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1 INTRODUCTION

MULTI-CORE enabled machines hit markets in the
early 2000s. Nowadays multi-core CPUs have

largely replaced single cores. The before common se-
quential programs were naturally deterministic. They
can be read top-bottom while preserving the temporal
order of instructions [1]. As a counterpart, determinism
leads to bad performance on multi-core architectures.
Indeed, operations are forced to execute one at a time
and in order, regardless of any opportunities for paral-
lelism. The goal of concurrent programming lies in effi-
ciently using the existing multi-core resources, resulting
in improved performance. In turn, exploiting parallelism
requires programs to be as scalable as possible.

A program achieves maximum scalability by ensuring
that all cores of a CPU are fully loaded throughout its
execution. To reach high levels of scalability the span
of the code should be minimized. The span represents
the minimum sequence of sequential operations the
code should perform throughout its execution (serial
bottleneck). The potential speedup of parallel programs
is directly limited by their sequential portion of code
(Amdahls law). A well thought scalable program will
automatically perform better regardless of the number
of cores provided.

Besides the performance gains parallelism can bring,
concurrent programs lead to hazards such as data races,
violated consistency, liveness and progress issues caused
by multiple threads accessing shared data. Imposing a
strict parallel structure to a program helps avoiding such
hazards but limits its scalability, hence its performance.
Developing concurrent applications remains a challenge
requiring deep knowledge of concurrency in hardware
as well as in software. Debugging deadlocks or data
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inconsistencies becomes even harder due to the non-
deterministic nature of concurrent programs. To enable
faster and safer developments, one solution consists
in using inherently concurrent patterns with implicit
synchronization mechanisms as conceptualized in the
Actor Model [2].

Introduced by Carl Hewitt in 1973, the Actor Model
uses message passing in combination with encapsulated
states. It is inspired by the multi-agent design of artificial
intelligence. Agents are grouped into layers representing
different levels of abstraction of the problem to solve.
Each agent belongs to one level and may spawn new
sub-agents to handle the workload or new tasks. Actors
inherit from agents and provide desirable properties
like data encapsulation, fair scheduling and location
transparency [3]. The Actor Model inspired other
patterns like the Active Object Model which inherits
most of its properties.

In this paper, we focus on comparing the Actor Model
and the Active Object Model. They exhibit desirable
properties such as a high capacity to split the workload
into lightweight, independent tasks to achieve maximum
and automatic scaling. We also explore the different
guarantees regarding consistency and concurrency of
both models. In our experiments, we will use the AKKA
framework as it already supports implementations of
both patterns.

This paper is organized as follows: Section III presents
both the Actor Model and Active Object patterns. Sec-
tion IV explains similarities between the two patterns
in terms of method invocation, execution and message
passing. Structural differences are also discussed. Section
V provides implemented examples to highlight some
of the differences between the Actor Model and Active
Object. Section VI addresses possibilities of mixing both
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patterns to achieve various combinations of desirable
properties in concurrency. Finally, section VII presents
the state of the art in bringing concurrency even within
actors/servants.

2 PATTERNS OVERVIEW
To understand the differences and similarities between
the Actor Model and the Active Object Model, we first
introduce their basic principles separately.

2.1 Actor Model
The Actor Model (AM) is a pattern using actors as its
universal primitive to perform concurrent computations
[4]. Parallel computations are realized by decomposing
an intent into subtasks and distributing them over
suitable actors. An actor may be considered as a worker
that processes messages sent by other actors. To better
understand how parallelism is achieved, we will present
the structure of actors as well as their communication
protocols.

An actor is an object that encapsulates both control
and data flow into a single object (see Figure 1). Actors
feature three main components: (1) an internal state, (2)
a mailbox and (3) a set of functions to query and modify
the internal state. The internal state is a combination of
variables and objects that represent the knowledge of
the actor. This data are encapsulated within the actor
and only the actor itself may access it. Actors only
have influence on the state of another actor by sending
messages.

Sending a message is an asynchronous, non-blocking
operation for the sender. Messages use arbitrary commu-
nication topologies [5] and can contain any type of object.
An actor can only interact with another actor if it knows
its address. Security is achieved through the scope of
addresses an actor is allowed to send messages to. Upon
reception of a new message, the actor enqueues it into
its respective mailbox. Messages are then dequeued one
at a time for processing.

To process the messages, each actor comprises a set of
functions. Actors can be described as Turing machines
that are programmed to react according to a specific
input. The actor progresses as it dequeues messages from
the mailbox and matches their type to the corresponding
block of statements to execute. When the processing of
the current message is finished, the actor will dequeue
the next message from the mailbox as long as it still
contains messages.

Actors have a defined life cycle: Once spawned, they
are started and wait until they receive messages. When
an actor is not used anymore, another actor may send a
signal to destroy it. Each actor may spawn new actors,
which is done for similar reasons as recursive functions
call themselves, i.e to reduce the problem until it becomes
small enough to be processed. Spawning new actors is

Fig. 1. The structure of an actor. In response to a
message, an actor can (1) change its internal state, (2)
send a message, (3) spawn new actors or migrate to
another host.

an extension mechanism that may be exploited to boost
scalability and concurrency. Note also that each part
of an actor could be an actor itself. For example, the
mailbox could be an actor that stores messages, or the
internal state a database actor. We conclude that actors
are highly scalable and thread-safe. The AM handles the
known concurrency difficulties for the programmers and
provides guarantees, which we discuss in section 2.3.

2.2 Active Objects
The Active Objects Model (AOM) is another pattern
for concurrency largely inspired by the AM. An active
object features private data and methods like any
passive object (common object). The difference is that
an active object runs in its own thread of control.
There is not a single way to implement the AOM.
However, most commonly the goal is to decouple
method invocation from execution to simplify object
access [6]. This property enables the client to continue
its work while waiting for an answer. Furthermore, it
is not possible that two method calls of one particular
active object run at the same time [7][6]. This condition
guarantees that the implementation of an active object
does not require additional thread-safety mechanisms
[7].

To better understand how decoupled method invoca-
tion and execution work in active objects, let us review
the components of the model as shown in Figure 2. The
first essential notion is that the client and the active object
queried run in separate address spaces and threads. We
distinguish the client space from the active object space.
In figure 2 the limit between the two spaces is shown by
the vertical bar below the proxy.

In the client space we find the client and the proxy. The
proxy is an interface object between the client space and
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Fig. 2. Architecture of an active object [6].

the active object space. The client can call a function in
the same way as calling a function on passive objects.
The proxy takes care of translating the function call and
its parameters into a method request and forwards it to
the scheduler for asynchronous execution.

The proxy also immediately returns the address to a
future to the client. A future is a reserved placeholder
for the results of the active object. When the active
object finished the computation, it fills the results into
the shared future. To know if the results have arrived,
the client can test the state of the future. A future can be
in pending, succeeded or error state and may change its
state only once in its lifetime [7].

• Pending. Default state when the future is created.
No results have been put into the future yet. It also
means that no error has happened yet.

• Succeeded. The results have been computed and
successfully stored in the future.

• Error. Futures also work as error handling mecha-
nisms. If errors happen during computation in the
active object, this state will be enabled and will
report the error.

Note also that futures support synchronous waiting,
synchronous waiting with timer or asynchronous
answers.

Moving to the active object space, we find on the
frontline the scheduler. An active object contains one
scheduler that manages one activation queue of pending
method requests enqueued by the proxy. It is the very
mechanism that ensures the client space is decoupled
from the active object space. The scheduler not only

Fig. 3. Workflow of a request with an active object [6].

manages the activation queue, but also selects which
method request is eligible for dequeuing and execution.
This selection is based on multiple criteria like ordering
of method requests and synchronization constraints. To
ensure all synchronization constraints are met before de-
queuing and executing a method request, the scheduler
uses guards.

Guards check for execution order, potential writing
operation hazards and the current state of the active
object to know if the function called by the method
request can be executed. Once a method request in
the activation queue is validated by the guards, the
scheduler dequeues and dispatches it to an available
servant. A servant implements one or many methods
referenced in the proxy. It defines the behaviour and
state to be modeled as an active object [6]. In other
words, the servant will execute the actual computation
and return the results to the already established future.
This concludes the execution of a method request using
the active object model.

2.3 Pattern guarantees
The AM is message-based, asynchronous and can create
new actors at will. Such properties require guarantees
and inconsistency for robust information integration
[4]. As the AOM largely inherits from the AM, the
following guarantees are common to both models. To
avoid repeating the same concepts, we will focus on the
AM.

A message sent should be received. The AM uses
best-effort message delivery. This means that each mes-
sage has the same priority, no actor gets any guarantees
in terms of quality of service. A message is delivered
zero times or once (at-most-once1). The asynchronous

1. http://doc.akka.io/docs/akka/2.3.0-RC1/general/message-
delivery-guarantees.html
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communication between actors combined with the lack
of guarantee of message delivery can make it diffi-
cult to know if a message is lost or still in transit.
Moreover, actors can be distributed and moved over
multiple machines in a network. In this context, issues
such as transient or permanent packet losses or node
failures may occur. The AM does not specify the specific
handling of lost messages and this responsibility falls
to the different implementations. The literature usually
considers the environment to be theoretically fully stable
and tends to simply ignore the issue [8][4], except for
the work presented in [9] where the authors propose the
Transactor Model.

No message order guarantee. Messages in the AM are
fully dependent on the host transport layer concerning
message delivery. Therefore, there is no guarantee on
when a message will be received by an actor. When
considering two actors, messages exchanged between the
first and the second should not be received out of order.
But if two actors send a message at the same time to
a third actor, there is no way to know in which order
they will be received. Actors do not necessarily receive
messages in the same order as they were sent [4]. Finally,
there is no guarantee either on the message dispatch
order [4]. It is important to differentiate receive order and
dispatch order: there is no guarantee that a message will
be dispatched right after it is received or in any limited
number of steps.

Unbounded concurrency. The AM was directly in-
spired by the multi-agent system. According to the prin-
ciple of subsumption, a problem is modeled as an intent
the agents are trying to resolve. The intent is divided into
levels of abstraction until parts of the problem are small
enough to be handled by a single agent. The actors are no
different and can arbitrarily spawn new actors, yielding
an unbounded concurrency.

Inherent concurrency. The AM allows only one mes-
sage to be processed at a time to avoid concurrent
hazards. The usual explicit synchronization mechanisms
like locks or semaphores are no longer required as only
a single thread controls the whole actor. This provides
an easy way to implicitly deal with concurrent accesses
on data.

3 COMPARISON BETWEEN THE ACTOR
MODEL AND ACTIVE OBJECTS
The original AM defines only the concepts and guide-
lines any implementation should respect. This leaves
room for adaptations and extensions. In this section, we
go through the similarities and differences between the
AM and AOM.

3.1 Structure
Structurally, the AM and AOM use the same concepts
and components. Indeed, in the AOM the client can
be considered as an actor sending messages to other

actors. The proxy is replaced by the scope of addresses
in each actor, as an actor may send messages only to
known addresses. Once a message is received, both
models store them in queues (mailbox, activation queue
respectively) where they await to be processed. In
both cases the messages in the queues are tested and
dequeued once their synchronization requirements are
met. A dequeued message is then processed by the
actor, servant respectively. Computation results are
then returned if need be to the client, requesting actor
respectively. The AM uses messages and the AOM
futures for this purpose.

The first difference lies in how these components
are organized. The AM encapsulates in each actor the
equivalent of the scheduler, activation queue, servant
and proxy. The AM does not require a proxy to interface
two actors exchanging messages. Since each actor knows
a definite set of addresses where it is allowed to send
messages to, it is assured the receiving actor has the
means to process the messages. The AOM relies on
the proxy to select an active object that features the
right set of methods to process the request. This implies
that the proxy must be aware and keep track of all the
available active objects and their state. The AM leaves
this responsibility to each actor as they are self aware
and responsible for querying the right actors. In case of
failure of the proxy, no work can be distributed anymore
in contrast to actors that can reorganize themselves and
spawn new actors to replace the failed ones. Another
structural difference lies in the queues used to store
pending messages. The AM encapsulates an unbounded
mailbox in each actor. To achieve the same functionality,
the AOM relies on the activation queue which maintains
a bounded queue of pending method requests. With
unbounded queues the AM guarantees that messages
received will be stored and eventually processed at
some point in time. At this point different strategies
can be implemented: Either wait for the active object’s
activation queue to free up one slot or spawn a new
active object to handle the method requests the original
active object cannot accept. If the proxy waits on an
active object, it means the caller is blocked.

As mentioned above, the AOM allows to arbitrarily
spawn new active objects. This ability is intended as an
extension mechanism for the AM and provides an insight
on how high scalability is achieved. Scalability is easier
with the AM as any actor can be a proxy and distribute
workload to other actors. Most implementations of the
AOM rely on a thread pool with a limited number of ser-
vants. Note that both models try as much as possible to
reuse existing actors/active objects rather than creating
new ones.

3.2 Messages and communication
In section 3.1 we linked the various components from
both models and showed how the same tasks are
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accomplished in different ways. One notable difference
lies in messaging and returning computed results.
The communication protocol in the AM relies only on
messages carrying information from one actor another.
Upon reception the actor reads the message content
and executes the corresponding block of statements.
A message triggers function calls, coroutines, resource
seizures, scheduling, synchronization, continuous
evaluation of expressions, etc. [8]. The semantics of
the messages do not have any restrictions and are
independent from the sender [4]. The AOM, however,
is using only method requests and futures as message
types. Method requests carry contextual information
such as parameters and context for the execution of the
selected method. They have defined semantics and are
not user generated. Hence, the AM offers freedom of
message semantics whereas the freedom in the AOM
is limited. The same applies to returning computed
results: The AM will return results by returning a
message whereas the AOM will return a future. Indeed,
futures can be used to take care of error handling. In
case of an error occuring during execution, the active
object changes the state of the future to Error and
stores the cause. In contrast, the AM is based on the
subsumption principle and usually detects a problem
when an actor’s state differs from its intention (problem
to solve). In case of an error, an error message is sent
through the layers of actors (based on the abstraction
level of the problem) until it reaches the actor with best
knowledge on how to manage the error.

Hence, the semantics for messages differ considerably.
The AM offers freedom, which can cause the following
problems: (1) message size, (2) lack of standards in
message semantics. The AM heavily relies on messages
passing and as such generates much traffic. To avoid
congestion and global slowdown, the message size can
be reduced to a minimum, storing only vital information
(application and implementation dependent). In the AM
message types already convey information about the
block of statement to be triggered. For example a printer
actor could directly print any incoming message of type
string without further testing on it. In contrast to the
AOM where the whole context is passed as an argument
within a message.

Then with freedom of message semantics comes
flexibility. The programmers are allowed to develop
their AM systems as close as possible to their existing
business systems. The gain, in terms of integration, is
instant as no interfacing is required. Messages can be
built according to existing data structures to further
enable compatibility. Therefore, the complexity of the
system is reduced. This flexibility also causes potential
inconsistencies and higher responsibilities for the
programmer. To avoid these inconsistencies and relieve
the programmers, the messages can be standardized.
The AOM uses strict standardization of messages; the
method requests are validated by the proxy and must

respect the function prototypes the active object can
handle. Moreover, futures represent a strict structure
with defined states. Standardization reduces the degree
of freedom for development purposes, but enables cross
compatibility with different systems. The AOM allows
any passive object to query the proxy of an active object
and as such calls for standardized function prototypes.
Even if standardization removes all freedom of message
semantics, it does not affect the types of arguments
passed to the active object. Standards are therefore easier
to respect and enforce good development practices.

Different semantics and purposes translate into dif-
ferent communication protocols. The AM allows any
actor to send messages asynchronously. Also, a mes-
sage is delivered at-most-once, which can be compared
to the guarantees provided by the UDP protocol. This
approach takes advantage of the tradeoff between mes-
sage overhead and reliability of transmission, yielding
a lightweight and fast communication protocol between
actors. We previously explained that the AOM’s mes-
sages were of two types: method requests and futures.
If the proxy fails to deliver the method request to the
scheduler, no actual computation is performed. Similarly,
if the active object fails to deliver or update the future,
the client will never get an answer and waits indef-
initely. Thus, messages in the AOM require acknowl-
edgements of delivery. Acknowledgements are usually
associated with the TCP networking protocol. We can
compare futures to TCP acknowledgements as the proxy
automatically returns a future for each method request.
Moreover, if a failure occurs during the execution of a
method request, the future can be used by the client as
means to trigger a retransmission of the function call on
the proxy.

3.3 Concurrency
From a concurrency point of view, both models share
the same goal: Providing an inherently thread-safe and
concurrent execution of programs. Concurrent execution
is achieved through decoupling method invocation and
execution; inherent thread-safety by processing at most
one message at a time. The AM handles method invoca-
tion by sending messages to other actors. The message
is eventually received and processed. By allowing such
a loosely-coupled method invocation, the caller is never
blocked. In the AOM, the status of the request is accessi-
ble by probing the future returned by the proxy. Method
requests should not block an active object [6].

4 PATTERN ILLUSTRATION
In this section we provide the traditional ”Hello world”
program implemented with the AM and the AOM to
illustrate both models and some of the differences we
highlighted in section 3. We use Akka2, an open-source

2. http://akka.io/
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toolkit and runtime for building highly concurrent, dis-
tributed, and fault tolerant event-driven applications on
the JVM. Akka offers its framework in Scala3 and in Java.
We chose Akka because it allows to implement both the
AM and AOM.

4.1 Implementation of the Actor Model
In Listing 1, we present the implementation of an actor
printing any messages it receives to the standard output.

public c l a s s P r i n t e r A c t o r extends UntypedActor {
@Override
public void onReceive ( Object msg) {

i f (msg instanceof ( TextMessage ) ) {
System . out . p r i n t l n ( TextMessage . getText ( ) ) ;
getSender ( ) . t e l l (new TextMessage ( ”Done” ) ,

g e t S e l f ( ) ) ;
}
e lse{

unhandled (msg) ;
}

}
}

Listing 1. Printer Actor.
To print a ”Hello World!” with the AM, we need to

send a specific message to an actor that will recognize
its type and perform the desired action. We use an Un-
typedActor class to create the Printer Actor without any
pre-defined behaviour. The only mandatory function is
”onReceive”, triggered each time a message is dequeued
from the mailbox. In case the message is not recognized,
it is dropped by the ”unhandled” function. From now on,
any actor that knows the address of the printer actor can
send a message of type ”TextMessage” as, for example,
presented in Listing 2.

public c l a s s HelloActor extends UntypedActor {
@Override
public void p r e S t a r t ( ) {

/ / C r e a t e t h e p r i n t e r a c t o r .
f i n a l ActorRef p r i n t e r A c t o r = getContext ( ) .

actorOf ( Props . c r e a t e ( P r i n t e r A c t o r . c l a s s ) , ”
p r i n t e r A c t o r ” ) ;

/ / Send i t a message t o be p r i n t e d .
p r i n t e r A c t o r . t e l l (new TextMessage ( ” Hello World ! ”

) , g e t S e l f ( ) ) ;
}
@Override
public void onReceive ( Object msg) {

i f (msg instanceof ( TextMessage ) ) {
/ / When t h e p r i n t e r a c t o r i s done , s t o p t h i s
/ / a c t o r and with i t t h e a p p l i c a t i o n .
getContext ( ) . stop ( g e t S e l f ( ) ) ;

}
e lse
{

unhandled (msg) ;
}

}
}

Listing 2. Hello Actor.

3. http://www.scala-lang.org/

When the message carrying the string to be printed
is processed by the Printer Actor, it will return another
message to the Hello Actor. Upon receiving this message,
the Hello Actor knows his message has been printed
and we stop it. Finally, we need a system to query the
Hello Actor and launch the whole process to display the
message. Listing 3 presents the creation of such a system
and the creation of the whole program. To shut down the
system, the function ”getContext().system().shutdown()”
is used. It is called from a Terminator Actor upon receiv-
ing the corresponding message.

public c l a s s Main{
public s t a t i c void main ( S t r i n g [ ] args ) {

ActorSystem system = ActorSystem . c r e a t e ( ”
testSystem ” ) ;

ActorRef he l loActor = system . actorOf ( Props .
c r e a t e ( HelloActor . c l a s s ) , ” he l loActor ” ) ;

}
}

Listing 3. Actor system and launch of the program.
Through this example, the sending of messages and

spawning of new actors has been demonstrated. The
Hello Actor needs a Printer Actor to fulfill its purpose
and since none is already existing, it creates a new one.
In the next section, we present the same program but
using active objects.

4.2 Implementation of the Active Object Model
In Akka the AOM is implemented with Typed
Actors. To make a ”Hello World!” program
with the AOM, we need a proxy(”Printer”)
that features a callable function for the client.
public i n t e r f a c e P r i n t e r {

Future<Str ing> printNonBlocking ( S t r i n g msg) ;
Option<Str ing> pr in tB lock ing ( S t r i n g msg) ;

}

c l a s s Printer Impl implements P r i n t e r {
private S t r i n g name ;

public void Printer Impl ( S t r i n g name) {
t h i s . name = name ;

}

public Futures<Str ing>printNonBlocking ( S t r i n g
msg) {
System . out . p r i n t l n (msg) ;
return Futures . s u c c e s s f u l ( ”Worked” ) ;

}

public Option<Str ing> pr in tB lock ing ( S t r i n g msg) {
System . out . p r i n t l n (msg) ;
return Option . some ( ”Worked” ) ;

}
}

Listing 4. Implementation of the servant.
We declare an interface and the implementation of that

interface to realize the proxy and the servant (see Listing
4). In the main class of Listing 5, set up the active object
and call the respective function.
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public c l a s s Main{
public s t a t i c void main ( S t r i n g [ ] args ) {

ActorSystem system = ActorSystem . c r e a t e ( ”
testSystem ” ) ;

/ / C r e a t e a new A c t i v e O b j e c t ( f i r s t arg f o r
/ / t h e proxy , s e c o n d f o r t h e s e r v a n t ) .
P r i n t e r helloWorld = TypedActor . get ( system ) .

typedActorOf (new TypedProps<PrinterImpl
>( P r i n t e r . c lass , Pr inter Impl . c l a s s ) ) ;

/ / C a l l a s y n c h r o n o u s l y on t h e A c t i v e O b j e c t .
Future<Str ing> resultNB = helloWorld .

printNonBlocking ( ” Hello World ! ” ) ;

/ / C a l l s y n c h r o n o u s l y on t h e A c t i v e O b j e c t .
Option<Str ing> r e s u l t B = helloWorld .

pr in tB lock ing ( ” Hello World ! ” ) ;
}

}

Listing 5. Implementation of both proxy’s interface and
servant.

Note that we once use an asynchronous function call,
and once we use a synchronous function call. This call-
ing differentiation is the only visible difference between
active and passive objects.

5 POSSIBILITIES OF MIXING THE AM AND THE
AOM
All parts of the AM and the AOM may be built from
their own base elements (actors and active objects). E.g.,
the mailbox of an actor can be an actor by itself and the
activation queue might be an active object. By pushing
this property to its limits, an actor could entirely be made
of other actors, which in turn could be made of multiple
actors (the same goes for the active objects). Provided the
architecture and properties of each model is respected,
mixing both models at the core level could be done.
We discuss in the following paragraphs a few theoretical
possibilities to mix both models in order to potentially
reduce their respective disadvantages.

As seen previously, one of the major differences be-
tween the two models is the way messages are stored
within an actor and an active object. The active objects
use the activation queue which is a bounded buffer. In
the case this buffer is full, further messages cannot be
stored and will be lost or immediately return a future
with a failure notice (depending on the implementa-
tion). The actors on the other hand have unbounded
buffers to store incoming messages. Assuming an active
object uses an actor to replace its activation queue, no
method request from the proxy would be rejected. With
the fairness of the actors in scheduling, all messages
would be processed eventually. However, the AM uses
asynchronous message passing with no restriction on
message reception order [4]. Therefore messages would
have to be sorted by time stamps. Note that this solution
could be memory efficient on smaller devices as it would

give the choice between creating a new active object and
keeping the current number of active objects to handle
more requests.

Another modification to the AOM would be to use an
actor to replace the proxy, in combination with an actor
for the activation queue. The proxy in the AOM formats
the method requests specifically and leave a low margin
for freedom. Even though the parameters captured in
the method request might be any kind of objects, using
the freedom of message semantics of the AM could
offer more possibilities. The method requests captures
the context of the invocation of a method. In other words
it encapsulates into a message which function should
be called on the servant with which parameters. Having
clearly defined method requests enforces conformity of
function calls but functions with numerous parameters
are bad practice. With the freedom of message semantics
from the AM, we could imagine creating a single context
object and pass it to the scheduler. Note also that is only
the proxy is converted to an actor, it would also solve
the problem of the bounded activation queue. However it
would be harder to implement since it requires managing
priorities and delays of messages.

The AOM is not the only model that could benefit
from mixing with the AM. Indeed the AM also has its
weaknesses that could be improved by using concepts
of the AOM. The general asynchronicity in the AM
makes it difficult to track messages. This is even more
evident upon tracking an expected answer when a task
is completed by another actor. For this purpose the
AOM uses futures. They are a convenient mechanism
because they work as independent rendezvous points.
In the AM, futures are not implemented, but messages
sent upon completion and any type of object can be
returned (the Akka framework implements futures in
the AM). It could be an error message, a result, etc.
However, in case the actor carrying out the task fails,
there is no real way to handle this failure. With an actor
playing the role of a future, timeouts can be used and it
provides some sort of acknowledgement for a successful
reception of the message. It does not break the UDP
type of communication but could affect the performance.
More messages mean more overhead and if tasks execute
very quickly it could lead to congestion. But for longer
tasks or tasks that require guarantees it could improve
reliability and uniforms the delivery of results delivery.

As interesting as using futures in the AM, futures
in the AOM could be implemented with actors. The
main reason behind it would be that once the results
(or errors) have been taken by the client, the future
could automatically end itself. Indeed an actor has a
specific life-cycle and upon destroying itself it could
ease the work of garbage collection. Garbage collection
is a costly process and easing it would result in better
performances.
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6 CONCLUSION

The Actor Model (AM) and Active Object Model (AOM)
are often mistaken as being the same and hence would
share the same properties. We have presented both
models in terms of structure, communication protocols
and concurrency applications. From these overviews
emerged fundamental differences. On the first hand
the AM offers more freedom of message semantics,
less overhead due to the UDP style communication
protocol and more execution control. This allows
for programmers to focus on their experience and
knowledge toward software design rather than
concurrency technicalities. The AM takes advantage
of the multi-agent system to perform computations.
The AOM on the other hand follows the same design
principles as the AM, but fails to achieve the same
level of freedom. Indeed, the AOM constrains message
types and works with acknowledgments, leading to
performance slowdown. The AOM, however, offers
mechanisms to probe the linked future for checking the
current state of the execution.

By identifying the differences, we also highlight
strengths and weaknesses of both models. The AOM
turns out to be easier to implement in an already existing
system as any passive object can be turned into an
active object by wrapping it in a proxy. To build efficient
systems, the AM is the best choice as it forces the whole
system to be designed with concurrency in mind. No
solution out-of-the-box exists. However, the AM and the
AOM are a first step towards simplifying concurrent
programming.

7 OUTLOOK

Software agents are used in many fields such as ubiq-
uitous computing and sensor networks. Both of these
fields of research focus on the evolution of networks
going from a small number of powerful entities to a
vast amount of devices. These devices share issues such
as data transfer and energy consumption as they run
on batteries. Using the AM in such networks could
offer advantages like the ability to migrate from one
node to another, while conserving its current internal
state; or allow a wide range of different devices to
work together and share a common language. For sensor
networks the AOM could offer a way to manage queries
going on the network with the sink acting as a proxy.
Research on agents running through sensor networks has
already been done, but the topic is still new and widely
unexplored. For ubiquitous computing the AM would
probably suit better as we face a more disparate and
quickly evolving type of network. The goal of ubiquitous
computing lies in communicating with as many devices
as possible. If all devices could talk to each other, it
would result in far more efficient means of aggregating
data and reduce the number of required transmissions

to deliver this data. For many devices with limited com-
putational power and embedded energy, it is beneficial
to avoid transmission congestion. Moreover, the known
addresses of the actors could be used to control the range
and enforce access policies between the devices. Also
with smaller devices real parallelism is not achieved.
Instead, concurrency is simulated by event-based actions
and asynchronous method call initiation and return of
calls. TinyOS, for example, uses an AOM to deal with
its concurrent parts. Research could be done to verify
if using an AM could lead to higher energy saving /
computational efficiency.

Another hot field of research focuses on saving energy.
The hardware has evolved toward more efficient CPUs
with improved photo-lithography processes and auto-
matically varying their frequencies. However hardware-
only solutions cannot achieve the goals of energy efficient
computing alone. The software also plays a huge role in
global energy consumption. An efficient program will
need less time to execute and save energy compared
to a program requiring more time for the same com-
putations. Another fact in energy consumption shows
that a CPU running on lower frequencies improves the
energy consumption to computation performed ratio.
However running at lower frequencies also means that
programs executions will take more time. Distributing
the workload on many cores or machines running on
lower CPU frequencies could yield lower consumption
and fast computations at the same time. It would be in-
teresting to test whether it is energetically more efficient
to use the AOM to distribute a workload on slower cores
than running the whole process on a very fast CPU.

Finally, development carried in the recent years lead
scalar CPUs to work in combination with vector CPUs.
Vector CPUs are designed to handle massive numbers of
concurrent threads supported by specific hardware archi-
tectures. Most vector CPUs are in fact GPUs (graphical
processing units) as producing images for digital screens
requires each pixel to be computed and displayed inde-
pendently. The video game industry largely uses GPUs
for real-time rasterization but many applications such
as physics simulations or any program based on matrix
operations require much parallel computations. In this
context libraries like NVIDIA’s CUDA4 or OpenCL5 have
emerged. They aim at enabling parallel programming on
heterogeneous systems. Most desktop and mobile com-
puters embed a CPU and a GPU. By using the GPU to
perform massively parallel computations, specific parts
of specific programs can achieve up to 200 times the
performances achieved only on scalar processors. The
AM is a perfect way to convey and distribute work
on multiple heterogeneous machines. It could integrate
the ability to take advantage of GPUs power for vector
operations and improve global performance. For this an
actor could implement special messages that inform the

4. http://www.nvidia.com/object/cuda home new.html
5. https://www.khronos.org/opencl/
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actor if a computation can be performed using a vector
processor. There could also be specialized actors whose
functions only run on vector processors. Such actors
would only be spawned on compliant machines.

8 CONCURRENT PROCESSING OF MESSAGES
Research on the AM and AOM mainly focuses on
improving the performance by attempting to remove
the biggest bottleneck: Processing only one message at
a time. Multiple solutions have been found, we present
three of them.

The first article [10] combines the AM with the
Async-Finish Model (AFM). The AFM is a variant of
the Fork-Join Model and can create lightweight tasks
to manage synchronization constrains among these
tasks. To allow the processing of multiple messages
concurrently, a first message is processed. This message
will be attached to a finish scope. All tasks that run
during this scope will be asynchronously processed
in the actor and all join when the finish scope’s time
is over. Futhermore the option to pause / resume the
processing of an actor is included. This allows to pause
the actor (only keeps on receiving messages), and when
resumed will finish the current processing and then wait
(as in the initial state of the actor). The AFM simplifies
termination detection and allows arbitrary coordination
between tasks.

The authors of the second work [11] implement
Parallel Actor Monitor (PAM). A PAM is a scheduler
”expressing a coordination strategy for the parallel
execution of messages within a single actor” [11]. PAM
schedules the processing of multiple messages to a pool
of threads that are then allowed to access the internal
state of a given actor. If the scheduler allows it, new
messages can be dispatched before a first batch of
selected messages has completed.

Hayduk et al. propose in [3] to add support for specu-
lative concurrent execution in actors using Transactional
Memory (TM). The block of statement triggered by each
message is transformed into a transaction atomically
executed. Multiple transactions can run concurrently and
rollback if a synchronization constraint is not met. The
transaction is then rolled back and restarted. Rollbacks
allow to reinforce the robustness of the AM. With trans-
actions running concurrently, scalability is improved.
They implement this solution by adapting the Akka
framework and show that the overhead of using trans-
actions is hidden by the improved message processing
throughput. This implementation extends to the AOM
since Akka implements the AOM with actors.
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