Spectral applications of metric surgeries

Pierre Jammes

Neuchâtel, june 2013

Introduction and motivations

Examples of applications of metric surgeries

Let $\left(M^{n}, g\right)$ be a closed riemannian manifold, and $\lambda_{1}(g)$ the first positive eigenvalue of the Laplacian on M.

Introduction and motivations

Examples of applications of metric surgeries

Let $\left(M^{n}, g\right)$ be a closed riemannian manifold, and $\lambda_{1}(g)$ the first positive eigenvalue of the Laplacian on M.
The conformal class of g is the set of metrics defined by

$$
[g]=\left\{h^{2} g, h \in C^{\infty}(M), h>0\right\}
$$

Introduction and motivations

Examples of applications of metric surgeries

Let $\left(M^{n}, g\right)$ be a closed riemannian manifold, and $\lambda_{1}(g)$ the first positive eigenvalue of the Laplacian on M.
The conformal class of g is the set of metrics defined by

$$
[g]=\left\{h^{2} g, h \in C^{\infty}(M), h>0\right\}
$$

$$
\sup _{\substack{\tilde{\tilde{z}} \in[g] \\ \operatorname{vol}(M)=1}} \lambda_{1}(M, \tilde{g})<+\infty
$$

Introduction and motivations

Examples of applications of metric surgeries

Let $\left(M^{n}, g\right)$ be a closed riemannian manifold, and $\lambda_{1}(g)$ the first positive eigenvalue of the Laplacian on M.
The conformal class of g is the set of metrics defined by

$$
[g]=\left\{h^{2} g, h \in C^{\infty}(M), h>0\right\}
$$

$$
\begin{gathered}
\sup _{\tilde{z}[[g]} \lambda_{1}(M, \tilde{g})<+\infty \\
\operatorname{Vol}(M)=1 \\
\nu(M)=\inf _{g}^{g} \sup _{\substack{\tilde{g} \in[g] \\
\operatorname{vol}(M)=1}} \lambda_{1}(M, \tilde{g})
\end{gathered}
$$

Introduction and motivations

Examples of applications of metric surgeries

Let $\left(M^{n}, g\right)$ be a closed riemannian manifold, and $\lambda_{1}(g)$ the first positive eigenvalue of the Laplacian on M.
The conformal class of g is the set of metrics defined by

$$
[g]=\left\{h^{2} g, h \in C^{\infty}(M), h>0\right\}
$$

$$
\begin{gathered}
\sup _{\substack{\tilde{E}[g]) \\
\operatorname{vol}(M)=1}} \lambda_{1}(M, \tilde{g})<+\infty \\
\nu(M)=\inf _{g} \sup _{\substack{\tilde{\mathrm{g}} \in[\mathrm{~g}] \\
\operatorname{vol}(M)=1}} \lambda_{1}(M, \tilde{g})
\end{gathered}
$$

Theorem
$\nu\left(M^{n}\right)$ is uniformly bounded on manifold of dimension n.

Introduction and motivations

Let M^{n} be a closed spin manifold. The index theorem gives a lower bound on the dimension of the kernel of the Dirac operator. $\operatorname{Dim} \operatorname{Ker} D \geq i(M)$

Introduction and motivations

Let M^{n} be a closed spin manifold. The index theorem gives a lower bound on the dimension of the kernel of the Dirac operator. Dim $\operatorname{Ker} D \geq i(M)$
Theorem (Bär, Dahl, Ammann, Humbert)
This inequality is an equality for a generic set of metrics. In particular, The Dirac operator is generically invertible if $n=3,5,6,7 \bmod 8$.

Introduction and motivations

Proposition
If the scalar curvature of $\left(M^{n}, g\right)$ and $\left(M^{\prime n}, g^{\prime}\right)$ is positive ($n \geq 3$), then $M \# M^{\prime}$ carries a metric of positive scalar curvature.

Introduction and motivations

Proposition

If the scalar curvature of $\left(M^{n}, g\right)$ and $\left(M^{\prime n}, g^{\prime}\right)$ is positive ($n \geq 3$), then $M \# M^{\prime}$ carries a metric of positive scalar curvature.

Theorem (Gromov, Lawson, '80)
Every closed simply-connected non spin manifold of dimension ≥ 5 carries a metric of positive scalar curvature.

Surgeries I : connected sum

Surgeries I : connected sum

- Remove a small ball on each manifold.
- Attach a handle $S^{n-1} \times[0,1]$.

Surgeries I : connected sum

- Remove a small ball on each manifold.
- Attach a handle $S^{n-1} \times[0,1]$.

Surgeries II: definition

- Let M^{n} be a closed manifold, and $S^{k} \hookrightarrow M^{n}$ an embedded sphere whose tubular neighborhood is diffeomorphic to $S^{k} \times B^{n-k}$.
- $\partial\left(S^{k} \times B^{n-k}\right)=S^{k} \times S^{n-k-1}$

Surgeries II: definition

- Let M^{n} be a closed manifold, and $S^{k} \hookrightarrow M^{n}$ an embedded sphere whose tubular neighborhood is diffeomorphic to $S^{k} \times B^{n-k}$.
- $\partial\left(S^{k} \times B^{n-k}\right)=S^{k} \times S^{n-k-1}=\partial\left(B^{k+1} \times S^{n-k-1}\right)$.

Surgeries II: definition

- Let M^{n} be a closed manifold, and $S^{k} \hookrightarrow M^{n}$ an embedded sphere whose tubular neighborhood is diffeomorphic to $S^{k} \times B^{n-k}$.
- $\partial\left(S^{k} \times B^{n-k}\right)=S^{k} \times S^{n-k-1}=\partial\left(B^{k+1} \times S^{n-k-1}\right)$.

Definition

The manifold obtained from M by a surgery along S^{k} (k dimensional surgery) is

$$
M \backslash\left(S^{k} \times B^{n-k}\right) \bigcup_{S^{k} \times S^{n-k-1}}\left(B^{k+1} \times S^{n-k-1}\right)
$$

$n-k$ is the codimension of the surgery.

Surgeries II : definition \& examples

Example I

The connected sum is a surgery along a sphere S^{0}.

Surgeries II : definition \& examples

Example I

The connected sum is a surgery along a sphere S^{0}.
Example II
1-codimensional surgery

Surgeries II: definition \& examples

Example I

The connected sum is a surgery along a sphere S^{0}.

Example II

1-codimensional surgery

Example III

The sphere S^{3} is the union of two copies of $S^{1} \times D^{2}$.
A surgery along a trivial knot in S^{3} produces the manifold $S^{1} \times S^{2}$.

Surgeries III : applications

Theorem (Gromov, Lawson, '80)
Let M^{n} be a closed riemannian manifold with positive scalar curvature. If M^{\prime} is obtained from M by a surgery of codimension ≥ 3, then M^{\prime} carries a metric of positive scalar curvature.

Surgeries III : applications

 Theorem (Gromov, Lawson, '80) Let M^{n} be a closed riemannian manifold with positive scalar curvature. If M^{\prime} is obtained from M by a surgery of codimension ≥ 3, then M^{\prime} carries a metric of positive scalar curvature.

Surgeries III : applications

Theorem (Gromov, Lawson, '80)

Let M^{n} be a closed riemannian manifold with positive scalar curvature. If M^{\prime} is obtained from M by a surgery of codimension ≥ 3, then M^{\prime} carries a metric of positive scalar curvature.

Theorem (Bär, Dahl, '02) If the Dirac operator D is invertible on (M, g), there is a metric g^{\prime} on M^{\prime} such thaht $D_{g^{\prime}}$ is invertible.

Surgeries III : applications

Theorem (Gromov, Lawson, '80)

Let M^{n} be a closed riemannian manifold with positive scalar curvature. If M^{\prime} is obtained from M by a surgery of codimension ≥ 3, then M^{\prime} carries a metric of positive scalar curvature.

Theorem (Bär, Dahl, '02)
If the Dirac operator D is invertible on (M, g), there is a metric g^{\prime} on M^{\prime} such thaht $D_{g^{\prime}}$ is invertible.
Theorem (Ammann, Dahl, Humbert, '09)
If D is invertible on M and M^{\prime} is obtained from M by a surgery of codimension 2 , then D is invertible on $\left(M^{\prime}, g^{\prime}\right)$.

Surgeries IV: cancellation

Surgeries IV: cancellation

A k-dimensional surgery is cancelled by a $(n-k)$-surgery.

$$
S^{k} \times B^{n-k} \leftrightarrow B^{k+1} \times S^{n-k-1}
$$

Surgeries IV: cancellation

A k-dimensional surgery is cancelled by a $(n-k)$-surgery.

$$
S^{k} \times B^{n-k} \leftrightarrow B^{k+1} \times S^{n-k-1}
$$

Surgeries IV: cancellation

A k-dimensional surgery is cancelled by a $(n-k)$-surgery.

$$
S^{k} \times B^{n-k} \leftrightarrow B^{k+1} \times S^{n-k-1}
$$

A k-surgery is cancelled by a surgery along a $(k+1)$-sphere that intersects transversally the belt sphere of the k surgery in one point (Smale's cancellation lemma).

Surgeries IV: cancellation

Cancellation is a method to avoid 1-codimensional surgeries. It fails in two cases :

Surgeries IV: cancellation

Cancellation is a method to avoid 1-codimensional surgeries. It fails in two cases :

- connected sum

Surgeries IV: cancellation

Cancellation is a method to avoid 1-codimensional surgeries. It fails in two cases :

- connected sum

- non oriented handle

Cobordism I : definition

Definition

Let M and N be two closed n-dimensional manifolds. A cobordism between M and N is a compact $n+1$-manifold W whose boundary is $M \coprod N . M$ are N are cobordant if such a cobordim exists.

Cobordism I : definition

Definition

Let M and N be two closed n-dimensional manifolds. A cobordism between M and N is a compact $n+1$-manifold W whose boundary is $M \coprod N . M$ are N are cobordant if such a cobordim exists.

Examples

$S^{1} \coprod S^{1}$ is cobordant to S^{1}
T^{2} is cobordant to S^{2}

Cobordism I : definition

Remark
Cobordism is a equivalence relation.

Cobordism I : definition

Remark

Cobordism is a equivalence relation.

Questions

1. What can we say about the quotient set ?
2. What can we say about a given equivalence class ?

Cobordism II : cobordism ring

Let Ω_{n} be the set of cobordism classes of n-dimensional manifolds.

Cobordism II : cobordism ring

Let Ω_{n} be the set of cobordism classes of n-dimensional manifolds.

- If M is the boundary of W^{n+1}, we write $[M]=[\emptyset]$. Remark : we also have $[M]=\left[S^{n}\right]$.

Cobordism II : cobordism ring

Let Ω_{n} be the set of cobordism classes of n-dimensional manifolds.

- If M is the boundary of W^{n+1}, we write $[M]=[\emptyset]$. Remark : we also have $[M]=\left[S^{n}\right]$.
- Ω_{n} is an abelian group for the disjoint union

$$
[M]+[N]=[M \sqcup N]
$$

Cobordism II : cobordism ring

Let Ω_{n} be the set of cobordism classes of n-dimensional manifolds.

- If M is the boundary of W^{n+1}, we write $[M]=[\emptyset]$.

Remark : we also have $[M]=\left[S^{n}\right]$.

- Ω_{n} is an abelian group for the disjoint union

$$
[M]+[N]=[M \sqcup N]
$$

- The identity element of this group is $[\emptyset]$
- $[M]+[M]=[\emptyset]$

Cobordism II : cobordism ring

$$
\Omega_{*}=\bigoplus_{n} \Omega_{n} \text { is a ring: }[M] \times[N]=[M \times N] .
$$

Cobordism II : cobordism ring

$\Omega_{*}=\bigoplus_{n} \Omega_{n}$ is a ring: $[M] \times[N]=[M \times N]$.
Suppose that $[M]=\left[M^{\prime}\right],[N]=\left[N^{\prime}\right], \partial W_{1}=M \sqcup M^{\prime}$, $\partial W_{2}=N \sqcup N^{\prime}$.

- $\partial\left(W_{1} \times N\right)=(M \times N) \sqcup\left(M^{\prime} \times N\right) \Rightarrow[M \times N]=\left[M^{\prime} \times N\right]$
- $\partial\left(M^{\prime} \times W_{2}\right)=\left(M^{\prime} \times N\right) \sqcup\left(M^{\prime} \times N^{\prime}\right) \Rightarrow\left[M^{\prime} \times N\right]=\left[M^{\prime} \times N^{\prime}\right]$

Cobordism II : cobordism ring

$\Omega_{*}=\bigoplus_{n} \Omega_{n}$ is a ring: $[M] \times[N]=[M \times N]$.
Suppose that $[M]=\left[M^{\prime}\right],[N]=\left[N^{\prime}\right], \partial W_{1}=M \sqcup M^{\prime}$, $\partial W_{2}=N \sqcup N^{\prime}$.

- $\partial\left(W_{1} \times N\right)=(M \times N) \sqcup\left(M^{\prime} \times N\right) \Rightarrow[M \times N]=\left[M^{\prime} \times N\right]$
- $\partial\left(M^{\prime} \times W_{2}\right)=\left(M^{\prime} \times N\right) \sqcup\left(M^{\prime} \times N^{\prime}\right) \Rightarrow\left[M^{\prime} \times N\right]=\left[M^{\prime} \times N^{\prime}\right]$

Proposition
The mod 2 Euler characteristic $\chi(M) \in Z / 2 Z$ is a cobordism invariant.

Cobordism II : cobordism ring

$$
\Omega_{*}=\bigoplus_{n} \Omega_{n} \text { is a ring: }[M] \times[N]=[M \times N] .
$$

Suppose that $[M]=\left[M^{\prime}\right],[N]=\left[N^{\prime}\right], \partial W_{1}=M \sqcup M^{\prime}$, $\partial W_{2}=N \sqcup N^{\prime}$.

- $\partial\left(W_{1} \times N\right)=(M \times N) \sqcup\left(M^{\prime} \times N\right) \Rightarrow[M \times N]=\left[M^{\prime} \times N\right]$
- $\partial\left(M^{\prime} \times W_{2}\right)=\left(M^{\prime} \times N\right) \sqcup\left(M^{\prime} \times N^{\prime}\right) \Rightarrow\left[M^{\prime} \times N\right]=\left[M^{\prime} \times N^{\prime}\right]$

Proposition

The mod 2 Euler characteristic $\chi(M) \in Z / 2 Z$ is a cobordism invariant.
Proof: let $W^{2 n+1}$ be a cobordism between $M^{2 n}$ and $N^{2 n}$. We obtain a closed manifold W^{\prime} by gluing two copies of W along their boundaries.
$\chi\left(W^{\prime}\right)=2 \chi(W)-\chi(\partial W)$
$\Rightarrow \chi(\partial W)=\chi(M)+\chi(N)=0 \bmod 2$.

Cobordism II : cobordism ring

Theorem (R. Thom, 1954)

- For each n, Ω_{n} is finite.

Cobordism II : cobordism ring

Theorem (R. Thom, 1954)

- For each n, Ω_{n} is finite.
- As a ring, $\Omega_{*}=Z / 2\left[X_{i}, i \geq 1, i \neq 2^{j}-1\right]$.
- If i is even, X_{i} is the class of the real projective space $P^{i}(\mathbb{R})$.

Cobordism II : cobordism ring

Theorem (R. Thom, 1954)

- For each n, Ω_{n} is finite.
- As a ring, $\Omega_{*}=Z / 2\left[X_{i}, i \geq 1, i \neq 2^{j}-1\right]$.
- If i is even, X_{i} is the class of the real projective space $P^{i}(\mathbb{R})$.
- (Dold, 1956) If $i=2^{r}(2 s+1)-1$ is odd, X_{i} is the class of $P\left(2^{r}-1, s 2^{r}\right)$ where $P(k, I)=\left(S^{k} \times P^{\prime}(\mathbb{C})\right) /(x, z) \sim(-x, \bar{z})$.

Cobordism II : cobordism ring

Theorem (R. Thom, 1954)

- For each n, Ω_{n} is finite.
- As a ring, $\Omega_{*}=Z / 2\left[X_{i}, i \geq 1, i \neq 2^{j}-1\right]$.
- If i is even, X_{i} is the class of the real projective space $P^{i}(\mathbb{R})$.
- (Dold, 1956) If $i=2^{r}(2 s+1)-1$ is odd, X_{i} is the class of $P\left(2^{r}-1, s 2^{r}\right)$ where $P(k, I)=\left(S^{k} \times P^{\prime}(\mathbb{C})\right) /(x, z) \sim(-x, \bar{z})$.

Ω_{1}	0	
Ω_{2}	$Z / 2$	$P^{2}(\mathbb{R})$
Ω_{3}	0	
Ω_{4}	$(Z / 2)^{2}$	$P^{2}(\mathbb{R}) \times P^{2}(\mathbb{R}), P^{4}(\mathbb{R})$
Ω_{5}	$Z / 2$	$P(1,2)$

Cobordism III : cobordism \& surgeries

Let $W^{n+1}=M \times[0,1]$ be a trivial cobordism. If
$S^{k-1} \hookrightarrow M \times\{1\}$ is an embedded sphere with trivial normal bundle, we obtain a new cobordism W^{\prime} by attaching a handle $B^{k} \times B^{n+1-k}$ along S^{k-1} :

Cobordism III : cobordism \& surgeries

Let $W^{n+1}=M \times[0,1]$ be a trivial cobordism. If
$S^{k-1} \hookrightarrow M \times\{1\}$ is an embedded sphere with trivial normal bundle, we obtain a new cobordism W^{\prime} by attaching a handle $B^{k} \times B^{n+1-k}$ along S^{k-1} :

W^{\prime} is called an elementary cobordism of index k. The new boundary is obtained from M by a surgery along S^{k-1}.

Cobordism III : cobordism \& surgeries

Consequences

- $[M]+[N]=[M \# N]$.
- If M^{\prime} is obtained from M by a finite number of surgeries, then $[M]=\left[M^{\prime}\right]$.

Cobordism III : cobordism \& surgeries

Consequences

- $[M]+[N]=[M \# N]$.
- If M^{\prime} is obtained from M by a finite number of surgeries, then $[M]=\left[M^{\prime}\right]$.

Theorem (Smale, Wallace)
If W is a cobordism, then $W=W_{1} \cup W_{2} \cup \ldots \cup W_{p}$, where each W_{i} is an elementary cobordism. Moreover, we can assume that the indices of these cobordisms are increasing with i.

Cobordism III : cobordism \& surgeries

Proof
Let W be a cobordism between M and N, and $f: W \rightarrow[0,1]$
a Morse function such that $f^{-1}(0)=M$ and $f^{-1}(1)=N$.

- f Morse function \Leftrightarrow all critical points of f are non degererates.

Cobordism III : cobordism \& surgeries

Proof
Let W be a cobordism between M and N, and $f: W \rightarrow[0,1]$
a Morse function such that $f^{-1}(0)=M$ and $f^{-1}(1)=N$.

- f Morse function \Leftrightarrow all critical points of f are non degererates.
- Near a critical point,

$$
f(x)=f(0)+x_{1}^{2}+\ldots+x_{k}^{2}-x_{k+1}^{2}-x_{n}^{2} .
$$

Cobordism III : cobordism \& surgeries

Proof
Let W be a cobordism between M and N, and $f: W \rightarrow[0,1]$
a Morse function such that $f^{-1}(0)=M$ and $f^{-1}(1)=N$.

- f Morse function \Leftrightarrow all critical points of f are non degererates.
- Near a critical point,

$$
f(x)=f(0)+x_{1}^{2}+\ldots+x_{k}^{2}-x_{k+1}^{2}-x_{n}^{2} .
$$

- W compact $\Rightarrow f$ has finitely many critical points.

Cobordism III : cobordism \& surgeries

Proof
Let W be a cobordism between M and N, and $f: W \rightarrow[0,1]$
a Morse function such that $f^{-1}(0)=M$ and $f^{-1}(1)=N$.

- f Morse function \Leftrightarrow all critical points of f are non degererates.
- Near a critical point, $f(x)=f(0)+x_{1}^{2}+\ldots+x_{k}^{2}-x_{k+1}^{2}-x_{n}^{2}$.
- W compact $\Rightarrow f$ has finitely many critical points.
- We may assume that the critical values of f are distincts, and $\neq 0,1$.

Cobordism III : cobordism \& surgeries

Proof

Let W be a cobordism between M and N, and $f: W \rightarrow[0,1]$
a Morse function such that $f^{-1}(0)=M$ and $f^{-1}(1)=N$.

- f Morse function \Leftrightarrow all critical points of f are non degererates.
- Near a critical point,
$f(x)=f(0)+x_{1}^{2}+\ldots+x_{k}^{2}-x_{k+1}^{2}-x_{n}^{2}$.
- W compact $\Rightarrow f$ has finitely many critical points.
- We may assume that the critical values of f are distincts, and $\neq 0,1$.
- If there is no critical value in $[a, b]$, then $f^{-1}([a, b])$ is a trivial cobordism.

Cobordism III: cobordism \& surgeries

Cobordism III: cobordism \& surgeries

\rightarrow each critical point corresponds to an elementary cobordism.

Cobordism IV : oriented cobordism

- All manifolds are supposed orientable and oriented.
- If M is an oriented manifold, $-M$ will denote the same manifold with the opposite orientation.
- If W is an oriented manifold with boundary, the orientation on W induces an orientation on ∂M.

Cobordism IV : oriented cobordism

- All manifolds are supposed orientable and oriented.
- If M is an oriented manifold, $-M$ will denote the same manifold with the opposite orientation.
- If W is an oriented manifold with boundary, the orientation on W induces an orientation on ∂M.

Definition
Two oriented manifolds M and N are (oriented-)cobordant if there is a cobordism W such that $\partial W=M \sqcup(-N)$.

Cobordism IV : oriented cobordism

- All manifolds are supposed orientable and oriented.
- If M is an oriented manifold, $-M$ will denote the same manifold with the opposite orientation.
- If W is an oriented manifold with boundary, the orientation on W induces an orientation on ∂M.

Definition

Two oriented manifolds M and N are (oriented-)cobordant if there is a cobordism W such that $\partial W=M \sqcup(-N)$.

Remark

For a trivial cobordism $M \times[0,1]$, the orientation induced on $M \times\{0\}$ and $M \times\{1\}$ are opposite.
$\Rightarrow-[M]=[-M]$

Cobordism IV : oriented cobordism

Let $\Omega_{*}^{S O}$ be the oriented cobordism ring.
Theorem (R. Thom, 1954)

- For each $n, \Omega_{n}^{S O}$ is finitely generated.
- $\Omega_{*}^{S O} \otimes \mathbb{Q}=\mathbb{Q}\left[Y_{4 i}\right], i \geq 1$ with $Y_{4 i}=\left[P^{2 i}(\mathbb{C})\right]$.

dimension	1	2	3	4	5	6	7	8
group	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	0	0	\mathbb{Z}^{2}

Handle decomposition

Every compact connected manifold M admits a handle decomposition, i. e. M is obtained by attaching handle to a ball (0-handle).

Handle decomposition

Every compact connected manifold M admits a handle decomposition, i. e. M is obtained by attaching handle to a ball (0-handle).

- If M is closed, it admits a handle decomposition with only two balls (one 0 -handle and one n-handle).

Handle decomposition

Every compact connected manifold M admits a handle decomposition, i. e. M is obtained by attaching handle to a ball (0-handle).

- If M is closed, it admits a handle decomposition with only two balls (one 0 -handle and one n-handle).
- If M has a boundary, it admits a handle decomposition with one ball (0-handle).

Handle decomposition

Every compact connected manifold M admits a handle decomposition, i. e. M is obtained by attaching handle to a ball (0-handle).

- If M is closed, it admits a handle decomposition with only two balls (one 0 -handle and one n-handle).
- If M has a boundary, it admits a handle decomposition with one ball (0-handle).
Proof : two 0-handle + one 1 -handle $=$ one 0 -handle

Handle decomposition

Exercise

Every compact surface with boundary admits a flat metric.

$$
2 \pi \chi(M)=\int_{M} K \mathrm{~d} A+\int_{\partial M} k \mathrm{~d} l
$$

Conformal bounds for λ_{1}

Let (M, g) be a closed connected riemannian manifold.

$$
\begin{gathered}
\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M) \\
0=\lambda_{0}(M, g)<\lambda_{1}(M, g) \leq \lambda_{2}(M, g) \leq \ldots
\end{gathered}
$$

Conformal bounds for λ_{1}

Let (M, g) be a closed connected riemannian manifold.

$$
\begin{gathered}
\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M) \\
0=\lambda_{0}(M, g)<\lambda_{1}(M, g) \leq \lambda_{2}(M, g) \leq \ldots
\end{gathered}
$$

$$
\lambda_{1}=\inf _{\int_{M} f=0} \frac{\int_{M}|\nabla f|^{2}}{\int_{M} f^{2}}
$$

Conformal bounds for λ_{1}

Let (M, g) be a closed connected riemannian manifold.

$$
\begin{gathered}
\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M) \\
0=\lambda_{0}(M, g)<\lambda_{1}(M, g) \leq \lambda_{2}(M, g) \leq \ldots \\
\lambda_{1}=\inf _{\int_{M} f=0} \frac{\int_{M}|\nabla f|^{2}}{\int_{M} f^{2}} \\
\sup _{\operatorname{Vol}(M, g)=1} \lambda_{1}(M, g)=+\infty(\text { Colbois \& Dodziuk) }
\end{gathered}
$$

Conformal bounds for λ_{1}

Let (M, g) be a closed connected riemannian manifold.

$$
\begin{gathered}
\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M) \\
0=\lambda_{0}(M, g)<\lambda_{1}(M, g) \leq \lambda_{2}(M, g) \leq \ldots \\
\lambda_{1}=\inf _{\int_{M} f=0} \frac{\int_{M}|\nabla f|^{2}}{\int_{M} f^{2}} \\
\sup _{\operatorname{Vol}(M, g)=1} \lambda_{1}(M, g)=+\infty(\text { Colbois \& Dodziuk) }
\end{gathered}
$$

Conformal bounds for λ_{1}

$$
[g]=\left\{h^{2} g, h \in C^{\infty}(M), h>0\right\}
$$

Conformal bounds for λ_{1}

$$
[g]=\left\{h^{2} g, h \in C^{\infty}(M), h>0\right\}
$$

$$
\sup _{\substack{\tilde{\xi} \in[g] \\ \operatorname{Vol}(M)=1}} \lambda_{1}(M, \tilde{g})=?
$$

Conformal bounds for λ_{1}

$$
\begin{gathered}
{[g]=\left\{h^{2} g, h \in C^{\infty}(M), h>0\right\}} \\
\sup _{\substack{\tilde{E} \in[g] \\
\operatorname{Vol}_{0}(M)=1}} \lambda_{1}(M, \tilde{g})=?
\end{gathered}
$$

If $\varphi: M^{n} \rightarrow S^{k}$ is a conformal immersion, we define $V_{c}(\varphi)=\sup _{\gamma \in G_{k}} \operatorname{Vol}(\gamma \circ \varphi(M))$, where G_{k} is the group of conformal diffeomorphism of S^{k} (Möbius group).

Conformal bounds for λ_{1}

$$
\begin{gathered}
{[g]=\left\{h^{2} g, h \in C^{\infty}(M), h>0\right\}} \\
\sup _{\substack{\tilde{z} \in[g] \\
\operatorname{Vol}(M)=1}} \lambda_{1}(M, \tilde{g})=?
\end{gathered}
$$

If $\varphi: M^{n} \rightarrow S^{k}$ is a conformal immersion, we define $V_{c}(\varphi)=\sup _{\gamma \in G_{k}} \operatorname{Vol}(\gamma \circ \varphi(M))$, where G_{k} is the group of conformal diffeomorphism of S^{k} (Möbius group).
Definition
The conformal volume of M is the infimum of $V_{c}(\varphi)$ on all conformal immersion $\varphi \rightarrow S^{k}$, for all k.

$$
V_{c}(M,[g])=\inf _{\varphi} V_{c}(\varphi)
$$

Conformal bounds for λ_{1}

Theorem (Li \& Yau, El Soufi \& Ilias)

$$
\lambda_{1}(M, g) V_{o l}(M)^{2 / n} \leq n V_{c}(M,[g])^{2 / n}
$$

equality $\Leftrightarrow(M, g)$ admits a homothetic minimal immersion in a sphere.

Conformal bounds for λ_{1}

Theorem (Li \& Yau, El Soufi \& Ilias)

$$
\lambda_{1}(M, g) V_{o l}(M)^{2 / n} \leq n V_{c}(M,[g])^{2 / n}
$$

equality $\Leftrightarrow(M, g)$ admits a homothetic minimal immersion in a sphere.

Examples of manifold that admits a minimal immersion in the sphere: $S^{n}, P^{n}(\mathbb{R}), P^{n}(\mathbb{C}), P^{n}(\mathbb{H}), \ldots$

Conformal bounds for λ_{1}

$S^{k} \hookrightarrow \mathbb{R}^{k+1} \quad$ The coordinates x_{i} of \mathbb{R}^{k+1} satisfies

- $\sum_{i} x_{i}^{2}=1$ on S^{k}
- $\sum_{i} \mathrm{~d} x_{i}^{2}=g_{\text {can }}$ on \mathbb{R}^{k+1} and S^{k}.

Conformal bounds for λ_{1}

$S^{k} \hookrightarrow \mathbb{R}^{k+1} \quad$ The coordinates x_{i} of \mathbb{R}^{k+1} satisfies

- $\sum_{i} x_{i}^{2}=1$ on S^{k}
- $\sum_{i} \mathrm{~d} x_{i}^{2}=g_{\text {can }}$ on \mathbb{R}^{k+1} and S^{k}.

Let $\varphi:(M, g) \rightarrow S^{k}$ be a conformal immersion (assume that $\operatorname{Vol}(M, g)=1)$. The Idea is to use the coordinates as test functions.

- $\exists \gamma \in G_{k}$ such that $\int_{M} \gamma \circ \varphi_{i} \mathrm{~d} v_{g}=0$ for all i.

Conformal bounds for λ_{1}

$S^{k} \hookrightarrow \mathbb{R}^{k+1} \quad$ The coordinates x_{i} of \mathbb{R}^{k+1} satisfies

- $\sum_{i} x_{i}^{2}=1$ on S^{k}
- $\sum_{i} \mathrm{~d} x_{i}^{2}=g_{\text {can }}$ on \mathbb{R}^{k+1} and S^{k}.

Let $\varphi:(M, g) \rightarrow S^{k}$ be a conformal immersion (assume that $\operatorname{Vol}(M, g)=1)$. The Idea is to use the coordinates as test functions.

- $\exists \gamma \in G_{k}$ such that $\int_{M} \gamma \circ \varphi_{i} \mathrm{~d} v_{g}=0$ for all i.
- $\lambda_{1} \int_{M} \varphi_{i}^{2} \mathrm{~d} v_{g} \leq \int_{M}\left|\nabla \varphi_{i}\right|_{g}^{2} \mathrm{~d} v_{g}$

Conformal bounds for λ_{1}

$S^{k} \hookrightarrow \mathbb{R}^{k+1} \quad$ The coordinates x_{i} of \mathbb{R}^{k+1} satisfies

- $\sum_{i} x_{i}^{2}=1$ on S^{k}
- $\sum_{i} \mathrm{~d} x_{i}^{2}=g_{\text {can }}$ on \mathbb{R}^{k+1} and S^{k}.

Let $\varphi:(M, g) \rightarrow S^{k}$ be a conformal immersion (assume that $\operatorname{Vol}(M, g)=1)$. The Idea is to use the coordinates as test functions.

- $\exists \gamma \in G_{k}$ such that $\int_{M} \gamma \circ \varphi_{i} \mathrm{~d} v_{g}=0$ for all i.
- $\lambda_{1} \int_{M} \varphi_{i}^{2} \mathrm{~d} v_{g} \leq \int_{M}\left|\nabla \varphi_{i}\right|_{g}^{2} \mathrm{~d} v_{g}$
$-\lambda_{1} \int_{M} \sum_{i} \varphi_{i}^{2} \mathrm{~d} v_{g} \leq \int_{M} \sum_{i}\left|\nabla \varphi_{i}\right|^{2} \mathrm{~d} v_{g}$

Conformal bounds for λ_{1}

$$
\lambda_{1} \leq \int_{M} \sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2} \mathrm{~d} v_{g}
$$

Conformal bounds for λ_{1}

$-\lambda_{1} \leq \int_{M} \sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2} \mathrm{~d} v_{g}$
$-\lambda_{1} \leq\left(\int_{M}\left(\sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2}\right)^{n / 2} d v_{g}\right)^{2 / n}$

Conformal bounds for λ_{1}

- $\lambda_{1} \leq \int_{M} \sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2} \mathrm{~d} v_{g}$
$-\lambda_{1} \leq\left(\int_{M}\left(\sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2}\right)^{n / 2} \mathrm{~d} v_{g}\right)^{2 / n}$
- Up to a rotation of S^{k}, we have $\left|\nabla \varphi_{i}\right|_{g}^{2}=0$ for $i>n$.

Conformal bounds for λ_{1}

- $\lambda_{1} \leq \int_{M} \sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2} \mathrm{~d} v_{g}$
$-\lambda_{1} \leq\left(\int_{M}\left(\sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2}\right)^{n / 2} \mathrm{~d} v_{g}\right)^{2 / n}$
- Up to a rotation of S^{k}, we have $\left|\nabla \varphi_{i}\right|_{g}^{2}=0$ for $i>n$.
- For $i \leq n,\left|\nabla \varphi_{i}\right|_{g}$ is exactly the conformal factor between $g=g_{M}$ and $g_{S^{k}}$

Conformal bounds for λ_{1}

- $\lambda_{1} \leq \int_{M} \sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2} \mathrm{~d} v_{g}$
$-\lambda_{1} \leq\left(\int_{M}\left(\sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2}\right)^{n / 2} d v_{g}\right)^{2 / n}$
- Up to a rotation of S^{k}, we have $\left|\nabla \varphi_{i}\right|_{g}^{2}=0$ for $i>n$.
- For $i \leq n,\left|\nabla \varphi_{i}\right|_{g}$ is exactly the conformal factor between $g=g_{M}$ and $g_{S^{k}}$
- $\left(\sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2}\right)^{n / 2} \mathrm{~d} v_{g}=n^{n / 2} \mathrm{~d} v_{g_{S^{k}}}$

Conformal bounds for λ_{1}

- $\lambda_{1} \leq \int_{M} \sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2} \mathrm{~d} v_{g}$
$-\lambda_{1} \leq\left(\int_{M}\left(\sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2}\right)^{n / 2} d v_{g}\right)^{2 / n}$
- Up to a rotation of S^{k}, we have $\left|\nabla \varphi_{i}\right|_{g}^{2}=0$ for $i>n$.
- For $i \leq n,\left|\nabla \varphi_{i}\right|_{g}$ is exactly the conformal factor between $g=g_{M}$ and $g_{S^{k}}$
- $\left(\sum_{i}\left|\nabla \varphi_{i}\right|_{g}^{2}\right)^{n / 2} \mathrm{~d} v_{g}=n^{n / 2} \mathrm{~d} v_{g_{S_{k}}}$
- $\lambda_{1} \leq n\left(\int_{M} d v_{g_{s^{k}}}\right)^{2 / n}=n \operatorname{Vol}(\varphi(M))^{2 / n} \leq n V_{c}(\varphi)^{2 / n}$

Conformal bounds for λ_{1}

Definition
The Friedlander-Nadirashvili invariant of a closed manifold M is defined by $\nu(M)=\inf _{g} \sup _{\tilde{g} \in[g]} \lambda_{1}(M, g) V o l(M)^{2 / n}$.

Conformal bounds for λ_{1}

Definition
The Friedlander-Nadirashvili invariant of a closed manifold M is defined by $\nu(M)=\inf _{g} \sup _{\tilde{g} \in[g]} \lambda_{1}(M, g) V o l(M)^{2 / n}$.

- $\nu\left(M^{n}\right) \geq \nu\left(S^{n}\right)$.

Conformal bounds for λ_{1}

Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by $\nu(M)=\inf _{g} \sup _{\tilde{g} \in[g]} \lambda_{1}(M, g) \operatorname{Vol}(M)^{2 / n}$.

- $\nu\left(M^{n}\right) \geq \nu\left(S^{n}\right)$.
- $\nu\left(S^{2}\right)=8 \pi, \nu\left(P^{2}(\mathbb{R})\right)=12 \pi$.

Conformal bounds for λ_{1}

Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by $\nu(M)=\inf _{g} \sup _{\tilde{g} \in[g]} \lambda_{1}(M, g) \mathrm{Vol}(M)^{2 / n}$.

- $\nu\left(M^{n}\right) \geq \nu\left(S^{n}\right)$.
- $\nu\left(S^{2}\right)=8 \pi, \nu\left(P^{2}(\mathbb{R})\right)=12 \pi$.
- $\nu\left(T^{2}\right)=\nu\left(K^{2}\right)=8 \pi$ (Girouard, '09).

Conformal bounds for λ_{1}

Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by $\nu(M)=\inf _{g} \sup _{\tilde{g} \in[g]} \lambda_{1}(M, g) \mathrm{Vol}(M)^{2 / n}$.

- $\nu\left(M^{n}\right) \geq \nu\left(S^{n}\right)$.
- $\nu\left(S^{2}\right)=8 \pi, \nu\left(P^{2}(\mathbb{R})\right)=12 \pi$.
- $\nu\left(T^{2}\right)=\nu\left(K^{2}\right)=8 \pi$ (Girouard, '09).

Definition
The Möbius volume of M is defined by

$$
V_{\mathcal{M}}(M)=\inf _{g} V_{c}(M,[g])=\inf _{\varphi: M \rightarrow s^{k}} \sup _{\gamma \in G_{k}} \operatorname{Vol}(\gamma \circ \varphi(M))
$$

Conformal bounds for λ_{1}

Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by $\nu(M)=\inf _{g} \sup _{\tilde{g} \in[g]} \lambda_{1}(M, g) \mathrm{Vol}(M)^{2 / n}$.

- $\nu\left(M^{n}\right) \geq \nu\left(S^{n}\right)$.
- $\nu\left(S^{2}\right)=8 \pi, \nu\left(P^{2}(\mathbb{R})\right)=12 \pi$.
- $\nu\left(T^{2}\right)=\nu\left(K^{2}\right)=8 \pi$ (Girouard, '09).

Definition
The Möbius volume of M is defined by

$$
\begin{gathered}
V_{\mathcal{M}}(M)=\inf _{g} V_{c}(M,[g])=\inf _{\varphi: M \rightarrow s^{k}} \sup _{\gamma \in G_{k}} \operatorname{Vol}(\gamma \circ \varphi(M)) \\
\nu\left(M^{n}\right) \leq n V_{\mathcal{M}}(M)^{2 / n}
\end{gathered}
$$

Conformal bounds for λ_{1}

Theorem
There is a constant $c(n)>0$ such that for all closed manifold $M^{n}, V_{\mathcal{M}}(M) \leq c$.

Conformal bounds for λ_{1}

Theorem
There is a constant $c(n)>0$ such that for all closed manifold $M^{n}, V_{\mathcal{M}}(M) \leq c$.

Corollary
$\nu\left(M^{n}\right)$ is uniformly bounded for a given n.

Conformal bounds for λ_{1}

Theorem
There is a constant $c(n)>0$ such that for all closed manifold $M^{n}, V_{\mathcal{M}}(M) \leq c$.

Corollary
$\nu\left(M^{n}\right)$ is uniformly bounded for a given n.

Principle of the proof : to study the behavior of the Möbius volume when performing surgeries.

Conformal bounds for λ_{1}

Proof for $n=2$

Lemma
Let M be a compact surface. If M^{\prime} is obtained by adding a handle to M, then $V_{\mathcal{M}}\left(M^{\prime}\right) \leq \sup \left\{V_{\mathcal{M}}(M), c\right\}$ where c doesn't depend on M.

Conformal bounds for λ_{1}

Proof for $n=2$

Lemma
Let M be a compact surface. If M^{\prime} is obtained by adding a handle to M, then $V_{\mathcal{M}}\left(M^{\prime}\right) \leq \sup \left\{V_{\mathcal{M}}(M), c\right\}$ where c doesn't depend on M.

Let $\varphi: M \rightarrow S^{k}$ such that $V_{\mathcal{M}}(M) \leq V(\varphi) \leq V_{\mathcal{M}}(M)+\varepsilon$ and $V_{c}(\varphi)-\varepsilon \leq \operatorname{Vol}(\varphi(M)) \leq V_{c}(\varphi)$.

Conformal bounds for λ_{1}

Proof for $n=2$

Lemma
Let M be a compact surface. If M^{\prime} is obtained by adding a handle to M, then $V_{\mathcal{M}}\left(M^{\prime}\right) \leq \sup \left\{V_{\mathcal{M}}(M), c\right\}$ where c doesn't depend on M.

Let $\varphi: M \rightarrow S^{k}$ such that $V_{\mathcal{M}}(M) \leq V(\varphi) \leq V_{\mathcal{M}}(M)+\varepsilon$ and $V_{c}(\varphi)-\varepsilon \leq \operatorname{Vol}(\varphi(M)) \leq V_{c}(\varphi)$.

Stereographic projection: $S^{k} \rightarrow \mathbb{R}^{k} \cup\{\infty\}$

$$
g_{S^{k}}=\frac{4}{\left(1+\|x\|^{2}\right)^{2}} g_{\mathrm{eucl}}
$$

Conformal bounds for λ_{1}

By attaching a thin handle to $\varphi(M)$, we obtain an immersion $\varphi^{\prime}: M^{\prime} \rightarrow S^{k}$ such that $\operatorname{Vol}\left(\varphi^{\prime}\left(M^{\prime}\right)\right) \sim \operatorname{Vol}(\varphi(M))$

Conformal bounds for λ_{1}

By attaching a thin handle to $\varphi(M)$, we obtain an immersion $\varphi^{\prime}: M^{\prime} \rightarrow S^{k}$ such that $\operatorname{Vol}\left(\varphi^{\prime}\left(M^{\prime}\right)\right) \sim \operatorname{Vol}(\varphi(M))$

For $\gamma \in G_{k}$, what is $\operatorname{Vol}\left(\gamma \circ \varphi^{\prime}\left(M^{\prime}\right)\right)$?

Conformal bounds for λ_{1}

By attaching a thin handle to $\varphi(M)$, we obtain an immersion $\varphi^{\prime}: M^{\prime} \rightarrow S^{k}$ such that $\operatorname{Vol}\left(\varphi^{\prime}\left(M^{\prime}\right)\right) \sim \operatorname{Vol}(\varphi(M))$

For $\gamma \in G_{k}$, what is $\operatorname{Vol}\left(\gamma \circ \varphi^{\prime}\left(M^{\prime}\right)\right)$?

- Up to an isometry of S^{k}, γ is equivalent to a translation or a homothety.

Conformal bounds for λ_{1}

By attaching a thin handle to $\varphi(M)$, we obtain an immersion $\varphi^{\prime}: M^{\prime} \rightarrow S^{k}$ such that $\operatorname{Vol}\left(\varphi^{\prime}\left(M^{\prime}\right)\right) \sim \operatorname{Vol}(\varphi(M))$

For $\gamma \in G_{k}$, what is $\operatorname{Vol}\left(\gamma \circ \varphi^{\prime}\left(M^{\prime}\right)\right)$?

- Up to an isometry of S^{k}, γ is equivalent to a translation or a homothety.
- If γ is a translation, $\operatorname{Vol}\left(\gamma \circ \varphi^{\prime}\left(M^{\prime}\right)\right)$ is close to or smaller than $\operatorname{Vol}(\varphi(M))$.

Conformal bounds for λ_{1}

By attaching a thin handle to $\varphi(M)$, we obtain an immersion $\varphi^{\prime}: M^{\prime} \rightarrow S^{k}$ such that $\operatorname{Vol}\left(\varphi^{\prime}\left(M^{\prime}\right)\right) \sim \operatorname{Vol}(\varphi(M))$

For $\gamma \in G_{k}$, what is $\operatorname{Vol}\left(\gamma \circ \varphi^{\prime}\left(M^{\prime}\right)\right)$?

- Up to an isometry of S^{k}, γ is equivalent to a translation or a homothety.
- If γ is a translation, $\operatorname{Vol}\left(\gamma \circ \varphi^{\prime}\left(M^{\prime}\right)\right)$ is close to or smaller than $\operatorname{Vol}(\varphi(M))$.
- Same conclusion if the factor of the homothety is small or or "not too large".

Conformal bounds for λ_{1}

Suppose that the factor of γ is large. The parts of M^{\prime} that are close to ∞ have a small area.

Conformal bounds for λ_{1}

Suppose that the factor of γ is large. The parts of M^{\prime} that are close to ∞ have a small area.

Conformal bounds for λ_{1}

Proof for $n \geq 3$

Lemma
Let M^{n} be a closed manifold. If M^{\prime} is obtained from M by a surgery of codimension ≥ 2, then
$V_{\mathcal{M}}\left(M^{\prime}\right) \leq \sup \left\{V_{\mathcal{M}}(M), c(n)\right\}$.

Conformal bounds for λ_{1}

Proof for $n \geq 3$

Lemma
Let M^{n} be a closed manifold. If M^{\prime} is obtained from M by a surgery of codimension ≥ 2, then
$V_{\mathcal{M}}\left(M^{\prime}\right) \leq \sup \left\{V_{\mathcal{M}}(M), c(n)\right\}$.

$$
S^{k} \times B^{n-k}(\varepsilon) \leftrightarrow B^{k+1} \times S^{n-k-1}(\varepsilon)
$$

Codimension $\geq 2 \Leftrightarrow n-k-1 \geq 1$

Conformal bounds for λ_{1}

Let M^{n} and $M^{\prime n}$ be cobordant manifolds.

Conformal bounds for λ_{1}

Let M^{n} and $M^{\prime n}$ be cobordant manifolds.
Case 1: M and M^{\prime} are orientable.
Thanks to the cancellation lemma, M^{\prime} can be obtained from M by surgeries of codimension ≥ 2.

Conformal bounds for λ_{1}

Let M^{n} and $M^{\prime n}$ be cobordant manifolds.
Case 1: M and M^{\prime} are orientable.
Thanks to the cancellation lemma, M^{\prime} can be obtained from M by surgeries of codimension ≥ 2.

Case 2: M and M^{\prime} are non orientable.

Conformal bounds for λ_{1}

Let M^{n} and $M^{\prime n}$ be cobordant manifolds.
Case 1: M and M^{\prime} are orientable.
Thanks to the cancellation lemma, M^{\prime} can be obtained from M by surgeries of codimension ≥ 2.

Case 2 : M and M^{\prime} are non orientable.

Since M^{\prime} is non orientable, we can find a transversally orientable loop and apply the cancellation lemma.

Conformal bounds for λ_{1}

The Möbius volume is bounded

- on each class of oriented cobordism
- on all non orientable manifold of a given class of non oriented cobordism

Conformal bounds for λ_{1}

The Möbius volume is bounded

- on each class of oriented cobordism
- on all non orientable manifold of a given class of non oriented cobordism
Final step : $V_{\mathcal{M}}\left(M_{1} \sqcup M_{2}\right)=\sup \left\{V_{\mathcal{M}}\left(M_{1}\right), V_{\mathcal{M}}\left(M_{2}\right)\right\}$

Conformal bounds for λ_{1}

The Möbius volume is bounded

- on each class of oriented cobordism
- on all non orientable manifold of a given class of non oriented cobordism
Final step : $V_{\mathcal{M}}\left(M_{1} \sqcup M_{2}\right)=\sup \left\{V_{\mathcal{M}}\left(M_{1}\right), V_{\mathcal{M}}\left(M_{2}\right)\right\}$
\Rightarrow the Möbius volume is bounded on all classes of oriented cobordism

Conformal bounds for λ_{1} : manifolds with boundary

Theorem

If M^{n} is a compact manifold with boundary, then $\nu(M)=\nu\left(S^{n}\right)$.

Conformal bounds for λ_{1} : manifolds with boundary

Theorem
If M^{n} is a compact manifold with boundary, then $\nu(M)=\nu\left(S^{n}\right)$.
Proved by G. Kokarev et N. Nadirashvili for oriented surfaces ('10) using complex analysis.

Conformal bounds for λ_{1} : manifolds with boundary

Theorem
If M^{n} is a compact manifold with boundary, then $\nu(M)=\nu\left(S^{n}\right)$.
Proved by G. Kokarev et N. Nadirashvili for oriented surfaces ('10) using complex analysis.
Example
Let $M^{n} \subset \mathbb{R}^{n}$ be an euclidean domain. The stereographic projection induces a conformal immersion $\varphi: M \rightarrow S^{n}$.
For all $\gamma \in G_{n}, \gamma \circ \varphi(M)$ is a domain of S^{n}, hence
$\operatorname{Vol}(\gamma \circ \varphi(M)) \leq \operatorname{Vol}\left(S^{n}\right)$.
$\Rightarrow V_{\mathcal{M}}(M) \leq \operatorname{Vol}\left(S^{n}\right)$

Conformal bounds for λ_{1} : manifolds with boundary

- Every compact surface with boundary is obtained by attaching 1-handles to a disk.

Conformal bounds for λ_{1} : manifolds with boundary

- Every compact surface with boundary is obtained by attaching 1-handles to a disk.
- It admits a flat embedding in \mathbb{R}^{3}, which is the union of thin bands.

Conformal bounds for λ_{1} : manifolds with boundary

- Every compact surface with boundary is obtained by attaching 1-handles to a disk.
- It admits a flat embedding in \mathbb{R}^{3}, which is the union of thin bands.

Let φ be such an embedding. The bands are supposed to have the same width ε.

Conformal bounds for λ_{1} : manifolds with boundary

- Every compact surface with boundary is obtained by attaching 1-handles to a disk.
- It admits a flat embedding in \mathbb{R}^{3}, which is the union of thin bands.

Let φ be such an embedding. The bands are supposed to have the same width ε.

- If ε is small, $\operatorname{Vol}(\varphi(M))$ is small.
- If $\gamma \in G_{3}$ has not a large homothetic factor, $\operatorname{Vol}(\gamma \circ \varphi(M))$ is still small.

Conformal bounds for λ_{1} : manifolds with boundary

 We consider $\gamma \in G_{3}$ with large factor.

- Near the origin, $\gamma \circ \varphi(M)$ looks like a domain $D \subset \mathbb{R}^{2} \cup\{\infty\}=S^{2}$.

Conformal bounds for λ_{1} : manifolds with boundary

 We consider $\gamma \in G_{3}$ with large factor.

- Near the origin, $\gamma \circ \varphi(M)$ looks like a domain $D \subset \mathbb{R}^{2} \cup\{\infty\}=S^{2}$.
- If ε is small enough, the part D^{\prime} of $\gamma \circ \varphi(M)$ near ∞ has an area $<\operatorname{Vol}\left(S^{2} \backslash D\right)$.

Conformal bounds for λ_{1} : manifolds with boundary

 We consider $\gamma \in G_{3}$ with large factor.

- Near the origin, $\gamma \circ \varphi(M)$ looks like a domain $D \subset \mathbb{R}^{2} \cup\{\infty\}=S^{2}$.
- If ε is small enough, the part D^{\prime} of $\gamma \circ \varphi(M)$ near ∞ has an area $<\operatorname{Vol}\left(S^{2} \backslash D\right)$.
- $g_{S^{3}}=\frac{4}{\left(1+\|x\|^{2}\right)^{2}} g_{\text {eucl }}$
- If we increase the ratio of γ, the volume of D^{\prime} decreases as fast as $\operatorname{Vol}\left(S^{2} \backslash D\right)$.

Conformal bounds for λ_{1} : manifolds with boundary

 We consider $\gamma \in G_{3}$ with large factor.

- Near the origin, $\gamma \circ \varphi(M)$ looks like a domain

$$
D \subset \mathbb{R}^{2} \cup\{\infty\}=S^{2}
$$

- If ε is small enough, the part D^{\prime} of $\gamma \circ \varphi(M)$ near ∞ has an area $<\operatorname{Vol}\left(S^{2} \backslash D\right)$.
- $g_{S^{3}}=\frac{4}{\left(1+\|x\|^{2}\right)^{2}} g_{\text {eucl }}$
- If we increase the ratio of γ, the volume of D^{\prime} decreases as fast as $\operatorname{Vol}\left(S^{2} \backslash D\right)$.
$\Rightarrow \operatorname{Vol}(\gamma \circ \varphi(M))<\operatorname{Vol}\left(S^{2}\right)$.

Conformal bounds for λ_{1} : manifolds with boundary

Proof for $n \geq 3$

- M admits a handle decomposition without n-handle.
- Induction on the number of handles.

Conformal bounds for λ_{1} : manifolds with boundary

Proof for $n \geq 3$

- M admits a handle decomposition without n-handle.
- Induction on the number of handles.
- True if $M=B^{n}$.

Conformal bounds for λ_{1} : manifolds with boundary

Proof for $n \geq 3$

- M admits a handle decomposition without n-handle.
- Induction on the number of handles.
- True if $M=B^{n}$.
- Let $\varphi: M \rightarrow S^{k}$ an almost extremal embedding. $\operatorname{Vol}(\gamma \circ \varphi(M))<\operatorname{Vol}\left(S^{n}\right)$ for all $\gamma \in G_{k}$.

Conformal bounds for λ_{1} : manifolds with boundary

Proof for $n \geq 3$

- M admits a handle decomposition without n-handle.
- Induction on the number of handles.
- True if $M=B^{n}$.
- Let $\varphi: M \rightarrow S^{k}$ an almost extremal embedding. $\operatorname{Vol}(\gamma \circ \varphi(M))<\operatorname{Vol}\left(S^{n}\right)$ for all $\gamma \in G_{k}$.
- Let $\varphi^{\prime}: M^{\prime} \rightarrow S^{k^{\prime}}$ the embedding obtained by attaching a handle $B^{i} \times B^{n-i}(\varepsilon)$ on $\varphi(M)$.

Conformal bounds for λ_{1} : manifolds with boundary

Proof for $n \geq 3$

- M admits a handle decomposition without n-handle.
- Induction on the number of handles.
- True if $M=B^{n}$.
- Let $\varphi: M \rightarrow S^{k}$ an almost extremal embedding. $\operatorname{Vol}(\gamma \circ \varphi(M))<\operatorname{Vol}\left(S^{n}\right)$ for all $\gamma \in G_{k}$.
- Let $\varphi^{\prime}: M^{\prime} \rightarrow S^{k^{\prime}}$ the embedding obtained by attaching a handle $B^{i} \times B^{n-i}(\varepsilon)$ on $\varphi(M)$.
- Control of the volume of $\operatorname{Vol}\left(\gamma \circ \varphi^{\prime}\left(M^{\prime}\right)\right)$ in the same way as for dimension 2.

Bibliography

About differential topology

- A. Kosinski - Differential manifolds, Dover publications, 2007

Some metric and spectral applications

- J. Cheeger - "Analytic torsion and the heat equation", Ann. Math., 109 (2), p. 259-322, 1979
- M. Gromov and H. B. Lawson - "The classification of simply connected manifolds of positive scalar curvature", Ann. Math., 111 (3), p. 423-434, 1980
- C. Bär and M. Dahl - "Surgery and the spectrum of the Dirac operator', J. Reine Angew. Math., 552, p. 53-76, 2002

Bibliography

- P. Jammes - "Première valeur propre du laplacien, volume conforme et chirurgies", Geom. Dedicata, 135, p. 29-37, 2008
- B. Ammann, M. Dahl and E. Humbert - "Surgery and harmonic spinors", Adv. Math., 220 (2), p. 523-539, 2009
- B. Ammann, M. Dahl and E. Humbert - "Smooth Yamabe invariant and surgery", J. Differ. Geom., 94, p. 1-58, 2013
- P. Jammes - "Spectre et géométrie conforme des variétés compactes à bord", preprint

