
Non-sequential Multimedia Caching
Anita Sobe

Institute of Information Technology (ITEC)
Klagenfurt University

Klagenfurt
Austria

Email: anita.sobe@itec.uni-klu.ac.at

Laszlo Böszörmenyi
Institute of Information Technology (ITEC)

Klagenfurt University
Klagenfurt

Austria
Email: laszlo@itec.uni-klu.ac.at

Abstract—Non-sequential media is seen as a number of se-
mantically meaningful units derived from several videos. A
video notation is introduced to express and compare different
transmission types including caching. Furthermore, the idea of
grouping units based on user intentions is described, which is
the basis for two cache admission policies (simple and rank-
based). These policies are compared regarding efficiency and hit
rate. The evaluation is based on simulation and shows that a
replacement policy that considers the popularity of the units is
needed.

Index Terms—multimedia caching, non-sequential multimedia,
video notation

I. INTRODUCTION

”We assume that in the future virtually everybody may
broadcast any kind of message at any time and can of course
also receive any such message at any time, at any place,
equipped with any kind of device ... We assume further that
videos will be rarely watched sequentially. In many usage
scenarios, especially in professional situations, people want to
quickly find certain scenes and avoid watching long sequences
they are not interested in” [1]
Therefore, we need a radically higher level of flexibility in
the management and usage of videos than usual. We derive
two basic new requirements from the above assumptions: (1)
Videos should be regarded as non-linear, direct access data,
and (2) The relation between data and metadata should become
dynamic and bidirectional.
(1) Non-linear video. We regard videos as direct access media
- instead of the traditional long spaghetti in time. A continuous
video presentation should be dynamically composed of units.
A unit could be a single frame, or a clip, which is short
enough to be downloaded faster than to be streamed. From
such units, spread over the Internet, arbitrary presentations can
be composed on demand. The composition may fulfill quality-
of-service constraints, if necessary. A classical video stream
could be thus described as a sequential composition of frames
(as units), e.g. under the constraint of 25 fps and a jitter of
± 10 ms. A much more interesting scenario could be e.g.
a sport reporter, downloading and playing the goal-scenes of
some soccer games in parallel.
(2) Relation between data and metadata revisited. Behind the
notion of metadata lies the - usually subconscious - assumption
that we know in advance what the data are and what the

metadata (additional information to the data) are. In the highly
dynamic scenarios of the future, when not only new data
but also new kinds of data are continuously entering the
scene we need radically new ways to inform the consumers,
what is there, what could be watched. Thus, data may turn
into metadata and the way around - thus forming a general
hypermedia space. This fits very well to the idea of non-linear
video: data units can not only be composed, but can also refer
to each other.
Breaking with the conventional view of video representation
and presentation brings a new dimension of flexibility. The
question is of course: for what price? Using a flexible system
promises good performance only, if we can indeed take
advantage of this flexibility both (1) in the application patterns
and (2) in the resource management. If we assume that in
accordance with the laws of Zipf and Pareto, at most 20%
of all videos, available somewhere over the Internet, will be
downloaded or streamed more than once, and again only at
most 20% portion of these will be really watched, we can
assume that at most 4% of available video material is watched
at all [1]. That means that if we could exactly identify this
4%, than we could concentrate in resource management on
this part of the data (e.g. replicating them heavily to popular
client locations). Of course we cannot predict the desired 4%
exactly - however, a potential of two orders of magnitude is
there. That means that it is worthwhile to do research based
on the above assumptions. It promises a new class of video
services, which is not only much more flexible, but also more
efficient than the traditional approaches.

In this paper we define first a simple notation enabling
sequential, parallel and QoS-constrained unit composition.
Then we make first feasibility studies on the suggested model.
The simplest possible realization of it is a single cache that
performs caching based on video units and their popularity.
We present first simulation results of this investigation.

II. RELATED WORK

A first step in the direction of non-sequential media was
investigated by Zhao et al. in [2]. The authors are defining
”non-linear” media as a video that consists of several parallel
branches. The user can decide at certain points interactively
which branch to follow, e.g., ”alternative ending movies”. The
streaming system holds a channel per branch; the contents are

2009 First International Conference on Advances in Multimedia

978-0-7695-3693-4/09 $25.00 © 2009 IEEE

DOI 10.1109/MMEDIA.2009.36

158

transmitted using multicast. The authors observed as major
problem that there is no possibility to explore bandwidth
reduction by sharing connections, because it is not known if
the client will choose the branch just transmitted in advance.
Nevertheless, the authors showed that some hints regarding the
client branch selection lead to remarkable server bandwidth
and client data overhead reduction. In this paper it is shown,
that clients form groups regarding the path they follow. For
sure, some paths are more popular than others. Nevertheless,
in this case the possible paths are predefined and limited in
comparison to the possibilities regarding our unit model.
Videos are considered too large for being cached as a whole.
A lot of research has been done on partial caching. In general
the idea of caching only parts of a video fits our non-sequential
media idea.
In [3], a detailed overview of different caching strategies
is given. Prefix caching and segment-based caching are the
most similar to our work. A prefix may be fixed or dynamic
(investigations in this direction can be found in [4]). Segment-
based caching starts with a minimal part of a video and based
on popularity measurements the number of segments of this
video increases in the cache. Segments may be uniformly sized
or grow exponentially as shown in [5].
In [6] the authors measure the popularity between segments,
which leads to an internal popularity distribution. Based on
that the authors introduce a caching algorithm for streaming
media. Considering fixed sized segments of one second, they
observed that the popularity within a video follows a k-
transformed Zipf-like distribution (for kx = 10 and ky > 200).
Since the internal popularity shows, that the beginning of the
video is most popular, the caching policy prioritizes prefix
caching. However, we cannot expect that non-sequential media
follows the same internal popularity pattern. A user may not
be aware of which unit is the ”beginning” of a video.
Another segment-based caching mechanism is described in
[7]. The authors observed that no caching technology supports
interactivity like ”jumps” in a video stream. In this paper the
authors introduce firstly a basic interleaved segment caching
(BISC) policy. Every second segment is prefetched. This
guarantees a higher hit rate if interactive jumps are common.
On a miss, the cache delivers the closest cached segment.
Since it is more likely that after a jump segments are accessed
sequentially, BISC was extended to a dynamic interleaved
segment caching (DISC) policy. DISC initially caches a whole
object for observation. Later, it will be decided if segments
are replaced or several segments are stored sequentially. The
authors expect, although taking jumps into account, that a
video will be watched sequentially, i.e. only forward jumps
are possible. In our unit model approach we refrain from this
restriction.

III. EXPRESSING TRANSMISSION

We define the abstract notion of ”transmission” of units,
which may describe any kind of transportation, such as trans-
mission over the network, delivery between two layers of a
protocol stack, or rendering on a presentation device. Each

transmission, sequential or non-sequential, can be described
by a ”video notation”.
A video v comprises a number of units u that are indexed by
1−N and have different byte lengths. When transmitting this
video sequentially as in currently available systems, one can
describe this as: u1 � u2 � ... � un. Unit ui+1 follows after
full transmission of ui.
Sequential transmission can be restricted by QoS parameters,
like delay and jitter - expressed as: u1 ←Q u2 ←Q ...←Q un.
For the description of Q the QL (QoS annotation language)
specified by Blair and Stefani in [8] is used1. E.g.

∀i Q : δ1 ≤ |τ(ui)− τ(ui−1)| ≤ δ2, 1 < i <= N

specifies jitter by restricting the delay between unit ui and unit
ui−1 to be between the lower limit δ1 and the upper limit δ2

(δ describes a duration in time).
A middleware that implements the functionality of the video
notation has to meet all specified QoS requirements or has to
ensure that a corresponding exception is thrown otherwise.
Besides sequential transmission, the notion of parallel trans-
mission is also introduced. u1||u2||...||un means that each
unit is transmitted in parallel (usually) from different places
and that there is no restriction regarding the order of the
units. Sequential and parallel transmission can be combined
arbitrarily - corresponding to the usual case in real systems,
where some places hold some of the units. Units from different
places are usually transmitted in parallel and units at the same
location can be transmitted sequentially. E.g. the following
expression describes the transmission of a video, divided into
two halves, consisting of i respectively n− i units:

(u1 � u2 � ... � ui)||(ui+1 � ui+2 � ... � un)

The video notation is the basis for the calculation of trans-
mission costs, since different transmission techniques can be
described and therefore also be compared. The video notation
will be extended to a video calculus (for further information
see [9]).

IV. A FLEXIBLE CACHING MODEL

As described in section II, traditional partial caching ex-
ploits the fact that a video is considered sequential media.
Once a video is started to be streamed, either the cache can
proactively pull or the video server can push the next parts of
the video. For non-sequential media it is not known, what the
next parts actually are. A user has the possibility to request
whatever content of different videos he/she likes to watch. A
proactive cache for non-sequential media needs information
about the content and the users to be able to predict the next
unit to be loaded.
We consider a simple architecture that consists of an origin
server, a proxy cache and a number of users. The contents
are streamed directly from the cache on a hit, which can be
described as (u1 ← u2 ← u3 ← ... ← ui) using the video

1For the sake of simplicity Q can be omitted if not required explicitly

159

notation. The cache acts as proxy that forwards the requests
to the server on a miss, which corresponds to:

(...((u1,s � u1,c)||u2,s)← u2,c)||...||ui,s)← ui,c

After a full unit is copied to the cache (c), the cache forwards
this unit to the client. At the same time the next unit from the
server (s) starts to be transmitted to the cache and if this one
is available, it can be forwarded to the client, a.s.o.
Our proposed cache assumes units to be self-contained,
equipped with metadata as further information about the
content. User intentions are considered as information about
semantic roles to which each user can be categorized to. A
role of a user can be mapped to the interest in specific units.
E.g. a police officer wants to see if car drivers violate the
minimum distance to another car on a highway. This police
officer is most likely not interested in parts of the video where
the highway is empty. An engineer of the motorway company
might be interested in the state of the highway and wants to
see parts of the video where the highway is empty.
We define therefore: A semantic group G is a set of units out
of all units U, where the content of each unit is of interest for
a category of users (G ⊆ U) - e.g. G1 = {u1, u7, u8, u10}.
Groups are not disjoint; a unit u may be part of more than
one group. As an example let there be a unit u where an
athlete from Austria and another athlete from Italy is shown.
The coach of the Austrian team and the family of the Italian
athlete may be interested in the same unit although their role
is considered to be different.
A user categorized to a specific role is expected to request
units of a group that is mapped to that role. Units of different
groups are competitive with the space available in the cache.
The fact that some unit groups may be more popular than
others can be exploited in the caching policy.
Furthermore, for better prediction an ordering within each
group is needed. One solution is to order the units according
to their popularity. The popularity is characterized by the
frequency of requests for a unit and by external hints - e.g.
by a smart application layer that has direct contact to the user.
The units within the example group mentioned above can be
expressed as G1 = u7 � u10 � u1 � u8 in descending order
of popularity by using the video notation.
Depending on the number of unit groups the cache prefetches
the most popular units of each group or the most popular
units of the most popular groups. If a request arrives, the
next fitting unit of the matching group will be prefetched
from the server (if necessary). The next fitting unit is the
unit following the current unit regarding popularity within
the current group. Furthermore, it is assumed that the request
contains information about the group the unit belongs to.
We propose a simple caching admission policy:

prefetch=

⎧⎪⎨
⎪⎩

unext if hit ucurrent

0 if hit ucurrent && hit unext

ucurrent � unext else

However, the rate of prefetching efficiency is low when
following this simple admission policy, since units even with

low popularity might be prefetched. Thus, the admission policy
has to include a threshold that must not exceed a specific
popularity. The fact that the same unit represents different pop-
ularities in different groups can be exploited by formulating a
general popularity metric. Assuming the popularity rank r of
the unit within all groups is known, we map this to a global
rank rall. The impact of low popularity is minimized using
the logarithm of the group rank.

rall =
1
n

n∑
i=1

ln ri

Let a unit be in the top 5 of one group and less popular in
another group. This unit is more likely to be cached than a unit,
that has an average popularity within the same two groups.
We evaluate the presented approach in a discrete event-based
simulator. For the user request generation Medisyn [10] is
used, a synthetic traffic generator. For 100 units with differ-
ent popularity, we model 10000 requests in two competitive
groups. As replacement algorithm LRU is used. The popularity
threshold is mapped to the rank and was set to rank 20, 30
and 40.
The hit rate of the simple admission policy and the rank-based
admission policy is compared in figure 1a. The rank-based
algorithm shows an average hit rate increase of 5 % for all
cache sizes. This is due to the lower request rate of the rank-
based admission policy that results in a longer time a unit
remains in the cache. It has to be noted that the difference
regarding the hit rate is very small between the different
thresholds of the rank-based policy.
As shown in figure 1b the number of prefetches is remarkably
reduced using the rank-based admission policy with all thresh-
olds, which means an increase of prefetching efficiency. We
observed a lower prefetching efficiency when the cache size is
low, because a higher rate of replacement is reached. Although,
LRU supports popular units to remain longer in the cache, for
small cache sizes even popular units are often replaced in the
case of prefetching. Figure 1c shows the proportion of requests
sent to the server in comparison to the client requests. For
small cache sizes it would be even better to serve all requests
directly from the server. Since the number of total requests
to the server exceeds the number of requests from the client.
Using the simple admission policy, the load of the server is
reduced having a cache size of around 30 %. Whereas the
rank-based policy decreases the load already at a cache size of
10-15 %. Thus, for more efficiency, LRU has to be substituted
by a replacement policy that considers the unit popularity
in order to reduce the number of unnecessary replacements.
Additionally, since the hit rate difference is small the rank
threshold of 20 is sufficient.

V. SUMMARY AND FUTURE WORK

In this work we shortly introduced a video notation for ex-
pressing the transmission of non-sequential and sequential me-
dia including the possibility of setting preconditions regarding
QoS. The video notation is based on the idea that each video
is divided into units. We are able to express all traditional

160

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40

H
it

ra
te

 in
 %

Cache size in %

simple
rank_20
rank_30
rank_40

(a) Hit rate comparison of simple and rank-based admission

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25 30 35 40

P
re

fe
tc

h
re

qu
es

ts

Cache size in %

simple
rank_20
rank_30
rank_40

(b) Number of prefetching requests

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25 30 35 40

S
er

ve
r

re
qu

es
t l

oa
d

fa
ct

or

Cache size in %

simple
rank_20
rank_30
rank_40

(c) Factor of server requests compared to user requests

transmission types like Client/Server streaming (sequential
transmission) or download via BitTorrent (mixed transmission)
[9]. In the future the video notation will be extended to express
transmission costs for traditional transmission and for non-
sequential transmission.
Furthermore, we introduced a proactive non-sequential cache
that is based on the idea that user intentions can be seman-
tically categorized. This information is used to predict user
behavior by mapping the user categories to unit groups. The
prediction is based on the popularity rank of each unit within
all groups. The next fitting unit regards the next popular
unit within a group. The number of requests is reduced by
introducing a general rank over all groups. The decision of
which unit to load next is based on the general rank of the
current unit.
First evaluation scenarios showed, that LRU is not sufficient as
a replacement strategy. A popularity-based replacement policy
is under investigation that reduces on the one hand the load on
the server and on the other hand the replacement frequency.
Another important point will be the relation between the
number of unit groups and the size of each group. Since groups
containing a high number of units may often replace units from
smaller groups. Additionally, the number of users categorized
to a role can differ and has impact on the number of units
cached. These issues are under evaluation.
Furthermore, the evaluation will be extended to a comparison
of dynamic segment-based caching (see section II) and our
proposed approach. We expect a better hit rate of our approach
since it is more flexible. Although, the complexity increases
due to the prediction.

REFERENCES

[1] H. Kosch, L. Böszörmenyi, G. Hölbling, D. Coquil, and J. Heuer, “Per-
sonalization of mobile multimedia broadcasting,” International Journal
of Digital Multimedia Broadcasting, vol. 2008, 2008.

[2] Y. Zhao, D. L. Eager, and M. K. Vernon, “Scalable on-demand streaming
of nonlinear media,” IEEE/ACM Trans. Netw., vol. 15, no. 5, pp. 1149–
1162, 2007.

[3] S. Podlipnig, “Video-caching in verteilten multimedia-systemen,” Ph.D.
dissertation, Klagenfurt University, Austria, 2002.

[4] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia
streams,” in INFOCOM ’99. Eighteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 3, 1999, pp. 1310–1319 vol.3.

[5] K. L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy caching of
multimedia streams,” in WWW ’01: Proceedings of the 10th international
conference on World Wide Web. New York, NY, USA: ACM, 2001,
pp. 36–44.

[6] J. Yu, C. Chou, Z. Yang, X. Du, and T. Wang, “A dynamic caching
algorithm based on internal popularity distribution of streaming media,”
Multimedia Systems, pp. 135–149, October 2006.

[7] L. Guo, S. Chen, Z. Xiao, and X. Zhang, “Disc: Dynamic interleaved
segment caching for interactive streaming,” Distributed Computing Sys-
tems, International Conference on, vol. 0, pp. 763–772, 2005.

[8] G. S. Blair and J.-B. Stefani, Open Distributed Processing and Multi-
media. Addison-Wesley Longman Publishing Co., Inc., 1998.

[9] A. Sobe and L. Böszörmenyi, “Towards self-organizing multimedia
delivery,” Reports of the Institute of Information Technology, Klagenfurt
University, TR/ITEC/12/2.08, Tech. Rep., 2008.

[10] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat, “Medisyn: a synthetic
streaming media service workload generator,” in NOSSDAV ’03. New
York, NY, USA: ACM, 2003, pp. 12–21.

161

