## Spectral applications of metric surgeries

Pierre Jammes

Neuchâtel, june 2013

Examples of applications of metric surgeries

Let  $(M^n, g)$  be a closed riemannian manifold, and  $\lambda_1(g)$  the first positive eigenvalue of the Laplacian on M.

### Examples of applications of metric surgeries

Let  $(M^n, g)$  be a closed riemannian manifold, and  $\lambda_1(g)$  the first positive eigenvalue of the Laplacian on M. The conformal class of g is the set of metrics defined by

$$[g] = \left\{ h^2 g, \ h \in C^{\infty}(M), \ h > 0 \right\}$$

### Examples of applications of metric surgeries

Let  $(M^n, g)$  be a closed riemannian manifold, and  $\lambda_1(g)$  the first positive eigenvalue of the Laplacian on M. The conformal class of g is the set of metrics defined by

$$[g] = \left\{ h^2 g, \ h \in C^{\infty}(M), \ h > 0 \right\}$$

$$\sup_{\substack{\tilde{\mathbf{g}} \in [\mathbf{g}] \\ \mathsf{Vol}(M) = 1}} \lambda_1 \big( M, \tilde{\mathbf{g}} \big) < +\infty$$

### Examples of applications of metric surgeries

Let  $(M^n, g)$  be a closed riemannian manifold, and  $\lambda_1(g)$  the first positive eigenvalue of the Laplacian on M. The conformal class of g is the set of metrics defined by

$$[g] = \left\{h^2g, \ h \in C^\infty(M), \ h > 0\right\}$$

$$\sup_{\substack{\tilde{g} \in [g] \\ \mathsf{Vol}(M) = 1}} \lambda_1(M, \tilde{g}) < +\infty$$

$$\nu(M) = \inf_{\substack{g \\ \text{Vol}(M) = 1}} \sup_{\substack{\tilde{g} \in [g] \\ \text{Vol}(M) = 1}} \lambda_1(M, \tilde{g})$$

### Examples of applications of metric surgeries

Let  $(M^n, g)$  be a closed riemannian manifold, and  $\lambda_1(g)$  the first positive eigenvalue of the Laplacian on M. The conformal class of g is the set of metrics defined by

$$[g] = \left\{ h^2 g, \ h \in C^{\infty}(M), \ h > 0 \right\}$$

$$\sup_{\substack{\tilde{g} \in [g] \\ \text{Vol}(M) = 1}} \lambda_1(M, \tilde{g}) < +\infty$$

$$\nu(M) = \inf_{\substack{g \\ \tilde{g} \in [g] \\ \text{Vol}(M) = 1}} \lambda_1(M, \tilde{g})$$

#### Theorem

 $\nu(M^n)$  is uniformly bounded on manifold of dimension n.



Let  $M^n$  be a closed spin manifold. The index theorem gives a lower bound on the dimension of the kernel of the Dirac operator. Dim  $\operatorname{Ker} D \geq i(M)$ 

Let  $M^n$  be a closed spin manifold. The index theorem gives a lower bound on the dimension of the kernel of the Dirac operator. Dim  $Ker D \ge i(M)$ 

Theorem (Bär, Dahl, Ammann, Humbert)

This inequality is an equality for a generic set of metrics. In particular, The Dirac operator is generically invertible if  $n = 3, 5, 6, 7 \mod 8$ .

#### Proposition

If the scalar curvature of  $(M^n, g)$  and  $(M'^n, g')$  is positive  $(n \ge 3)$ , then M # M' carries a metric of positive scalar curvature.

#### Proposition

If the scalar curvature of  $(M^n, g)$  and  $(M'^n, g')$  is positive  $(n \ge 3)$ , then M # M' carries a metric of positive scalar curvature.

Theorem (Gromov, Lawson, '80)

Every closed simply-connected non spin manifold of dimension  $\geq 5$  carries a metric of positive scalar curvature.

# Surgeries | : connected sum



## Surgeries | : connected sum



- ▶ Remove a small ball on each manifold.
- ▶ Attach a handle  $S^{n-1} \times [0,1]$ .

# Surgeries | : connected sum



- ▶ Remove a small ball on each manifold.
- ▶ Attach a handle  $S^{n-1} \times [0,1]$ .



## Surgeries | | : definition

- Let  $M^n$  be a closed manifold, and  $S^k \hookrightarrow M^n$  an embedded sphere whose tubular neighborhood is diffeomorphic to  $S^k \times B^{n-k}$ .

## Surgeries | | : definition

- ▶ Let  $M^n$  be a closed manifold, and  $S^k \hookrightarrow M^n$  an embedded sphere whose tubular neighborhood is diffeomorphic to  $S^k \times B^{n-k}$ .

## Surgeries | | : definition

- ▶ Let  $M^n$  be a closed manifold, and  $S^k \hookrightarrow M^n$  an embedded sphere whose tubular neighborhood is diffeomorphic to  $S^k \times B^{n-k}$ .
- $\partial (S^k \times B^{n-k}) = S^k \times S^{n-k-1} = \partial (B^{k+1} \times S^{n-k-1}).$

#### Definition

The manifold obtained from M by a surgery along  $S^k$  (k dimensional surgery) is

$$M\setminus (S^k\times B^{n-k})\bigcup_{S^k\times S^{n-k-1}}(B^{k+1}\times S^{n-k-1})$$

n-k is the *codimension* of the surgery.

# Surgeries II: definition & examples

### Example 1

The connected sum is a surgery along a sphere  $S^0$ .

# Surgeries II: definition & examples

#### Example 1

The connected sum is a surgery along a sphere  $S^0$ .

#### Example II

1-codimensional surgery



# Surgeries II: definition & examples

### Example 1

The connected sum is a surgery along a sphere  $S^0$ .

#### Example II

1-codimensional surgery



#### Example III

The sphere  $S^3$  is the union of two copies of  $S^1 \times D^2$ . A surgery along a trivial knot in  $S^3$  produces the manifold  $S^1 \times S^2$ .

# Surgeries III: applications

Theorem (Gromov, Lawson, '80)

Let  $M^n$  be a closed riemannian manifold with positive scalar curvature. If M' is obtained from M by a surgery of codimension  $\geq 3$ , then M' carries a metric of positive scalar curvature.

# Surgeries III: applications

Theorem (Gromov, Lawson, '80)

Let  $M^n$  be a closed riemannian manifold with positive scalar curvature. If M' is obtained from M by a surgery of codimension  $\geq 3$ , then M' carries a metric of positive scalar curvature.



# Surgeries || : applications

### Theorem (Gromov, Lawson, '80)

Let  $M^n$  be a closed riemannian manifold with positive scalar curvature. If M' is obtained from M by a surgery of codimension  $\geq 3$ , then M' carries a metric of positive scalar curvature.



### Theorem (Bär, Dahl, '02)

If the Dirac operator D is invertible on (M,g), there is a metric g' on M' such that  $D_{g'}$  is invertible.

# Surgeries III : applications

### Theorem (Gromov, Lawson, '80)

Let  $M^n$  be a closed riemannian manifold with positive scalar curvature. If M' is obtained from M by a surgery of codimension  $\geq 3$ , then M' carries a metric of positive scalar curvature.



### Theorem (Bär, Dahl, '02)

If the Dirac operator D is invertible on (M,g), there is a metric g' on M' such that  $D_{g'}$  is invertible.

### Theorem (Ammann, Dahl, Humbert, '09)

If D is invertible on M and M' is obtained from M by a surgery of codimension 2, then D is invertible on (M', g').









A k-dimensional surgery is cancelled by a (n - k)-surgery.

$$S^k \times B^{n-k} \leftrightarrow B^{k+1} \times S^{n-k-1}$$



A k-dimensional surgery is cancelled by a (n - k)-surgery.

$$S^k \times B^{n-k} \leftrightarrow B^{k+1} \times S^{n-k-1}$$





A k-dimensional surgery is cancelled by a (n - k)-surgery.

$$S^k \times B^{n-k} \leftrightarrow B^{k+1} \times S^{n-k-1}$$



A k-surgery is cancelled by a surgery along a (k+1)-sphere that intersects transversally the belt sphere of the k surgery in one point (Smale's cancellation lemma).

Cancellation is a method to avoid 1-codimensional surgeries. It fails in two cases :

Cancellation is a method to avoid 1-codimensional surgeries. It fails in two cases :

connected sum



Cancellation is a method to avoid 1-codimensional surgeries. It fails in two cases:

connected sum



non oriented handle



#### Definition

Let M and N be two closed n-dimensional manifolds. A cobordism between M and N is a compact n+1-manifold W whose boundary is  $M \coprod N$ . M are N are cobordant if such a cobordim exists.

#### Definition

Let M and N be two closed n-dimensional manifolds. A cobordism between M and N is a compact n+1-manifold W whose boundary is  $M \coprod N$ . M are N are cobordant if such a cobordim exists.

#### Examples



 $S^1 \coprod S^1$  is cobordant to  $S^1$ 



 $T^2$  is cobordant to  $S^2$ 

#### Remark

Cobordism is a equivalence relation.



#### Remark

Cobordism is a equivalence relation.



#### Questions

- 1. What can we say about the quotient set?
- 2. What can we say about a given equivalence class?



### Cobordism II: cobordism ring

Let  $\Omega_n$  be the set of cobordism classes of *n*-dimensional manifolds.

## Cobordism II: cobordism ring

Let  $\Omega_n$  be the set of cobordism classes of *n*-dimensional manifolds.

▶ If M is the boundary of  $W^{n+1}$ , we write  $[M] = [\emptyset]$ . Remark: we also have  $[M] = [S^n]$ .

Let  $\Omega_n$  be the set of cobordism classes of *n*-dimensional manifolds.

- ▶ If M is the boundary of  $W^{n+1}$ , we write  $[M] = [\emptyset]$ . Remark: we also have  $[M] = [S^n]$ .
- $\triangleright$   $\Omega_n$  is an abelian group for the disjoint union

$$[M] + [N] = [M \sqcup N]$$

Let  $\Omega_n$  be the set of cobordism classes of *n*-dimensional manifolds.

- ▶ If M is the boundary of  $W^{n+1}$ , we write  $[M] = [\emptyset]$ . Remark: we also have  $[M] = [S^n]$ .
- $\triangleright$   $\Omega_n$  is an abelian group for the disjoint union

$$[M] + [N] = [M \sqcup N]$$

- ► The identity element of this group is [∅]
- $\blacktriangleright [M] + [M] = [\emptyset]$



 $\Omega_* = \bigoplus_n \Omega_n$  is a ring:  $[M] \times [N] = [M \times N]$ .

$$\Omega_* = \bigoplus_n \Omega_n$$
 is a ring:  $[M] \times [N] = [M \times N]$ .

Suppose that [M]=[M'], [N]=[N'],  $\partial W_1=M\sqcup M'$ ,  $\partial W_2=N\sqcup N'$ .

$$\Omega_* = \bigoplus_n \Omega_n$$
 is a ring:  $[M] \times [N] = [M \times N]$ .

Suppose that [M] = [M'], [N] = [N'],  $\partial W_1 = M \sqcup M'$ ,  $\partial W_2 = N \sqcup N'$ .

#### Proposition

The mod 2 Euler characteristic  $\chi(M) \in \mathbb{Z}/2\mathbb{Z}$  is a cobordism invariant.

$$\Omega_* = \bigoplus_n \Omega_n$$
 is a ring:  $[M] \times [N] = [M \times N]$ .

Suppose that [M] = [M'], [N] = [N'],  $\partial W_1 = M \sqcup M'$ ,  $\partial W_2 = N \sqcup N'$ .

#### Proposition

The mod 2 Euler characteristic  $\chi(M) \in \mathbb{Z}/2\mathbb{Z}$  is a cobordism invariant.

Proof: let  $W^{2n+1}$  be a cobordism between  $M^{2n}$  and  $N^{2n}$ . We obtain a closed manifold W' by gluing two copies of W along their boundaries.

$$\chi(W') = 2\chi(W) - \chi(\partial W)$$
  

$$\Rightarrow \chi(\partial W) = \chi(M) + \chi(N) = 0 \mod 2.$$



# Cobordism II: cobordism ring Theorem (R. Thom, 1954)

▶ For each n,  $\Omega_n$  is finite.

# Cobordism II: cobordism ring Theorem (R. Thom, 1954)

- ▶ For each n,  $\Omega_n$  is finite.
- As a ring,  $\Omega_* = Z/2[X_i, i \ge 1, i \ne 2^j 1]$ .
- ▶ If i is even,  $X_i$  is the class of the real projective space  $P^i(\mathbb{R})$ .

# Cobordism II: cobordism ring Theorem (R. Thom, 1954)

- ▶ For each n,  $\Omega_n$  is finite.
- As a ring,  $\Omega_* = Z/2[X_i, i \ge 1, i \ne 2^j 1]$ .
- ▶ If i is even,  $X_i$  is the class of the real projective space  $P^i(\mathbb{R})$ .
- ▶ (Dold, 1956) If  $i = 2^r(2s + 1) 1$  is odd,  $X_i$  is the class of  $P(2^r 1, s2^r)$  where  $P(k, l) = (S^k \times P^l(\mathbb{C}))/(x, z) \sim (-x, \bar{z})$ .

# Cobordism | | : cobordism ring

Theorem (R. Thom, 1954)

- ▶ For each n,  $\Omega_n$  is finite.
- As a ring,  $\Omega_* = Z/2[X_i, i \ge 1, i \ne 2^j 1]$ .
- ▶ If i is even,  $X_i$  is the class of the real projective space  $P^i(\mathbb{R})$ .
- ▶ (Dold, 1956) If  $i = 2^r(2s + 1) 1$  is odd,  $X_i$  is the class of  $P(2^r 1, s2^r)$  where  $P(k, l) = (S^k \times P^l(\mathbb{C}))/(x, z) \sim (-x, \bar{z})$ .

| $\Omega_1$ | 0         |                                                           |
|------------|-----------|-----------------------------------------------------------|
| $\Omega_2$ | Z/2       | $P^2(\mathbb{R})$                                         |
| $\Omega_3$ | 0         |                                                           |
| $\Omega_4$ | $(Z/2)^2$ | $P^2(\mathbb{R}) \times P^2(\mathbb{R}), P^4(\mathbb{R})$ |
| $\Omega_5$ | Z/2       | P(1, 2)                                                   |

Let  $W^{n+1}=M\times [0,1]$  be a trivial cobordism. If  $S^{k-1}\hookrightarrow M\times \{1\}$  is an embedded sphere with trivial normal bundle, we obtain a new cobordism W' by attaching a handle  $B^k\times B^{n+1-k}$  along  $S^{k-1}$ :



Let  $W^{n+1}=M\times [0,1]$  be a trivial cobordism. If  $S^{k-1}\hookrightarrow M\times \{1\}$  is an embedded sphere with trivial normal bundle, we obtain a new cobordism W' by attaching a handle  $B^k\times B^{n+1-k}$  along  $S^{k-1}$ :



W' is called an *elementary cobordism of index k*. The new boundary is obtained from M by a surgery along  $S^{k-1}$ .



#### Consequences

- ▶ [M] + [N] = [M#N].
- ▶ If M' is obtained from M by a finite number of surgeries, then [M] = [M'].

#### Consequences

- ▶ [M] + [N] = [M#N].
- ▶ If M' is obtained from M by a finite number of surgeries, then [M] = [M'].

#### Theorem (Smale, Wallace)

If W is a cobordism, then  $W=W_1\cup W_2\cup\ldots\cup W_p$ , where each  $W_i$  is an elementary cobordism. Moreover, we can assume that the indices of these cobordisms are increasing with i.

#### Proof

Let W be a cobordism between M and N, and  $f:W\to [0,1]$  a Morse function such that  $f^{-1}(0)=M$  and  $f^{-1}(1)=N$ .

▶ f Morse function  $\Leftrightarrow$  all critical points of f are non degererates.

#### Proof

- ▶ f Morse function ⇔ all critical points of f are non degererates.
- ► Near a critical point,  $f(x) = f(0) + x_1^2 + ... + x_k^2 - x_{k+1}^2 - x_n^2$ .

#### Proof

- ▶ f Morse function ⇔ all critical points of f are non degererates.
- ► Near a critical point,  $f(x) = f(0) + x_1^2 + ... + x_k^2 - x_{k+1}^2 - x_n^2$ .
- W compact  $\Rightarrow f$  has finitely many critical points.

#### Proof

- ▶ f Morse function ⇔ all critical points of f are non degererates.
- ► Near a critical point,  $f(x) = f(0) + x_1^2 + ... + x_k^2 - x_{k+1}^2 - x_n^2$ .
- W compact  $\Rightarrow f$  has finitely many critical points.
- ▶ We may assume that the critical values of f are distincts, and  $\neq 0, 1$ .

#### Proof

- ▶ f Morse function ⇔ all critical points of f are non degererates.
- Near a critical point,  $f(x) = f(0) + x_1^2 + ... + x_k^2 - x_{k+1}^2 - x_n^2$ .
- W compact  $\Rightarrow f$  has finitely many critical points.
- ▶ We may assume that the critical values of f are distincts, and  $\neq 0, 1$ .
- ▶ If there is no critical value in [a, b], then  $f^{-1}([a, b])$  is a trivial cobordism.







 $\rightarrow$  each critical point corresponds to an elementary cobordism.

- ► All manifolds are supposed orientable and oriented.
- ▶ If M is an oriented manifold, -M will denote the same manifold with the opposite orientation.
- ▶ If W is an oriented manifold with boundary, the orientation on W induces an orientation on  $\partial M$ .

- All manifolds are supposed orientable and oriented.
- ► If M is an oriented manifold, -M will denote the same manifold with the opposite orientation.
- ▶ If W is an oriented manifold with boundary, the orientation on W induces an orientation on  $\partial M$ .

#### Definition

Two oriented manifolds M and N are (oriented-)cobordant if there is a cobordism W such that  $\partial W = M \sqcup (-N)$ .

- All manifolds are supposed orientable and oriented.
- ▶ If *M* is an oriented manifold, −*M* will denote the same manifold with the opposite orientation.
- ▶ If W is an oriented manifold with boundary, the orientation on W induces an orientation on  $\partial M$ .

#### Definition

Two oriented manifolds M and N are (oriented-)cobordant if there is a cobordism W such that  $\partial W = M \sqcup (-N)$ .

#### Remark

For a trivial cobordism  $M \times [0, 1]$ , the orientation induced on  $M \times \{0\}$  and  $M \times \{1\}$  are opposite.

$$\Rightarrow$$
  $-[M] = [-M]$ 

Let  $\Omega_*^{SO}$  be the oriented cobordism ring.

Theorem (R. Thom, 1954)

- For each n,  $\Omega_n^{SO}$  is finitely generated.
- ▶  $\Omega_*^{SO} \otimes \mathbb{Q} = \mathbb{Q}[Y_{4i}], i \geq 1$  with  $Y_{4i} = [P^{2i}(\mathbb{C})].$

| dimension | 1 | 2 | 3 | 4            | 5              | 6 | 7 | 8              |
|-----------|---|---|---|--------------|----------------|---|---|----------------|
| group     | 0 | 0 | 0 | $\mathbb{Z}$ | $\mathbb{Z}/2$ | 0 | 0 | $\mathbb{Z}^2$ |

Every compact connected manifold M admits a handle decomposition, i. e. M is obtained by attaching handle to a ball (0-handle).

Every compact connected manifold M admits a handle decomposition, i. e. M is obtained by attaching handle to a ball (0-handle).

▶ If *M* is closed, it admits a handle decomposition with only two balls (one 0-handle and one *n*-handle).

Every compact connected manifold M admits a handle decomposition, i. e. M is obtained by attaching handle to a ball (0-handle).

- ▶ If *M* is closed, it admits a handle decomposition with only two balls (one 0-handle and one *n*-handle).
- ▶ If *M* has a boundary, it admits a handle decomposition with one ball (0-handle).

Every compact connected manifold M admits a handle decomposition, i. e. M is obtained by attaching handle to a ball (0-handle).

- ▶ If *M* is closed, it admits a handle decomposition with only two balls (one 0-handle and one *n*-handle).
- ▶ If *M* has a boundary, it admits a handle decomposition with one ball (0-handle).

Proof: two 0-handle + one 1-handle = one 0-handle

#### Exercise

Every compact surface with boundary admits a flat metric.

$$2\pi\chi(M)=\int_M K \; \mathrm{d}A \; + \int_{\partial M} k \; \mathrm{d}I$$

$$\Delta: C^{\infty}(M) \to C^{\infty}(M)$$

$$0 = \lambda_0(M,g) < \lambda_1(M,g) \leq \lambda_2(M,g) \leq \dots$$

$$\Delta: C^{\infty}(M) \to C^{\infty}(M)$$

$$0 = \lambda_0(M,g) < \lambda_1(M,g) \le \lambda_2(M,g) \le \dots$$

$$\lambda_1 = \inf_{\int_M f = 0} \frac{\int_M |\nabla f|^2}{\int_M f^2}$$

$$\Delta: C^{\infty}(M) \to C^{\infty}(M)$$

$$0 = \lambda_0(M,g) < \lambda_1(M,g) \le \lambda_2(M,g) \le \dots$$

$$\lambda_1 = \inf_{\int_M f = 0} \frac{\int_M |\nabla f|^2}{\int_M f^2}$$

$$\sup_{\mathsf{Vol}(M,g)=1} \lambda_1(M,g) = +\infty$$
 (Colbois & Dodziuk)



$$\Delta: C^{\infty}(M) \to C^{\infty}(M)$$

$$0 = \lambda_0(M,g) < \lambda_1(M,g) \le \lambda_2(M,g) \le \dots$$

$$\lambda_1 = \inf_{\int_M f = 0} \frac{\int_M |\nabla f|^2}{\int_M f^2}$$

$$\sup_{\mathsf{Vol}(M,g)=1} \lambda_1(M,g) = +\infty$$
 (Colbois & Dodziuk)



$$[g] = \left\{ h^2 g, \ h \in C^{\infty}(M), \ h > 0 \right\}$$

$$[g] = \left\{h^2g, h \in C^{\infty}(M), h > 0\right\}$$
 
$$\sup_{\substack{\tilde{g} \in [g] \\ \text{Vol}(M) = 1}} \lambda_1(M, \tilde{g}) = ?$$

$$[g] = \left\{h^2g, h \in C^\infty(M), h > 0
ight\}$$
 
$$\sup_{\substack{ ilde{g} \in [g] \ \mathrm{Vol}(M) = 1}} \lambda_1(M, ilde{g}) = ?$$

If  $\varphi: M^n \to S^k$  is a conformal immersion, we define  $V_c(\varphi) = \sup_{\gamma \in G_k} \operatorname{Vol}(\gamma \circ \varphi(M))$ , where  $G_k$  is the group of conformal diffeomorphism of  $S^k$  (Möbius group).

$$[g] = \left\{h^2g, h \in C^{\infty}(M), h > 0
ight\}$$
 
$$\sup_{\substack{ ilde{g} \in [g] \ \mathrm{Vol}(M) = 1}} \lambda_1(M, ilde{g}) = ?$$

If  $\varphi: M^n \to S^k$  is a conformal immersion, we define  $V_c(\varphi) = \sup_{\gamma \in G_k} \operatorname{Vol}(\gamma \circ \varphi(M))$ , where  $G_k$  is the group of conformal diffeomorphism of  $S^k$  (Möbius group).

#### Definition

The conformal volume of M is the infimum of  $V_c(\varphi)$  on all conformal immersion  $\varphi \to S^k$ , for all k.

$$V_c(M,[g]) = \inf_{\varphi} V_c(\varphi)$$



Theorem (Li & Yau, El Soufi & Ilias)

$$\lambda_1(M,g)\operatorname{Vol}(M)^{2/n} \le nV_c(M,[g])^{2/n}$$

equality  $\Leftrightarrow$  (M,g) admits a homothetic minimal immersion in a sphere.

Theorem (Li & Yau, El Soufi & Ilias)

$$\lambda_1(M,g)\operatorname{Vol}(M)^{2/n} \le nV_c(M,[g])^{2/n}$$

equality  $\Leftrightarrow$  (M,g) admits a homothetic minimal immersion in a sphere.

Examples of manifold that admits a minimal immersion in the sphere :  $S^n$ ,  $P^n(\mathbb{R})$ ,  $P^n(\mathbb{C})$ ,  $P^n(\mathbb{H})$ , ...

 $S^k \hookrightarrow \mathbb{R}^{k+1}$  The coordinates  $x_i$  of  $\mathbb{R}^{k+1}$  satisfies

- $\sum_i x_i^2 = 1 \text{ on } S^k$
- $ightharpoonup \sum_i \mathsf{d} x_i^2 = g_\mathsf{can} \text{ on } \mathbb{R}^{k+1} \text{ and } S^k.$

 $S^k \hookrightarrow \mathbb{R}^{k+1}$  The coordinates  $x_i$  of  $\mathbb{R}^{k+1}$  satisfies

- $\sum_i x_i^2 = 1 \text{ on } S^k$
- $ightharpoonup \sum_i \mathsf{d} x_i^2 = g_\mathsf{can} \text{ on } \mathbb{R}^{k+1} \text{ and } S^k.$

Let  $\varphi: (M,g) \to S^k$  be a conformal immersion (assume that Vol(M,g)=1). The Idea is to use the coordinates as test functions.

▶  $\exists \gamma \in G_k$  such that  $\int_M \gamma \circ \varphi_i d\nu_g = 0$  for all i.

 $S^k \hookrightarrow \mathbb{R}^{k+1}$  The coordinates  $x_i$  of  $\mathbb{R}^{k+1}$  satisfies

- $\sum_i x_i^2 = 1$  on  $S^k$
- $ightharpoonup \sum_i \mathsf{d} x_i^2 = g_\mathsf{can} \text{ on } \mathbb{R}^{k+1} \text{ and } S^k.$

Let  $\varphi: (M,g) \to S^k$  be a conformal immersion (assume that Vol(M,g)=1). The Idea is to use the coordinates as test functions.

- ▶  $\exists \gamma \in G_k$  such that  $\int_M \gamma \circ \varphi_i dv_g = 0$  for all i.

 $S^k \hookrightarrow \mathbb{R}^{k+1}$  The coordinates  $x_i$  of  $\mathbb{R}^{k+1}$  satisfies

- $\sum_i x_i^2 = 1$  on  $S^k$
- $ightharpoonup \sum_i \mathsf{d} x_i^2 = g_\mathsf{can} \text{ on } \mathbb{R}^{k+1} \text{ and } S^k.$

Let  $\varphi: (M,g) \to S^k$  be a conformal immersion (assume that Vol(M,g)=1). The Idea is to use the coordinates as test functions.

- $ightharpoonup \exists \gamma \in G_k \text{ such that } \int_M \gamma \circ \varphi_i dv_g = 0 \text{ for all } i.$

$$\lambda_1 \le \int_M \sum_i |\nabla \varphi_i|_g^2 \mathrm{d} v_g$$

$$\lambda_1 \leq \int_M \sum_i |\nabla \varphi_i|_g^2 \mathrm{d} v_g$$

$$\lambda_1 \le \left( \int_M \left( \sum_i |\nabla \varphi_i|_g^2 \right)^{n/2} \mathrm{d} v_g \right)^{2/n}$$

$$\lambda_1 \le \int_M \sum_i |\nabla \varphi_i|_g^2 \mathrm{d} v_g$$

$$\lambda_1 \leq \left( \int_M \left( \sum_i |\nabla \varphi_i|_g^2 \right)^{n/2} \mathrm{d} v_g \right)^{2/n}$$

▶ Up to a rotation of  $S^k$ , we have  $|\nabla \varphi_i|_g^2 = 0$  for i > n.

$$\lambda_1 \le \int_M \sum_i |\nabla \varphi_i|_g^2 \mathrm{d} v_g$$

$$\lambda_1 \leq \left( \int_M \left( \sum_i |\nabla \varphi_i|_g^2 \right)^{n/2} \mathrm{d} v_g \right)^{2/n}$$

- ▶ Up to a rotation of  $S^k$ , we have  $|\nabla \varphi_i|_g^2 = 0$  for i > n.
- ▶ For  $i \leq n$ ,  $|\nabla \varphi_i|_g$  is exactly the conformal factor between  $g = g_M$  and  $g_{S^k}$

$$\lambda_1 \le \int_M \sum_i |\nabla \varphi_i|_g^2 \mathrm{d} v_g$$

$$\lambda_1 \le \left( \int_M \left( \sum_i |\nabla \varphi_i|_g^2 \right)^{n/2} \mathrm{d} v_g \right)^{2/n}$$

- ▶ Up to a rotation of  $S^k$ , we have  $|\nabla \varphi_i|_g^2 = 0$  for i > n.
- ▶ For  $i \leq n$ ,  $|\nabla \varphi_i|_{\mathcal{G}}$  is exactly the conformal factor between  $g = g_M$  and  $g_{S^k}$
- $\qquad \qquad \big( \sum_{i} |\nabla \varphi_{i}|_{g}^{2} \big)^{n/2} \, \mathrm{d} \, v_{g} = n^{n/2} \, \mathrm{d} \, v_{g_{Sk}}$

$$\lambda_1 \le \int_M \sum_i |\nabla \varphi_i|_g^2 \mathrm{d} v_g$$

$$\lambda_1 \le \left( \int_M \left( \sum_i |\nabla \varphi_i|_g^2 \right)^{n/2} \mathrm{d} v_g \right)^{2/n}$$

- ▶ Up to a rotation of  $S^k$ , we have  $|\nabla \varphi_i|_g^2 = 0$  for i > n.
- ▶ For  $i \leq n$ ,  $|\nabla \varphi_i|_g$  is exactly the conformal factor between  $g = g_M$  and  $g_{S^k}$
- $\qquad \qquad \big( \sum_{i} |\nabla \varphi_{i}|_{g}^{2} \big)^{n/2} \, \mathrm{d} v_{g} = n^{n/2} \, \mathrm{d} v_{g_{gk}}$

#### Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by  $\nu(M) = \inf_g \sup_{\tilde{g} \in [g]} \lambda_1(M, g) \operatorname{Vol}(M)^{2/n}$ .

#### Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by  $\nu(M) = \inf_g \sup_{\tilde{g} \in [g]} \lambda_1(M, g) \operatorname{Vol}(M)^{2/n}$ .

 $\qquad \qquad \nu(M^n) \geq \nu(S^n).$ 

#### Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by  $\nu(M) = \inf_g \sup_{\tilde{g} \in [g]} \lambda_1(M, g) \text{Vol}(M)^{2/n}$ .

- $\qquad \qquad \nu(M^n) \geq \nu(S^n).$
- $\nu(S^2) = 8\pi, \ \nu(P^2(\mathbb{R})) = 12\pi.$

#### Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by  $\nu(M) = \inf_g \sup_{\tilde{g} \in [g]} \lambda_1(M, g) \operatorname{Vol}(M)^{2/n}$ .

- $\qquad \qquad \nu(M^n) \geq \nu(S^n).$
- $\nu(S^2) = 8\pi, \ \nu(P^2(\mathbb{R})) = 12\pi.$
- $\nu(T^2) = \nu(K^2) = 8\pi$  (Girouard, '09).

#### Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by  $\nu(M) = \inf_g \sup_{\tilde{g} \in [g]} \lambda_1(M, g) \operatorname{Vol}(M)^{2/n}$ .

- $\qquad \qquad \nu(M^n) \geq \nu(S^n).$
- $\nu(S^2) = 8\pi, \ \nu(P^2(\mathbb{R})) = 12\pi.$
- $\nu(T^2) = \nu(K^2) = 8\pi$  (Girouard, '09).

#### Definition

The Möbius volume of M is defined by

$$V_{\mathcal{M}}(M) = \inf_{g} V_{c}(M, [g]) = \inf_{\varphi: M \to S^{k}} \sup_{\gamma \in G_{k}} \operatorname{Vol}(\gamma \circ \varphi(M))$$

#### Definition

The Friedlander-Nadirashvili invariant of a closed manifold M is defined by  $\nu(M) = \inf_g \sup_{\tilde{g} \in [g]} \lambda_1(M, g) \text{Vol}(M)^{2/n}$ .

- $\qquad \qquad \nu(M^n) \geq \nu(S^n).$
- $\nu(S^2) = 8\pi, \ \nu(P^2(\mathbb{R})) = 12\pi.$
- $\nu(T^2) = \nu(K^2) = 8\pi$  (Girouard, '09).

#### Definition

The Möbius volume of M is defined by

$$V_{\mathcal{M}}(M) = \inf_{g} V_{c}(M, [g]) = \inf_{\varphi: M \to S^{k}} \sup_{\gamma \in G_{k}} \operatorname{Vol}(\gamma \circ \varphi(M))$$

$$\nu(M^n) \leq nV_{\mathcal{M}}(M)^{2/n}$$



#### Theorem

There is a constant c(n) > 0 such that for all closed manifold  $M^n$ ,  $V_{\mathcal{M}}(M) \leq c$ .

#### Theorem

There is a constant c(n) > 0 such that for all closed manifold  $M^n$ ,  $V_{\mathcal{M}}(M) \leq c$ .

### Corollary

 $\nu(M^n)$  is uniformly bounded for a given n.

#### Theorem

There is a constant c(n) > 0 such that for all closed manifold  $M^n$ ,  $V_{\mathcal{M}}(M) \leq c$ .

### Corollary

 $\nu(M^n)$  is uniformly bounded for a given n.

Principle of the proof: to study the behavior of the Möbius volume when performing surgeries.

Proof for n = 2

#### Lemma

Let M be a compact surface. If M' is obtained by adding a handle to M, then  $V_{\mathcal{M}}(M') \leq \sup\{V_{\mathcal{M}}(M), c\}$  where c doesn't depend on M.

Proof for n = 2

#### Lemma

Let M be a compact surface. If M' is obtained by adding a handle to M, then  $V_{\mathcal{M}}(M') \leq \sup\{V_{\mathcal{M}}(M), c\}$  where c doesn't depend on M.

Let  $\varphi: M \to S^k$  such that  $V_{\mathcal{M}}(M) \leq V(\varphi) \leq V_{\mathcal{M}}(M) + \varepsilon$  and  $V_c(\varphi) - \varepsilon \leq \operatorname{Vol}(\varphi(M)) \leq V_c(\varphi)$ .

Proof for n = 2

#### Lemma

Let M be a compact surface. If M' is obtained by adding a handle to M, then  $V_{\mathcal{M}}(M') \leq \sup\{V_{\mathcal{M}}(M), c\}$  where c doesn't depend on M.

Let  $\varphi: M \to S^k$  such that  $V_{\mathcal{M}}(M) \leq V(\varphi) \leq V_{\mathcal{M}}(M) + \varepsilon$  and  $V_c(\varphi) - \varepsilon \leq \text{Vol}(\varphi(M)) \leq V_c(\varphi)$ .

Stereographic projection :  $S^k \to \mathbb{R}^k \cup \{\infty\}$ 

$$g_{S^k} = rac{4}{(1+\|x\|^2)^2}g_{ ext{eucl}}$$



By attaching a thin handle to  $\varphi(M)$ , we obtain an immersion  $\varphi': M' \to S^k$  such that  $\operatorname{Vol}(\varphi'(M')) \sim \operatorname{Vol}(\varphi(M))$ 



By attaching a thin handle to  $\varphi(M)$ , we obtain an immersion  $\varphi':M'\to S^k$  such that  $\operatorname{Vol}(\varphi'(M'))\sim\operatorname{Vol}(\varphi(M))$ 



For  $\gamma \in G_k$ , what is  $Vol(\gamma \circ \varphi'(M'))$ ?

By attaching a thin handle to  $\varphi(M)$ , we obtain an immersion  $\varphi':M'\to S^k$  such that  $\operatorname{Vol}(\varphi'(M'))\sim\operatorname{Vol}(\varphi(M))$ 



For  $\gamma \in G_k$ , what is  $Vol(\gamma \circ \varphi'(M'))$ ?

• Up to an isometry of  $S^k$ ,  $\gamma$  is equivalent to a translation or a homothety.

By attaching a thin handle to  $\varphi(M)$ , we obtain an immersion  $\varphi':M'\to S^k$  such that  $\operatorname{Vol}(\varphi'(M'))\sim\operatorname{Vol}(\varphi(M))$ 



For  $\gamma \in G_k$ , what is  $Vol(\gamma \circ \varphi'(M'))$ ?

- ▶ Up to an isometry of  $S^k$ ,  $\gamma$  is equivalent to a translation or a homothety.
- ▶ If  $\gamma$  is a translation,  $Vol(\gamma \circ \varphi'(M'))$  is close to or smaller than  $Vol(\varphi(M))$ .

By attaching a thin handle to  $\varphi(M)$ , we obtain an immersion  $\varphi':M'\to S^k$  such that  $\operatorname{Vol}(\varphi'(M'))\sim\operatorname{Vol}(\varphi(M))$ 



For  $\gamma \in G_k$ , what is  $Vol(\gamma \circ \varphi'(M'))$ ?

- Up to an isometry of  $S^k$ ,  $\gamma$  is equivalent to a translation or a homothety.
- ▶ If  $\gamma$  is a translation,  $Vol(\gamma \circ \varphi'(M'))$  is close to or smaller than  $Vol(\varphi(M))$ .
- ► Same conclusion if the factor of the homothety is small or or "not too large".

Suppose that the factor of  $\gamma$  is large. The parts of M' that are close to  $\infty$  have a small area.

Suppose that the factor of  $\gamma$  is large. The parts of M' that are close to  $\infty$  have a small area.



Proof for  $n \ge 3$ 

#### Lemma

Let  $M^n$  be a closed manifold. If M' is obtained from M by a surgery of codimension  $\geq 2$ , then  $V_{\mathcal{M}}(M') \leq \sup\{V_{\mathcal{M}}(M), c(n)\}.$ 

Proof for  $n \ge 3$ 

#### Lemma

Let  $M^n$  be a closed manifold. If M' is obtained from M by a surgery of codimension  $\geq 2$ , then  $V_{\mathcal{M}}(M') \leq \sup\{V_{\mathcal{M}}(M), c(n)\}.$ 

$$S^k \times B^{n-k}(\varepsilon) \leftrightarrow B^{k+1} \times S^{n-k-1}(\varepsilon)$$

Codimension 
$$\geq 2 \Leftrightarrow n-k-1 \geq 1$$

Let  $M^n$  and  $M'^n$  be cobordant manifolds.

Let  $M^n$  and  $M'^n$  be cobordant manifolds.

Case 1 : M and M' are orientable.

Thanks to the cancellation lemma, M' can be obtained from M by surgeries of codimension  $\geq 2$ .

Let  $M^n$  and  $M'^n$  be cobordant manifolds.

Case 1 : M and M' are orientable.

Thanks to the cancellation lemma, M' can be obtained from M by surgeries of codimension  $\geq 2$ .

Case 2 : M and M' are non orientable.



Let  $M^n$  and  $M'^n$  be cobordant manifolds.

Case 1 : M and M' are orientable.

Thanks to the cancellation lemma, M' can be obtained from M by surgeries of codimension  $\geq 2$ .

Case 2 : M and M' are non orientable.



Since M' is non orientable, we can find a transversally orientable loop and apply the cancellation lemma.



#### The Möbius volume is bounded

- on each class of oriented cobordism
- on all non orientable manifold of a given class of non oriented cobordism

The Möbius volume is bounded

- on each class of oriented cobordism
- on all non orientable manifold of a given class of non oriented cobordism

Final step : 
$$V_{\mathcal{M}}(M_1 \sqcup M_2) = \sup\{V_{\mathcal{M}}(M_1), V_{\mathcal{M}}(M_2)\}$$

#### The Möbius volume is bounded

- on each class of oriented cobordism
- on all non orientable manifold of a given class of non oriented cobordism

Final step : 
$$V_{\mathcal{M}}(M_1 \sqcup M_2) = \sup\{V_{\mathcal{M}}(M_1), V_{\mathcal{M}}(M_2)\}$$

 $\Rightarrow$  the Möbius volume is bounded on all classes of oriented cobordism

#### Theorem

If  $M^n$  is a compact manifold with boundary, then  $\nu(M) = \nu(S^n)$ .

#### **Theorem**

If  $M^n$  is a compact manifold with boundary, then  $\nu(M) = \nu(S^n)$ .

Proved by G. Kokarev et N. Nadirashvili for oriented surfaces ('10) using complex analysis.

#### **Theorem**

If  $M^n$  is a compact manifold with boundary, then  $\nu(M) = \nu(S^n)$ .

Proved by G. Kokarev et N. Nadirashvili for oriented surfaces ('10) using complex analysis.

#### Example

Let  $M^n \subset \mathbb{R}^n$  be an euclidean domain. The stereographic projection induces a conformal immersion  $\varphi: M \to S^n$ . For all  $\gamma \in G_n$ ,  $\gamma \circ \varphi(M)$  is a domain of  $S^n$ , hence  $\operatorname{Vol}(\gamma \circ \varphi(M)) \leq \operatorname{Vol}(S^n)$ .  $\Rightarrow V_{\mathcal{M}}(M) \leq \operatorname{Vol}(S^n)$ 

Every compact surface with boundary is obtained by attaching 1-handles to a disk.

- Every compact surface with boundary is obtained by attaching 1-handles to a disk.
- ▶ It admits a flat embedding in  $\mathbb{R}^3$ , which is the union of thin bands.

- Every compact surface with boundary is obtained by attaching 1-handles to a disk.
- ▶ It admits a flat embedding in  $\mathbb{R}^3$ , which is the union of thin bands.

Let  $\varphi$  be such an embedding. The bands are supposed to have the same width  $\varepsilon$ .

- Every compact surface with boundary is obtained by attaching 1-handles to a disk.
- ▶ It admits a flat embedding in  $\mathbb{R}^3$ , which is the union of thin bands.

Let  $\varphi$  be such an embedding. The bands are supposed to have the same width  $\varepsilon$ .

- ▶ If  $\varepsilon$  is small, Vol $(\varphi(M))$  is small.
- ▶ If  $\gamma \in G_3$  has not a large homothetic factor,  $Vol(\gamma \circ \varphi(M))$  is still small.

We consider  $\gamma \in G_3$  with large factor.



Near the origin,  $\gamma \circ \varphi(M)$  looks like a domain  $D \subset \mathbb{R}^2 \cup \{\infty\} = S^2$ .

We consider  $\gamma \in G_3$  with large factor.



- Near the origin,  $\gamma \circ \varphi(M)$  looks like a domain  $D \subset \mathbb{R}^2 \cup \{\infty\} = S^2$ .
- ▶ If  $\varepsilon$  is small enough, the part D' of  $\gamma \circ \varphi(M)$  near  $\infty$  has an area  $< \text{Vol}(S^2 \setminus D)$ .

We consider  $\gamma \in G_3$  with large factor.



- Near the origin,  $\gamma \circ \varphi(M)$  looks like a domain  $D \subset \mathbb{R}^2 \cup \{\infty\} = S^2$ .
- ▶ If  $\varepsilon$  is small enough, the part D' of  $\gamma \circ \varphi(M)$  near  $\infty$  has an area  $< \text{Vol}(S^2 \setminus D)$ .
- $ightharpoonup g_{S^3} = rac{4}{(1+\|x\|^2)^2} g_{
  m eucl}$
- ▶ If we increase the ratio of  $\gamma$ , the volume of D' decreases as fast as Vol( $S^2 \setminus D$ ).

We consider  $\gamma \in G_3$  with large factor.



- Near the origin,  $\gamma \circ \varphi(M)$  looks like a domain  $D \subset \mathbb{R}^2 \cup \{\infty\} = S^2$ .
- ▶ If  $\varepsilon$  is small enough, the part D' of  $\gamma \circ \varphi(M)$  near  $\infty$  has an area  $< \text{Vol}(S^2 \setminus D)$ .
- $g_{S^3} = \frac{4}{(1+||x||^2)^2} g_{\text{eucl}}$
- ▶ If we increase the ratio of  $\gamma$ , the volume of D' decreases as fast as Vol( $S^2 \setminus D$ ).
- $\Rightarrow \operatorname{Vol}(\gamma \circ \varphi(M)) < \operatorname{Vol}(S^2).$



- ► *M* admits a handle decomposition without *n*-handle.
- Induction on the number of handles.

- ► *M* admits a handle decomposition without *n*-handle.
- Induction on the number of handles.
- ▶ True if  $M = B^n$ .

- ► M admits a handle decomposition without n-handle.
- Induction on the number of handles.
- ▶ True if  $M = B^n$ .
- Let  $\varphi: M \to S^k$  an almost extremal embedding.  $Vol(\gamma \circ \varphi(M)) < Vol(S^n)$  for all  $\gamma \in G_k$ .

- ► *M* admits a handle decomposition without *n*-handle.
- Induction on the number of handles.
- ▶ True if  $M = B^n$ .
- Let  $\varphi: M \to S^k$  an almost extremal embedding.  $Vol(\gamma \circ \varphi(M)) < Vol(S^n)$  for all  $\gamma \in G_k$ .
- Let  $\varphi': M' \to S^{k'}$  the embedding obtained by attaching a handle  $B^i \times B^{n-i}(\varepsilon)$  on  $\varphi(M)$ .

- ► *M* admits a handle decomposition without *n*-handle.
- Induction on the number of handles.
- ightharpoonup True if  $M=B^n$ .
- Let  $\varphi: M \to S^k$  an almost extremal embedding.  $Vol(\gamma \circ \varphi(M)) < Vol(S^n)$  for all  $\gamma \in G_k$ .
- ▶ Let  $\varphi': M' \to S^{k'}$  the embedding obtained by attaching a handle  $B^i \times B^{n-i}(\varepsilon)$  on  $\varphi(M)$ .
- ► Control of the volume of  $Vol(\gamma \circ \varphi'(M'))$  in the same way as for dimension 2.

### Bibliography

### About differential topology

► A. Kosinski – *Differential manifolds*, Dover publications, 2007

#### Some metric and spectral applications

- ▶ J. Cheeger "Analytic torsion and the heat equation", Ann. Math., 109 (2), p. 259–322, 1979
- M. Gromov and H. B. Lawson "The classification of simply connected manifolds of positive scalar curvature", Ann. Math., 111 (3), p. 423–434, 1980
- ► C. Bär and M. Dahl "Surgery and the spectrum of the Dirac operator", *J. Reine Angew. Math.*, 552, p. 53–76, 2002

### Bibliography

- ▶ P. Jammes "Première valeur propre du laplacien, volume conforme et chirurgies", *Geom. Dedicata*, 135, p. 29–37, 2008
- ▶ B. Ammann, M. Dahl and E. Humbert "Surgery and harmonic spinors", Adv. Math., 220 (2), p. 523–539, 2009
- B. Ammann, M. Dahl and E. Humbert "Smooth Yamabe invariant and surgery", J. Differ. Geom., 94, p. 1–58, 2013
- ▶ P. Jammes "Spectre et géométrie conforme des variétés compactes à bord", preprint