read-dominated and write-dominated
workloads.

Future work regards dynamic switching between sequential and concurrent pro-
cessing and the investigation of a real-world application.

Acknowledgements

This research has been funded in part by the European Community’s Sev-
enth Framework Programme under the ParaDIME Project (www.paradime-
project.eu), grant agreement no. 318693.

References

1. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artifi-
cial intelligence. In: IJCAI'73: Proceedings of the 3rd International Joint Confer-
ence on Artificial Intelligence. (1973) 235-245

2. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: a com-
parative analysis. In: PPPJ ’09: Proceedings of the Tth International Conference
on Principles and Practice of Programming in Java. (2009) 11-20

3. Haller, P.: On the integration of the actor model in mainstream technologies: the
scala perspective. In: Proceedings of the 2nd Edition on Programming Systems,
Languages and Applications based on Actors, Agents, and Decentralized Control
Abstractions. AGERE! ’12, Tucson, Arizona, USA, ACM (2012) 1-6

4. Imam, S.M., Sarkar, V.: Integrating task parallelism with actors. In: Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications. OOPSLA ’12, Tucson, Arizona, USA (2012) 753-772

5. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming 7(1) (1997) 1-72

6. Karmani, R.K., Agha, G.: Actors. In Padua, D., ed.: Encyclopedia of Parallel
Computing. Springer (2011) 1-11

7. Goodman, D., Khan, B., Khan, S., Lujan, M., Watson, I.: Software transactional
memories for scala. Journal of Parallel and Distributed Computing (2012)

8. Harris, T., Larus, J., Rajwar, R.: Transactional Memory. 2nd edn. Morgan and
Claypool Publishers (2010)

9. Scholliers, C., Tanter, E., Meuter, W.D.: Parallel actor monitors. In: SBLP’10:
14th Brazilian Symposium on Programming Languages, Salvador, Brazil (2010)

10. ScalaSTM: http://nbronson.github.com/scala-stm/

11. Brito, A., Fetzer, C., Sturzrehm, H., Felber, P.: Speculative out-of-order event
processing with software transaction memory. In: DEBS ’08: Proceedings of the
International Conference on Distributed Event-based Systems. (2008) 265-275

