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Introduction and motivations

Examples of applications of metric surgeries

Let (M", g) be a closed riemannian manifold, and A;(g) the
first positive eigenvalue of the Laplacian on M.
The conformal class of g is the set of metrics defined by

[g] = {h*g, he C=(M), h>0}

sup M (M, 8) < +o0

&c<lgl
Vol(M)=1
v(M)=inf sup M\(M,§g)
€  gclgl

Vol(M)=1

Theorem
v(M™) is uniformly bounded on manifold of dimension n.
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Introduction and motivations

Let M" be a closed spin manifold. The index theorem gives a
lower bound on the dimension of the kernel of the Dirac
operator. Dim KerD > i(M)

Theorem (Bér, Dahl, Ammann, Humbert)

This inequality is an equality for a generic set of metrics. In
particular, The Dirac operator is generically invertible if
n=3,56,7 mod 8.
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Proposition

If the scalar curvature of (M", g) and (M'",g’) is positive
(n > 3), then M#M' carries a metric of positive scalar
curvature.

Theorem (Gromov, Lawson, '80)

Every closed simply-connected non spin manifold of dimension
> 5 carries a metric of positive scalar curvature.
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Surgeries |l : definition

» Let M” be a closed manifold, and S — M" an
embedded sphere whose tubular neighborhood is
diffeomorphic to Sk x Bk,

> a(sk % Bn—k) — Sk % Sn—k—l — a(Bk—i-l X Sn_k_l).

Definition

The manifold obtained from M by a surgery along S*
(k dimensional surgery) is

M\(Sk > Bn—k) U (Bk+1 > Sn—k—l)

Sk gn—k—1

n — k is the codimension of the surgery.
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Example |
The connected sum is a surgery along a sphere S°.

Example I
1-codimensional surgery

B DK
Example Il

The sphere S2 is the union of two copies of S! x D2.
A surgery along a trivial knot in S3 produces the manifold
Stx S2
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Surgeries Il : applications

Theorem (Gromov, Lawson, '80)

Let M" be a closed riemannian manifold with positive scalar
curvature. If M’ is obtained from M by a surgery of
codimension > 3, then M’ carries a metric of positive scalar

curvature.

Theorem (Bar, Dahl, '02)

If the Dirac operator D is invertible on (M, g), there is a
metric g' on M’ such thaht Dg: is invertible.

Theorem (Ammann, Dahl, Humbert, '09)

If D is invertible on M and M’ is obtained from M by a
surgery of codimension 2, then D is invertible on (M', g").
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Surgeries IV: cancellation

A k-dimensional surgery is cancelled by a (n — k)-surgery.

Sk % Bn—k PN Bk+1 % Sn—k—l

A k-surgery is cancelled by a surgery along a (k + 1)-sphere
that intersects transversally the belt sphere of the k surgery in
one point (Smale’s cancellation lemma).
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Surgeries IV: cancellation

Cancellation is a method to avoid 1-codimensional surgeries. It
fails in two cases :

» connected sum

» non oriented handle
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Definition

Let M and N be two closed n-dimensional manifolds. A
cobordism between M and N is a compact n + 1-manifold W
whose boundary is M N. M are N are cobordant if such a

cobordim exists.

Examples

S]] St is cobordant to St T2 is cobordant to S2
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Remark
Cobordism is a equivalence relation.

1 D0

0N

1. What can we say about the quotient set 7

Questions

2. What can we say about a given equivalence class 7
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Let Q, be the set of cobordism classes of n-dimensional
manifolds.

» If M is the boundary of W™, we write [M] = [0)].
Remark : we also have [M] = [S5"].

» Q, is an abelian group for the disjoint union

[M] + [N] = [M U N]

» The identity element of this group is [0]
- M)+ [M] = [0
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Cobordism Il : cobordism ring
Q. =P,Q,is aring: [M] x [N] =[M x NJ.

Suppose that [M] = [M'], [N] = [N'], oW, = MU M/,

oW, =NUN.
» O(Wy x N)=(Mx N)U(M x N)= [MxN]=[M x N
> O(M'x Wa) = (M'x NYLI(M' x N') = [M'x N] = [M'x \']

Proposition
The mod 2 Euler characteristic x(M) € Z/2Z is a cobordism
invariant.

Proof : let W21 be a cobordism between M?" and N?". We
obtain a closed manifold W’ by gluing two copies of W along
their boundaries.

(W) = 2x(W) — x(0W)

= x(OW) = x(M) + x(N) =0 mod 2.
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» For each n, Q, is finite.

Asaring, Q. = Z/2[X;,i > 1,i #2 —1].

If i is even, X; is the class of the real projective space
Pi(R).

(Dold, 1956) If i = 2"(2s + 1) — 1 is odd, X; is the class
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Theorem (R. Thom, 1954)

» For each n, Q, is finite.

Asaring, Q. = Z/2[X;,i > 1,i #2 —1].

If i is even, X; is the class of the real projective space
Pi(R).

(Dold, 1956) If i = 2"(2s + 1) — 1 is odd, X; is the class
of P(2" —1,52") where

P(k, 1) = (Sk x P(C))/(x,2) ~ (—x,Z).

v

v

v

Qf o
Q| z/2 | PA(R)
Q| o

Q4 | (Z/2)? | PA(R) x P?(R), P*(R)
Qs | Z/2 | P(1,2)
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Cobordism Il : cobordism & surgeries

Let W™ = M x [0, 1] be a trivial cobordism. If
Sk=1 <5 M x {1} is an embedded sphere with trivial normal

bundle, we obtain a new cobordism W’ by attaching a handle
B¥ x Btk along S¥1:

W' is called an elementary cobordism of index k. The new
boundary is obtained from M by a surgery along S*~1.
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Consequences

> [M] + [N] = [M#N].
» If M’ is obtained from M by a finite number of surgeries,
then [M] = [M'].

Theorem (Smale, Wallace)

If W is a cobordism, then W = Wy U WL U ... U W,, where
each W; is an elementary cobordism. Moreover, we can assume
that the indices of these cobordisms are increasing with i.
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Cobordism Il : cobordism & surgeries

Proof

Let W be a cobordism between M and N, and f : W — [0, 1]
a Morse function such that f~1(0) = M and f (1) = N.

» f Morse function < all critical points of f are non
degererates.

» Near a critical point,
f(x) =1F(0)+xF +...4+xF — xg,q — X2.

» W compact = f has finitely many critical points.

» We may assume that the critical values of f are distincts,
and #0, 1.

» If there is no critical value in [a, b], then f~*([a, b]) is a
trivial cobordism.
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Cobordism Il : cobordism & surgeries

Bk % Bn+1fk

— each critical point corresponds to an elementary cobordism.
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orientation on W induces an orientation on OM.
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Cobordism IV : oriented cobordism

» All manifolds are supposed orientable and oriented.

» If M is an oriented manifold, —M will denote the same
manifold with the opposite orientation.

» If W is an oriented manifold with boundary, the
orientation on W induces an orientation on OM.

Definition
Two oriented manifolds M and N are (oriented-)cobordant if
there is a cobordism W such that OW = M LI (—N).

Remark

For a trivial cobordism M x [0, 1], the orientation induced on
M x {0} and M x {1} are opposite.

= —[M] = [-M]



Cobordism IV : oriented cobordism

Let 2°° be the oriented cobordism ring.

Theorem (R. Thom, 1954)

» For each n, Q59 is finitely generated.

> Q50 ©Q=Q[Yal.i > 1 with Yo = [PY(C)].

N

dimension 5

group 0/0(0|Z|Z)2

Z2
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Handle decomposition

Every compact connected manifold M admits a handle
decomposition, i. e. M is obtained by attaching handle to a

ball (0-handle).

» If M is closed, it admits a handle decomposition with only
two balls (one 0-handle and one n-handle).

» If M has a boundary, it admits a handle decomposition
with one ball (0-handle).

Proof : two 0-handle + one 1-handle = one 0-handle



Handle decomposition

Exercise
Every compact surface with boundary admits a flat metric.

QWX(M):/KdA +/ k di
M oM
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Conformal bounds for A
[g] = {h*g, he C=(M), h>0}

sup  \i(M,g) =7

&<lel

Vol(M)=1
If o : M"™ — Sk is a conformal immersion, we define
Ve(p) = sup. g, Vol(vy 0 p(M)), where Gy is the group of
conformal diffeomorphism of S (Mébius group).
Definition
The conformal volume of M is the infimum of V() on all
conformal immersion ¢ — S*, for all k.

Ve(M, [g]) = igf V()
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Theorem (Li & Yau, El Soufi & llias)

M (M, g)Vol(M)*/" < nV(M, [g])*/"

equality < (M, g) admits a homothetic minimal immersion in
a sphere.

Examples of manifold that admits a minimal immersion in the
sphere : S", P"(R), P"(C), P"(H), ...
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Sk <5 RK*1  The coordinates x; of R¥*t! satisfies
» > .x*=1on Sk
» > dx? = gean on R and Sk,

Let ¢ : (M, g) — S* be a conformal immersion (assume that
Vol(M, g) = 1). The Idea is to use the coordinates as test
functions.

» 3y € Gy such that [,y o pidvg = 0 for all /.

> )\1/ pidvg S/ ’V‘Pi@—dvg

> )\1/ ng dvg < /Z|V<p, 2dv,
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v

Alg/ S Veildy,
M=

n/2
A < /(Z’VSﬁiﬁr) dvg
Mo\

Up to a rotation of S, we have IVil2 =0 for i > n.

2/n

v

v

v

For i < n, [Vy;|, is exactly the conformal factor between
g = gu and g«

n/2
(i 1Veilz)™" dvg = n"/2dvg,

2/n
M= (/ d) — WVol(p(M))/" < V()"
M

v

v
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Definition
The Friedlander-Nadirashvili invariant of a closed manifold M
is defined by v(M) = infg supgcp M (M, g)Vol(M)*/".
» v(M™) > v(S").
» 1(S5?) =8, v(P?(R)) = 127.
» v(T?) = v(K?) = 8r (Girouard, '09).
Definition
The Mdbius volume of M is defined by

V(M) =inf Ve(M, [g]) = inf _sup Vol(y o ¢(M))

p:M— Sk ~EGy

(M) < nVy (M)



Conformal bounds for A\

Theorem
There is a constant c(n) > 0 such that for all closed manifold
M", V(M) < c.



Conformal bounds for A\

Theorem

There is a constant c(n) > 0 such that for all closed manifold
M", V(M) < c.

Corollary
v(M") is uniformly bounded for a given n.



Conformal bounds for \;

Theorem
There is a constant c(n) > 0 such that for all closed manifold
M", V(M) < c.

Corollary
v(M") is uniformly bounded for a given n.

Principle of the proof : to study the behavior of the M&bius
volume when performing surgeries.
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Proof for n =2

Lemma
Let M be a compact surface. If M’ is obtained by adding a

handle to M, then Vy(M') < sup{Vu(M), c} where ¢
doesn’t depend on M.

Let » : M — S¥ such that V(M) < V(p) < V(M) +¢
and Ve(p) —e < Vol(p(M)) < Ve(p).

Stereographic projection : S — R¥ U {oo}

4
Bsk = Wgeucl
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By attaching a thin handle to (M), we obtain an immersion
¢’ : M — S¥ such that Vol(¢'(M’)) ~ Vol(¢(M))

(b)

> @ =

For v € G, what is Vol(y o ¢'(M’')) ?
» Up to an isometry of S, ~ is equivalent to a translation
or a homothety.
» If v is a translation, Vol(y o ¢'(M’)) is close to or smaller
than Vol(p(M)).
» Same conclusion if the factor of the homothety is small or
or “not too large”.
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Suppose that the factor of v is large. The parts of M’ that are
close to oo have a small area.

M ~ 0 or




Conformal bounds for A\

Proof for n > 3

Lemma
Let M" be a closed manifold. If M’ is obtained from M by a

surgery of codimension > 2, then
Vad(M') < sup{Vai(M), ()}



Conformal bounds for \;

Proof for n > 3

Lemma
Let M" be a closed manifold. If M’ is obtained from M by a

surgery of codimension > 2, then
Vad(M') < sup{Vai(M), ()}

Sk % Bn—k(g) o Bk+1 % Sn_k_l(&‘)

Codimension >2<n—k—-1>1
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Conformal bounds for \;
Let M" and M'" be cobordant manifolds.

Case 1 : M and M’ are orientable.

Thanks to the cancellation lemma, M’ can be obtained from
M by surgeries of codimension > 2.

Case 2 : M and M’ are non orientable.

Since M’ is non orientable, we can find a transversally
orientable loop and apply the cancellation lemma.
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The Mobius volume is bounded
» on each class of oriented cobordism

» on all non orientable manifold of a given class of non
oriented cobordism

Final step : Vy(My U My) = sup{Vx(My), Vi (M)}

= the M&bius volume is bounded on all classes of oriented
cobordism
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Theorem

If M" is a compact manifold with boundary, then

v(M) =v(S").

Proved by G. Kokarev et N. Nadirashvili for oriented surfaces
('10) using complex analysis.

Example

Let M" C R” be an euclidean domain. The stereographic
projection induces a conformal immersion ¢ : M — S".
For all v € G,, v o p(M) is a domain of 5", hence

Vol(y 0 p(M)) < Vol(S™).

= Vu(M) < Vol(S")
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Conformal bounds for A\;: manifolds with boundary

» Every compact surface with boundary is obtained by
attaching 1-handles to a disk.

» It admits a flat embedding in R3, which is the union of
thin bands.

Let ¢ be such an embedding. The bands are supposed to have
the same width ¢.

» If £ is small, Vol(p(M)) is small.

» If v € Gz has not a large homothetic factor,
Vol(y o ¢(M)) is still small.
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Conformal bounds for A\;: manifolds with boundary
We consider v € G with large factor.

Near the origin, v o (M) looks like a domain
D CcR?U{oo} =52

If € is small enough, the part D’ of v o (M) near oo has
an area < Vol(52\D).

_ 4
> 853 = [1qx|)z Beuc

v

v

If we increase the ratio of v, the volume of D’ decreases
as fast as Vol(52\D).

= Vol(vy o ¢(M)) < Vol(5?).

v
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Proof for n > 3

M admits a handle decomposition without n-handle.

v

Induction on the number of handles.

True if M = B".

Let ¢ : M — S* an almost extremal embedding.
Vol(vy o po(M)) < Vol(S") for all v € Gy.
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Proof for n > 3

v

M admits a handle decomposition without n-handle.
Induction on the number of handles.

True if M = B".

Let ¢ : M — S* an almost extremal embedding.
Vol(y o p(M)) < Vol(S") for all v € G.

Let ¢/ : M’ — S¥ the embedding obtained by attaching a
handle B' x B"/(g) on p(M).

v

v

v

v



Conformal bounds for A\;: manifolds with boundary

Proof for n > 3

v

M admits a handle decomposition without n-handle.

» Induction on the number of handles.

» True if M = B".

» Let ¢ : M — S¥ an almost extremal embedding.
Vol(vy o po(M)) < Vol(S") for all v € Gy.

> Let o' - M — S’f/ the embedding obtained by attaching a
handle B’ x B"'(¢) on ¢(M).

» Control of the volume of Vol(y o ¢'(M’)) in the same way

as for dimension 2.
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