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Let M be an n-dimensional complete Riemannian manifold
and Ω be a domain with smooth boundary M. The Steklov
problem is to find a solution of

∆f = 0 in Ω

∂f

∂η
= ν(Ω)f on M

(1)

where η is the normal to M and ν(Ω) is a real number.

The Steklov problem (1) has a discrete set of eigenvalues

0 < ν1 ≤ ν2 ≤ ν3 ≤ · · · → ∞.
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Theorem (A)

Let (M, ds2) be a noncompact rank-1 symmetric space with
−4 ≤ KM ≤ −1. Let Ω ⊂ M be a bounded domain with smooth
boundary ∂Ω = M. Then

ν1(Ω) ≤ ν1(B(R)) (2)

where B(R) ⊂ M is a geodesic ball of radius R > 0 such that
Vol(Ω) = Vol(B(R)).
Further, the equality holds if and only if Ω is isometric to B(R).

Notation

M(k):= The simply connected space form of constant curvature k .
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Theorem (B)

Let (M, ḡ) be complete, simply connected manifold of dimension n
such that KM ≤ k , k = −δ2 or 0, where KM denotes the sectional
curvature of M. Let Ω be a bounded domain with smooth
boundary ∂Ω = M. Then there exists a constant Ck ≥ 1 which
depends only on the volume of Ω and the dimension of M, such
that

ν1(Ω) ≤ Ck ν1(Bk(Rk))

where Bk(Rk) is a geodesic ball of radius Rk > 0 in the simply
connected space form M(k) such that Vol(Ω) = Bk(Rk).
Further, the equality holds if and only if Ω is isometric to a
geodesic ball in M(k).
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Noncompact Rank-1 Symmetric Spaces

Space-(M, ds2) Density-φ(r)

Rn rn−1

RHn = SO(n,1)
SO(n) sinhn−1r

CHn = U(n,1)
U(n)×U(1) sinh2n−1r coshr

HHn = Sp(n,1)
Sp(n)×Sp(1) sinh4n−1r cosh3r

CaH2 =
F−20

4
Spin(9) sinh15r cosh7r

Note that the dimension of (M, ds2) is kn where
k = dimRK; K = R,C,H or Ca
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Some properties of (M , ds2)

Consider the equation ∆S(r)f = λ(S(r))f where ∆S(r)

denotes the laplacian on the geodesic sphere S(r).
Then

λ1(S(r)) =
kn − 1

sinh2 r
− k − 1

cosh2 r
∀ r > 0

and we can have eigenfunctions which are constant along the
radial directions corresponding to λ1(S(r)).

We denote by A(r), the second fundamental form of S(r).

Then we have Tr(A(r)) = φ′(r)
φ(r) and −λ1(S(r)) = Tr(A)′(r).

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Some properties of (M , ds2)

Consider the equation ∆S(r)f = λ(S(r))f where ∆S(r)

denotes the laplacian on the geodesic sphere S(r).

Then

λ1(S(r)) =
kn − 1

sinh2 r
− k − 1

cosh2 r
∀ r > 0

and we can have eigenfunctions which are constant along the
radial directions corresponding to λ1(S(r)).

We denote by A(r), the second fundamental form of S(r).

Then we have Tr(A(r)) = φ′(r)
φ(r) and −λ1(S(r)) = Tr(A)′(r).

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Some properties of (M , ds2)

Consider the equation ∆S(r)f = λ(S(r))f where ∆S(r)

denotes the laplacian on the geodesic sphere S(r).
Then

λ1(S(r)) =
kn − 1

sinh2 r
− k − 1

cosh2 r
∀ r > 0

and we can have eigenfunctions which are constant along the
radial directions corresponding to λ1(S(r)).

We denote by A(r), the second fundamental form of S(r).

Then we have Tr(A(r)) = φ′(r)
φ(r) and −λ1(S(r)) = Tr(A)′(r).

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Some properties of (M , ds2)

Consider the equation ∆S(r)f = λ(S(r))f where ∆S(r)

denotes the laplacian on the geodesic sphere S(r).
Then

λ1(S(r)) =
kn − 1

sinh2 r
− k − 1

cosh2 r
∀ r > 0

and we can have eigenfunctions which are constant along the
radial directions corresponding to λ1(S(r)).

We denote by A(r), the second fundamental form of S(r).

Then we have Tr(A(r)) = φ′(r)
φ(r) and −λ1(S(r)) = Tr(A)′(r).

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

ν1 of geodesic balls in Rank-1 Symetric Spaces

Theorem (C)

Let (M, ds2) be a rank-1 symmetric space and B(R) be a geodesic
ball centered at a point p ∈ M with radius R such that
0 < R < inj(M). Then the first non zero eigenvalue ν1(B(R)) of
the Steklov problem on B(R) is given by

ν1(B(R)) =

∫
B(p,R)

(
g 2λ1(S(r)) + (g ′)2

)
g 2(R)Vol(S(R))

where g is the radial function satisfying

g ′′(r) + Tr(A(r))g ′(r)− λ1(S(r))g(r) = 0, r ∈ (0,R),

g(0) = 0 and g ′(R) = ν1(B(R))g(R).
(3)

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

ν1 of geodesic balls in Rank-1 Symetric Spaces

Theorem (C)

Let (M, ds2) be a rank-1 symmetric space and B(R) be a geodesic
ball centered at a point p ∈ M with radius R such that
0 < R < inj(M). Then the first non zero eigenvalue ν1(B(R)) of
the Steklov problem on B(R) is given by

ν1(B(R)) =

∫
B(p,R)

(
g 2λ1(S(r)) + (g ′)2

)
g 2(R)Vol(S(R))

where g is the radial function satisfying

g ′′(r) + Tr(A(r))g ′(r)− λ1(S(r))g(r) = 0, r ∈ (0,R),

g(0) = 0 and g ′(R) = ν1(B(R))g(R).
(3)

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Outline of proofs of theorems A and B

Variational characterization to estimate ν1(Ω).

ν1(Ω) = min

{∫
Ω ‖ ∇h ‖2∫

M h2

∣∣ ∫
M

h = 0

}
.

Center of mass

Comparison theorems
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Consider the equation in (M, ds2)

g ′′(r) + Tr(A(r))g ′(r)− λ1(S(r))g(r) = 0. (4)

Using the facts Tr(A(r)) = φ′(r)
φ(r) and −λ1(S(r)) = Tr(A)′(r) we

get the following solution

g(r) =
1

φ(r)

∫ r

0
φ(t) dt. (5)

For r ≥ 0, let

sinδ r =

{
1
δ sinh δ r if KM ≤ −δ

2

r if KM ≤ 0

Then gδ(r) = 1
sinn−1

δ r

∫ r
0 sinn−1

δ t dt solves the equation (4) when

considered in the simply connected space form M(k) of constant
curvature k = −δ2 or 0.
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Lemma (Center of Mass)

Let M be an n- dimensional Riemannian manifold and M be a
closed hypersurface in M which is contained in a ball B of radius
less than the injectivity radius of M. Let f : M → R and
h : (0,∞)→ R are continuous functions. Then there exist a point
p ∈ B\M such that ∫

M
f (X )h(‖X ‖p)XdV = 0

where X = (x1, x2, ..., xn) is a geodesic normal coordinate system
at p.

Let p be a center of mass corresponding to the functions g and 1
r .
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Then gi = g xi
r becomes admissible functions, where {xi} are the

normal coordinates centered at p and the Rayleigh quotient
becomes,

ν1(Ω)

∫
M

kn∑
i=1

g 2
i dm ≤

∫
Ω

kn∑
i=1

‖ ∇gi ‖2 dV . (6)

ν1(Ω)

∫
M

g 2 dm ≤
∫

Ω

(
g 2λ1(S(r)) +

(
g ′
)2
)

dV . (7)

By doing the computation with gδ and 1
r , we get

ν1(Ω)

∫
M

g 2
δ dm ≤

∫
Ω

(
g 2
δ

n∑
i=1

‖ ∇S(r)
(xi

r

)
‖2 +

(
g ′δ
)2

)
dV .
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Next lemma gives estimates of
∫
M g 2 dm and

∫
M g 2

δ dm.

Lemma

Let Ω ⊂M be a bounded domain with smooth boundary ∂Ω = M.
Fix a point p ∈ Ω. Then the following holds:

M = (M, ds2) :
Let g be the function defined by (5). Then∫

M
g 2d(p, q)dm ≥ Vol(S(p,R))g 2(R) (8)

where dm is the measure on M, S(p,R) is the geodesic
sphere and B(p,R) is the geodesic ball of radius R centered
at p in M and R > 0 is such that Vol(Ω) = Vol(B(p,R)).
The equality holds if and only if M is a geodesic sphere
centered at p of radius R.
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Lemma (continues...)

M = (M, ḡ) :
Let gδ(r) = 1

sinn−1
δ r

∫ r
0 sinn−1

δ t dt. Then

∫
M

g 2
δ d(p, q)dm ≥ Vol(Sk(R

′
k))g 2

δ (R
′
k) (9)

where dm is the measure on M, Sk(R
′
k) is the geodesic sphere

and Bk(R
′
k) is the geodesic ball of radius R

′
k in M(k) and

R
′
k > 0 is such that Vol(Ωk) = Vol(Bk(R

′
k)).

Further, the equality holds if and only if M is a geodesic
sphere in M and Ω is isometric to Bk(R

′
k).
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Inequality (7) becomes

ν1(Ω) ≤

∫
Ω

(
g 2λ1(S(r)) + (g ′)2

)
dV

Vol(S(p,R))g 2(R)
(10)

ν1(Ω) ≤

∫
Ω

(
g 2
δ

∑n
i=1 ‖ ∇S(r)

(
xi
r

)
‖2 + (g ′δ)

2
)

dV

Vol(Sk(R
′
k)) g 2

δ (R
′
k)

(11)

∫
Ω

(
g 2λ1(S(r)) +

(
g ′
)2
)

dV ≤
∫
B(p,R)

(
g 2λ1(S(r)) +

(
g ′
)2
)

dV .

(12)
where B(p,R) is a ball such that Vol(Ω) = Vol(B(p,R)).
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Thus we get from inequality (10)

ν1(Ω) ≤

∫
B(p,R)

(
g 2λ1(S(r)) + (g ′)2

)
dV

Vol(S(p,R))g 2(R)

= ν1(B(R))

This proves Theorem A!
Next lemma gives an estimate of

n∑
i=1

‖ ∇S(r)
(xi

r

)
‖2=

1

r 2

n∑
i=1

‖ ∇S(r)xi ‖2

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Thus we get from inequality (10)

ν1(Ω) ≤

∫
B(p,R)

(
g 2λ1(S(r)) + (g ′)2

)
dV

Vol(S(p,R))g 2(R)

= ν1(B(R))

This proves Theorem A!

Next lemma gives an estimate of

n∑
i=1

‖ ∇S(r)
(xi

r

)
‖2=

1

r 2

n∑
i=1

‖ ∇S(r)xi ‖2

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Thus we get from inequality (10)

ν1(Ω) ≤

∫
B(p,R)

(
g 2λ1(S(r)) + (g ′)2

)
dV

Vol(S(p,R))g 2(R)

= ν1(B(R))

This proves Theorem A!
Next lemma gives an estimate of

n∑
i=1

‖ ∇S(r)
(xi

r

)
‖2=

1

r 2

n∑
i=1

‖ ∇S(r)xi ‖2

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Lemma

Let (M, ḡ) be a complete, simply connected Riemannian manifold
of dimension n such that the sectional curvature satisfies KM ≤ k
where k = −δ2 or 0. Fix a point p ∈ M and let X = (x1, x2, ..., xn)
be the geodesic normal coordinate system at p. Denote by S(r),
the geodesic sphere of radius r > 0 center at p. Then

n∑
i=1

‖ ∇S(r)xi ‖2≤ (n − 1)
r 2

sin2
δ r
.

Fact

λ1(Sk(r)) = n−1
sin2

δ r
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Inequality (11) becomes

ν1(Ω)Vol(Sk(R
′
k)) g 2

δ (R
′
k) ≤

∫
Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV . (13)

Let Rk > 0 be such that Vol(Ω) = Vol(Bk(Rk)), where Bk(Rk) is
a geodesic ball in M(k)∫

Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV ≤
∫
B(Rk )

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV .

Hence inequality (13) changes to

ν1(Ω) ≤

∫
B(Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

Vol(Sk(R
′
k)) g 2

δ (R
′
k)

ν1(Ω) ≤ Ck

∫
Bk (Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

g 2
δ (Rk) Vol(Sk(Rk))

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Inequality (11) becomes

ν1(Ω)Vol(Sk(R
′
k)) g 2

δ (R
′
k) ≤

∫
Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV . (13)

Let Rk > 0 be such that Vol(Ω) = Vol(Bk(Rk)), where Bk(Rk) is
a geodesic ball in M(k)∫

Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV ≤
∫
B(Rk )

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV .

Hence inequality (13) changes to

ν1(Ω) ≤

∫
B(Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

Vol(Sk(R
′
k)) g 2

δ (R
′
k)

ν1(Ω) ≤ Ck

∫
Bk (Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

g 2
δ (Rk) Vol(Sk(Rk))

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Inequality (11) becomes

ν1(Ω)Vol(Sk(R
′
k)) g 2

δ (R
′
k) ≤

∫
Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV . (13)

Let Rk > 0 be such that Vol(Ω) = Vol(Bk(Rk)), where Bk(Rk) is
a geodesic ball in M(k)

∫
Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV ≤
∫
B(Rk )

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV .

Hence inequality (13) changes to

ν1(Ω) ≤

∫
B(Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

Vol(Sk(R
′
k)) g 2

δ (R
′
k)

ν1(Ω) ≤ Ck

∫
Bk (Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

g 2
δ (Rk) Vol(Sk(Rk))

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Inequality (11) becomes

ν1(Ω)Vol(Sk(R
′
k)) g 2

δ (R
′
k) ≤

∫
Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV . (13)

Let Rk > 0 be such that Vol(Ω) = Vol(Bk(Rk)), where Bk(Rk) is
a geodesic ball in M(k)∫

Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV ≤
∫
B(Rk )

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV .

Hence inequality (13) changes to

ν1(Ω) ≤

∫
B(Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

Vol(Sk(R
′
k)) g 2

δ (R
′
k)

ν1(Ω) ≤ Ck

∫
Bk (Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

g 2
δ (Rk) Vol(Sk(Rk))

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Inequality (11) becomes

ν1(Ω)Vol(Sk(R
′
k)) g 2

δ (R
′
k) ≤

∫
Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV . (13)

Let Rk > 0 be such that Vol(Ω) = Vol(Bk(Rk)), where Bk(Rk) is
a geodesic ball in M(k)∫

Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV ≤
∫
B(Rk )

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV .

Hence inequality (13) changes to

ν1(Ω) ≤

∫
B(Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

Vol(Sk(R
′
k)) g 2

δ (R
′
k)

ν1(Ω) ≤ Ck

∫
Bk (Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

g 2
δ (Rk) Vol(Sk(Rk))

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Inequality (11) becomes

ν1(Ω)Vol(Sk(R
′
k)) g 2

δ (R
′
k) ≤

∫
Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV . (13)

Let Rk > 0 be such that Vol(Ω) = Vol(Bk(Rk)), where Bk(Rk) is
a geodesic ball in M(k)∫

Ω

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV ≤
∫
B(Rk )

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV .

Hence inequality (13) changes to

ν1(Ω) ≤

∫
B(Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

Vol(Sk(R
′
k)) g 2

δ (R
′
k)

ν1(Ω) ≤ Ck

∫
Bk (Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

g 2
δ (Rk) Vol(Sk(Rk))

Binoy University of Neuchatel

Steklov Problem



Outline Problem Results we proved A part of history References

Ck =
g 2
δ (Rk)φδ(Rk)

g 2
δ (R

′
k)φδ(R

′
k)

∫
B(Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV∫
Bk (Rk )

(
g 2
δ λ1(Sk(r)) +

(
g ′δ
)2
)

dV
.

But we have

ν1(Bk(Rk)) =

∫
Bk (Rk )

(
g 2
δ λ1(Sk(r)) + (g ′δ)

2
)

dV

g 2
δ (Rk)Vol(Sk(Rk))

.

This implies,
ν1(Ω) ≤ Ck ν1(Bk(Rk)).

Thus the theorem B is proved!
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Weinstock - 1954 [7]
For all two dimensional simply connected domains with
analytic boundary of given area A, circle yeilds the maximum
of ν1, that is

ν1 ≤
2π

A

Hersch and Payne - 1968 [6]
For all two dimensional simply

1

ν1
+

1

ν2
≥ A

π

J.F. Escobar - 1997 [2]
Proved lowerbounds for ν1. Also found the values of
ν1(B(R)) of geodesic balls in two dimensional simply
connected spaces forms.
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J.F. Escobar - 1999 [3]
Proved theorem A for bounded simpy connected domains in
2-dimensional simply connected space forms.

J.F. Escobar - 1999 [3, 4]
Proved the first comparison result for Steklov problem.
For a bounded domain Ω in a two dimensional, complete
simply connected Riemannian manifold with non positive
curvature,

ν1(Ω) ≤ ν1(B(R))

where B(R) ⊂ R2 is such that Vol(Ω) = Vol(B(R))
Under some more restrictions this result was extended to
higher dimensions.
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F. Brock - 2001 [1]
For a smooth domain Ω ⊂ Rn,

n∑
i=1

1

νi (Ω)
≥ n

ν1(B(R))

where B(R) is geodesic ball such that Vol(Ω) = Vol(B(R))

A. Henrot, G.A. Philipin and A. Safouni - 2008 [5]
Proved similar result for the product of first n nonzero Steklov
eigenvalues of convex bounded domains in Rn.
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