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UPPER BOUND FOR FIRST EIGENVALUE

Put ’ G = max{Go,G1} ‘where
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I= [, |x]*dA = moment of inertia about origin.
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UPPER BOUND FOR FIRST EIGENVALUE

Put ’ G = max{Go,G1} ‘Where

1

T 2r

21
Go / 1+ (logRY(0)]d0 >1, Gy =2 51,
0

I= [, |x]*dA = moment of inertia about origin.
Theorem (Laugesen & Siudeja, in preparation)

Among starlike plane domains, the normalized fundamental tone
E1A/G is maximized when the domain is a centered disk.
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Proof: Assume A(2) = 7.

trial function v

= u(r/R(0), 6(0) — p)

Area-preserving means

T

p

/—>

R(0)
— 1 .
A linear on each ray, ‘ﬁ,\‘ eigenfn. u

area preserving

R(0)*df = do

,or ¢/ () = R(6)*.
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Proof: Assume A(2) = 7. p

R(6) T /
. . /\ .
trial function o A linear on each ray, ‘ﬂ‘ eigenfn. u

= u(r/R(0),$(0) — p) area preserving

Area-preserving means | R(6)?df = d¢ |, or ¢/(0) = R(0)>.

Use

o 'V + F)v|?d
E1(2) < R[7] d:f Ja |(lf9 ’v‘zc);' i

and average over all rotations of eigenfunction on disk:

2w
E@) < 5 [ Roldp
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Trial function v(r, 8) = u(r/R(0), ¢(0) — p) has Rayleigh quotient
Rle) = [ 167+ FoffdA = Q1 + Qs + O
Q
where
2r  pl
Q= / / ]us(s, (0) — p)|25d5 1+ (logR)’(Q)z] de
o Jo
2 pl
Q, =2Re /0 /0 us(s,0(0) — p) x
(= Suos.0(0) — p) + 2 su(s, 0(6) — p)) sds R(O)R'(6) o
i

27 pl 1
Qu= [ [ liguals,o06) ) + 1 sus. o(6) ) sds R(o) a9

(Use polar coordinates, chain rule, radial change of variable,

and ¢’ = R%2) Now integrate w.r.t. p € [0, 27]...
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Integrate over rotations p € [0, 27]:

1 27

3| uan=Gue [ s
D

1 27

— dn=0
2 ), Qa2dn
27

1 . 1 B .
2 )y Q3d77—G1(Q)/D!lSu¢+27Tsu| dx

where x = (x1, x2) has polar coordinates s, ¢.

(Integrate, Fubinate, change p — ¢(6) — ¢, and separate the p
and 0 integrals.

For Q,, notice that 7™ R(9)R'(6)dd = 0.)
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Integrate over rotations p € [0, 27]:

27
3 | Qiin=Go@) [ P
1 2
- ) Q2ddn =0
2 1 8 .
27 ) Q3dn:G1(Q)/D]zsu¢+27Tsu| dx

where x = (x1, x2) has polar coordinates s, ¢.

(Integrate, Fubinate, change p — ¢(6) — ¢, and separate the p
and 6 integrals.

For Q,, notice that 7™ R(9)R'(6)dd = 0.)
Finally, Go, G1 < G and so
(p-average of Q1 + Q2 + Q3) < G(Q)R[u] = G(Q)E;(D)
O
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EIGENVALUE SUMS

Theorem (Laugesen & Siudeja, in preparation)

Among starlike plane domains, the following functionals are
maximized (for each n > 1) when the domain is a centered disk.

» fundamental tone: E1A/G

» sum of eigenvalues: (E1 +---+ E,)A/G

> sum of roots: (E5 + -+ -+ E5)VSA/G foreach 0 < s < 1
» product of eigenvalues: \/E1 ---E,A/G

> 2;1:1 ®(E;A/G), for any concave increasing ®
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EIGENVALUE SUMS

Theorem (Laugesen & Siudeja, in preparation)

Among starlike plane domains, the following functionals are
maximized (for each n > 1) when the domain is a centered disk.

» fundamental tone: E1A/G

» sum of eigenvalues: (E1 +---+ E,)A/G

> sum of roots: (E5 + -+ -+ E5)VSA/G foreach 0 < s < 1
» product of eigenvalues: \/E1 ---E,A/G

> 2;1:1 ®(E;A/G), for any concave increasing ®

The following are minimized when the domain is a centered disk
» partial sum of zeta function: Z?:1(EjA /G)? for each s < 0
» partial sum of heat trace: Z};l exp(—E;At/G) for each t > 0
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FROM SUMS TO HEAT TRACE BY MAJORIZATION
(HARDY, LITTLEWOOD, POLYA)
Ifag<ap,<az<---and by < b, <bz <--- and
a4t a, <bi+---+b,  Vn>1
then
O(ay) 4+ -+ Pay) <P(b1) + -+ D(by) Yn>1

for all concave increasing functions ®.
(Fun exercise. Prove it forn = 1,2.)
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FROM SUMS TO HEAT TRACE BY MAJORIZATION
(HARDY, LITTLEWOOD, POLYA)

Ifag<ap,<az<---and by < b, <bz <--- and
a4+ 4a, <bj+---+b, Vn>1
then
D(ay) 4+ P(ay) < D(by) +--- 4+ ®(by)  Vn2>1
for all concave increasing functions ®.

(Fun exercise. Prove it forn = 1,2.)

Example:

®(c) = —exp(—ct) shows heat trace is maximal for disk, in our
theorem
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EXTENSIONS, AND OPEN PROBLEMS
Extensions

» Neumann boundary conditions? Yes, same proof...

» Robin boundary conditions? Yes...

» Quantum particles with spin (Pauli operator)?
[Work in progress]

» Steklov eigenvalues (with or without magnetic field)?
[Work in progress with A. Girouard]
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EXTENSIONS, AND OPEN PROBLEMS
Extensions

» Neumann boundary conditions? Yes, same proof...

» Robin boundary conditions? Yes...

» Quantum particles with spin (Pauli operator)?

[Work in progress]

» Steklov eigenvalues (with or without magnetic field)?

[Work in progress with A. Girouard]
Open problems

» Simply connected domains, not necessarily starlike???

» Domains on sphere, or hyperbolic space???

» Higher dimensions — A is 1-form and B = dA is 2-form.
But the magnetic field breaks the symmetry, and so ball
presumably not maximal?

» Is Neumann Laplacian heat trace Zfi e
the disk, for each t > 0? True ast — 0, cc.

(Luttinger proved “maximal” for Dirichlet Laplacian.)

—HAt minimal for
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CONCLUSIONS

The method of area-preserving transformation and rotational
averaging:

> is geometrically sharp — extremal domain is disk

» handles eigenvalue sums of arbitrary length (any 7), and
hence spectral zeta functional and trace of heat kernel

» applies universally — to Dirichlet, Robin and Neumann
boundary conditions
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CAN BOTH GEOMETRIC FACTORS PLAY A ROLE IN
G = max{Gyp, G1}? YES!

For an ellipse of large eccentricity, shifting the origin away
from the center can result in either Gy or G; dominating.

eenoa

(Go < Gy when the origin lies in the shaded region)
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CAN BOTH GEOMETRIC FACTORS PLAY A ROLE IN
G = max{Gyp, G1}? YES!

For an ellipse of large eccentricity, shifting the origin away
from the center can result in either Gy or G; dominating.

O o

(Go < G1 when the origin lies in the shaded region)

The square is different, with Gp dominating for all origins near
the center.

9
X
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WHERE IS THE BEST CHOICE OF ORIGIN?
The geometric factors depend on the choice of origin.

e To minimize G; (=moment of inertia), we should choose the
origin at the center of mass.
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WHERE IS THE BEST CHOICE OF ORIGIN?
The geometric factors depend on the choice of origin.

e To minimize G; (=moment of inertia), we should choose the
origin at the center of mass.

e To minimize Gy = 5 OZW[l + (log R)'(#)?] d6, the best origin

might not be the center of mass.

e.g. to minimize Gp on a triangular domain we should choose
the origin at the center of the inscribed circle, which can lie far
from the center of mass.

Conclusion: No choice of origin will simultaneously minimize
both of the geometric factors, in general.

Thus one should aim to choose the origin “somewhere near the
center” in a way that minimizes the maximum of the two
factors, G = max{Gy, G1 }
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