Steklov Problem

Binoy
University of Neuchatel

1 Problem

2 Results we proved

3 A part of history

4 References

- Let \bar{M} be an n-dimensional complete Riemannian manifold and Ω be a domain with smooth boundary M. The Steklov problem is to find a solution of

$$
\begin{align*}
& \Delta f=0 \text { in } \Omega \\
& \frac{\partial f}{\partial \eta}=\nu(\Omega) f \text { on } M \tag{1}
\end{align*}
$$

where η is the normal to M and $\nu(\Omega)$ is a real number.

- Let \bar{M} be an n-dimensional complete Riemannian manifold and Ω be a domain with smooth boundary M. The Steklov problem is to find a solution of

$$
\begin{align*}
\Delta f & =0 \text { in } \Omega \\
\frac{\partial f}{\partial \eta} & =\nu(\Omega) f \text { on } M \tag{1}
\end{align*}
$$

where η is the normal to M and $\nu(\Omega)$ is a real number.

- The Steklov problem (1) has a discrete set of eigenvalues

$$
0<\nu_{1} \leq \nu_{2} \leq \nu_{3} \leq \cdots \rightarrow \infty
$$

Theorem (A)

Let $\left(\bar{M}, d s^{2}\right)$ be a noncompact rank-1 symmetric space with $-4 \leq K_{\bar{M}} \leq-1$. Let $\Omega \subset \bar{M}$ be a bounded domain with smooth boundary $\partial \Omega=M$. Then

$$
\begin{equation*}
\nu_{1}(\Omega) \leq \nu_{1}(B(R)) \tag{2}
\end{equation*}
$$

where $B(R) \subset \bar{M}$ is a geodesic ball of radius $R>0$ such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}(B(R))$.
Further, the equality holds if and only if Ω is isometric to $B(R)$.

Theorem (A)

Let $\left(\bar{M}, d s^{2}\right)$ be a noncompact rank-1 symmetric space with $-4 \leq K_{\bar{M}} \leq-1$. Let $\Omega \subset \bar{M}$ be a bounded domain with smooth boundary $\partial \Omega=M$. Then

$$
\begin{equation*}
\nu_{1}(\Omega) \leq \nu_{1}(B(R)) \tag{2}
\end{equation*}
$$

where $B(R) \subset \bar{M}$ is a geodesic ball of radius $R>0$ such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}(B(R))$.
Further, the equality holds if and only if Ω is isometric to $B(R)$.

Notation

$\mathbb{M}(k):=$ The simply connected space form of constant curvature k.

Theorem (B)

Let (\bar{M}, \bar{g}) be complete, simply connected manifold of dimension n such that $K_{\bar{M}} \leq k, k=-\delta^{2}$ or 0 , where $K_{\bar{M}}$ denotes the sectional curvature of M. Let Ω be a bounded domain with smooth boundary $\partial \Omega=M$. Then there exists a constant $C_{k} \geq 1$ which depends only on the volume of Ω and the dimension of \mathbb{M}, such that

$$
\nu_{1}(\Omega) \leq C_{k} \nu_{1}\left(B_{k}\left(R_{k}\right)\right)
$$

where $B_{k}\left(R_{k}\right)$ is a geodesic ball of radius $R_{k}>0$ in the simply connected space form $\mathbb{M}(k)$ such that $\operatorname{Vol}(\Omega)=B_{k}\left(R_{k}\right)$. Further, the equality holds if and only if Ω is isometric to a geodesic ball in $\mathbb{M}(k)$.

Noncompact Rank-1 Symmetric Spaces

Noncompact Rank-1 Symmetric Spaces

Space- $\left.-\bar{M}, d s^{2}\right)$	Density- $\phi(r)$
\mathbb{R}^{n}	r^{n-1}
$\mathbb{R} \mathbb{H}^{n}=\frac{S O(n, 1)}{S(n)}$	$\sinh ^{n-1} r$
$\mathbb{C} \mathbb{H}^{n}=\frac{U(n, 1)}{U(n) \times U(1)}$	$\sinh ^{2 n-1} r \operatorname{coshr}$
$\mathbb{H} \mathbb{H}^{n}=\frac{S p(n, 1)}{S p(n) \times S p(1)}$	$\sinh ^{4 n-1} r \cosh ^{3} r$
$\mathbb{C a} \mathbb{H}^{2}=\frac{F_{4}^{-20}}{\operatorname{Spin}(9)}$	$\sinh ^{15} r \cosh ^{7} r$

Noncompact Rank-1 Symmetric Spaces

Space- $-\left(\bar{M}, d s^{2}\right)$	Density- $\phi(r)$
\mathbb{R}^{n}	r^{n-1}
$\mathbb{R} \mathbb{H}^{n}=\frac{S O(n, 1)}{S(n)}$	$\sinh ^{n-1} r$
$\mathbb{C} \mathbb{H}^{n}=\frac{U(n, 1)}{U(n) \times U(1)}$	$\sinh ^{2 n-1} r \operatorname{coshr}$
$\mathbb{H} \mathbb{H}^{n}=\frac{S p(n, 1)}{S p(n) \times S p(1)}$	$\sinh ^{4 n-1} r \cosh ^{3} r$
$\mathbb{C a} \mathbb{H}^{2}=\frac{F_{4}^{-20}}{\operatorname{Spin}(9)}$	$\sinh ^{15} r \cosh ^{7} r$

- Note that the dimension of $\left(\bar{M}, d s^{2}\right)$ is $k n$ where $k=\operatorname{dim}_{\mathbb{R}} \mathbb{K} ; \mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ or \mathbb{C} a

Some properties of $\left(\bar{M}, d s^{2}\right)$

Some properties of $\left(\bar{M}, d s^{2}\right)$

- Consider the equation $\Delta_{S(r)} f=\lambda(S(r)) f$ where $\Delta_{S(r)}$ denotes the laplacian on the geodesic sphere $S(r)$.

Some properties of $\left(\bar{M}, d s^{2}\right)$

- Consider the equation $\Delta_{S(r)} f=\lambda(S(r)) f$ where $\Delta_{S(r)}$ denotes the laplacian on the geodesic sphere $S(r)$. Then

$$
\lambda_{1}(S(r))=\frac{k n-1}{\sinh ^{2} r}-\frac{k-1}{\cosh ^{2} r} \quad \forall r>0
$$

and we can have eigenfunctions which are constant along the radial directions corresponding to $\lambda_{1}(S(r))$.

Some properties of $\left(\bar{M}, d s^{2}\right)$

- Consider the equation $\Delta_{S(r)} f=\lambda(S(r)) f$ where $\Delta_{S(r)}$ denotes the laplacian on the geodesic sphere $S(r)$. Then

$$
\lambda_{1}(S(r))=\frac{k n-1}{\sinh ^{2} r}-\frac{k-1}{\cosh ^{2} r} \quad \forall r>0
$$

and we can have eigenfunctions which are constant along the radial directions corresponding to $\lambda_{1}(S(r))$.

- We denote by $A(r)$, the second fundamental form of $S(r)$. Then we have $\operatorname{Tr}(A(r))=\frac{\phi^{\prime}(r)}{\phi(r)}$ and $-\lambda_{1}(S(r))=\operatorname{Tr}(A)^{\prime}(r)$.

ν_{1} of geodesic balls in Rank-1 Symetric Spaces

ν_{1} of geodesic balls in Rank-1 Symetric Spaces

Theorem (C)

Let $\left(\bar{M}, d s^{2}\right)$ be a rank-1 symmetric space and $B(R)$ be a geodesic ball centered at a point $p \in \bar{M}$ with radius R such that $0<R<\operatorname{inj}(\bar{M})$. Then the first non zero eigenvalue $\nu_{1}(B(R))$ of the Steklov problem on $B(R)$ is given by

$$
\nu_{1}(B(R))=\frac{\int_{B(p, R)}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right)}{g^{2}(R) \operatorname{Vol}(S(R))}
$$

where g is the radial function satisfying

$$
\begin{gather*}
g^{\prime \prime}(r)+\operatorname{Tr}(A(r)) g^{\prime}(r)-\lambda_{1}(S(r)) g(r)=0, \quad r \in(0, R) \tag{3}\\
g(0)=0 \text { and } g^{\prime}(R)=\nu_{1}(B(R)) g(R)
\end{gather*}
$$

Outline of proofs of theorems A and B

■ Variational characterization to estimate $\nu_{1}(\Omega)$.

$$
\nu_{1}(\Omega)=\min \left\{\left.\frac{\int_{\Omega}\|\nabla h\|^{2}}{\int_{M} h^{2}} \right\rvert\, \int_{M} h=0\right\} .
$$

Outline of proofs of theorems A and B

■ Variational characterization to estimate $\nu_{1}(\Omega)$.

$$
\nu_{1}(\Omega)=\min \left\{\left.\frac{\int_{\Omega}\|\nabla h\|^{2}}{\int_{M} h^{2}} \right\rvert\, \int_{M} h=0\right\} .
$$

- Center of mass

Outline of proofs of theorems A and B

■ Variational characterization to estimate $\nu_{1}(\Omega)$.

$$
\nu_{1}(\Omega)=\min \left\{\left.\frac{\int_{\Omega}\|\nabla h\|^{2}}{\int_{M} h^{2}} \right\rvert\, \int_{M} h=0\right\} .
$$

- Center of mass

■ Comparison theorems

Consider the equation in $\left(\bar{M}, d s^{2}\right)$

$$
\begin{equation*}
g^{\prime \prime}(r)+\operatorname{Tr}(A(r)) g^{\prime}(r)-\lambda_{1}(S(r)) g(r)=0 \tag{4}
\end{equation*}
$$

Consider the equation in $\left(\bar{M}, d s^{2}\right)$

$$
\begin{equation*}
g^{\prime \prime}(r)+\operatorname{Tr}(A(r)) g^{\prime}(r)-\lambda_{1}(S(r)) g(r)=0 \tag{4}
\end{equation*}
$$

Using the facts $\operatorname{Tr}(A(r))=\frac{\phi^{\prime}(r)}{\phi(r)}$ and $-\lambda_{1}(S(r))=\operatorname{Tr}(A)^{\prime}(r)$ we get the following solution

$$
\begin{equation*}
g(r)=\frac{1}{\phi(r)} \int_{0}^{r} \phi(t) d t \tag{5}
\end{equation*}
$$

Consider the equation in $\left(\bar{M}, d s^{2}\right)$

$$
\begin{equation*}
g^{\prime \prime}(r)+\operatorname{Tr}(A(r)) g^{\prime}(r)-\lambda_{1}(S(r)) g(r)=0 \tag{4}
\end{equation*}
$$

Using the facts $\operatorname{Tr}(A(r))=\frac{\phi^{\prime}(r)}{\phi(r)}$ and $-\lambda_{1}(S(r))=\operatorname{Tr}(A)^{\prime}(r)$ we get the following solution

$$
\begin{equation*}
g(r)=\frac{1}{\phi(r)} \int_{0}^{r} \phi(t) d t \tag{5}
\end{equation*}
$$

For $r \geq 0$, let

$$
\sin _{\delta} r= \begin{cases}\frac{1}{\delta} \sinh \delta r & \text { if } K_{\bar{M}} \leq-\delta^{2} \\ r & \text { if } K_{\bar{M}} \leq 0\end{cases}
$$

Then $g_{\delta}(r)=\frac{1}{\sin _{\delta}^{n-1} r} \int_{0}^{r} \sin _{\delta}^{n-1} t d t$ solves the equation (4) when considered in the simply connected space form $\mathbb{M}(k)$ of constant curvature $k=-\delta^{2}$ or 0 .

Lemma (Center of Mass)

Let \bar{M} be an n-dimensional Riemannian manifold and M be a closed hypersurface in \bar{M} which is contained in a ball B of radius less than the injectivity radius of \bar{M}. Let $f: M \rightarrow \mathbb{R}$ and $h:(0, \infty) \rightarrow \mathbb{R}$ are continuous functions. Then there exist a point $p \in B \backslash M$ such that

$$
\int_{M} f(X) h\left(\|X\|_{p}\right) X d V=0
$$

where $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a geodesic normal coordinate system at p.

Lemma (Center of Mass)

Let \bar{M} be an n-dimensional Riemannian manifold and M be a closed hypersurface in \bar{M} which is contained in a ball B of radius less than the injectivity radius of \bar{M}. Let $f: M \rightarrow \mathbb{R}$ and $h:(0, \infty) \rightarrow \mathbb{R}$ are continuous functions. Then there exist a point $p \in B \backslash M$ such that

$$
\int_{M} f(X) h\left(\|X\|_{p}\right) X d V=0
$$

where $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a geodesic normal coordinate system at p.

Let p be a center of mass corresponding to the functions g and $\frac{1}{r}$.

Then $g_{i}=g \frac{x_{i}}{r}$ becomes admissible functions, where $\left\{x_{i}\right\}$ are the normal coordinates centered at p and the Rayleigh quotient becomes,

Then $g_{i}=g \frac{x_{i}}{r}$ becomes admissible functions, where $\left\{x_{i}\right\}$ are the normal coordinates centered at p and the Rayleigh quotient becomes,

$$
\begin{equation*}
\nu_{1}(\Omega) \int_{M} \sum_{i=1}^{k n} g_{i}^{2} d m \leq \int_{\Omega} \sum_{i=1}^{k n}\left\|\nabla g_{i}\right\|^{2} d V \tag{6}
\end{equation*}
$$

Then $g_{i}=g \frac{x_{i}}{r}$ becomes admissible functions, where $\left\{x_{i}\right\}$ are the normal coordinates centered at p and the Rayleigh quotient becomes,

$$
\begin{gather*}
\nu_{1}(\Omega) \int_{M} \sum_{i=1}^{k n} g_{i}^{2} d m \leq \int_{\Omega} \sum_{i=1}^{k n}\left\|\nabla g_{i}\right\|^{2} d V \tag{6}\\
\nu_{1}(\Omega) \int_{M} g^{2} d m \leq \int_{\Omega}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V . \tag{7}
\end{gather*}
$$

Then $g_{i}=g \frac{x_{i}}{r}$ becomes admissible functions, where $\left\{x_{i}\right\}$ are the normal coordinates centered at p and the Rayleigh quotient becomes,

$$
\begin{gather*}
\nu_{1}(\Omega) \int_{M} \sum_{i=1}^{k n} g_{i}^{2} d m \leq \int_{\Omega} \sum_{i=1}^{k n}\left\|\nabla g_{i}\right\|^{2} d V \tag{6}\\
\nu_{1}(\Omega) \int_{M} g^{2} d m \leq \int_{\Omega}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V \tag{7}
\end{gather*}
$$

By doing the computation with g_{δ} and $\frac{1}{r}$, we get

$$
\nu_{1}(\Omega) \int_{M} g_{\delta}^{2} d m \leq \int_{\Omega}\left(g_{\delta}^{2} \sum_{i=1}^{n}\left\|\nabla^{S(r)}\left(\frac{x_{i}}{r}\right)\right\|^{2}+\left(g_{\delta}^{\prime}\right)^{2}\right) d V
$$

Next lemma gives estimates of $\int_{M} g^{2} d m$ and $\int_{M} g_{\delta}^{2} d m$.

Next lemma gives estimates of $\int_{M} g^{2} d m$ and $\int_{M} g_{\delta}^{2} d m$.

Lemma

Let $\Omega \subset \mathbb{M}$ be a bounded domain with smooth boundary $\partial \Omega=M$. Fix a point $p \in \Omega$. Then the following holds:
$\square \mathbb{M}=\left(\bar{M}, d s^{2}\right):$
Let g be the function defined by (5). Then

$$
\begin{equation*}
\int_{M} g^{2} d(p, q) d m \geq \operatorname{Vol}(S(p, R)) g^{2}(R) \tag{8}
\end{equation*}
$$

where $d m$ is the measure on $M, S(p, R)$ is the geodesic sphere and $B(p, R)$ is the geodesic ball of radius R centered at p in \mathbb{M} and $R>0$ is such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}(B(p, R))$.
The equality holds if and only if M is a geodesic sphere centered at p of radius R.

Lemma (continues...)

- $\mathbb{M}=(\bar{M}, \bar{g})$:

Let $g_{\delta}(r)=\frac{1}{\sin _{\delta}^{n-1} r} \int_{0}^{r} \sin _{\delta}^{n-1} t d t$. Then

$$
\begin{equation*}
\int_{M} g_{\delta}^{2} d(p, q) d m \geq \operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right) \tag{9}
\end{equation*}
$$

where $d m$ is the measure on $M, S_{k}\left(R_{k}^{\prime}\right)$ is the geodesic sphere and $B_{k}\left(R_{k}^{\prime}\right)$ is the geodesic ball of radius R_{k}^{\prime} in $\mathbb{M}(k)$ and $R_{k}^{\prime}>0$ is such that $\operatorname{Vol}\left(\Omega_{k}\right)=\operatorname{Vol}\left(B_{k}\left(R_{k}^{\prime}\right)\right)$.
Further, the equality holds if and only if M is a geodesic sphere in \bar{M} and Ω is isometric to $B_{k}\left(R_{k}^{\prime}\right)$.

Lemma (continues...)

- $\mathbb{M}=(\bar{M}, \bar{g})$:

Let $g_{\delta}(r)=\frac{1}{\sin _{\delta}^{n-1} r} \int_{0}^{r} \sin _{\delta}^{n-1} t d t$. Then

$$
\begin{equation*}
\int_{M} g_{\delta}^{2} d(p, q) d m \geq \operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right) \tag{9}
\end{equation*}
$$

where $d m$ is the measure on $M, S_{k}\left(R_{k}^{\prime}\right)$ is the geodesic sphere and $B_{k}\left(R_{k}^{\prime}\right)$ is the geodesic ball of radius R_{k}^{\prime} in $\mathbb{M}(k)$ and $R_{k}^{\prime}>0$ is such that $\operatorname{Vol}\left(\Omega_{k}\right)=\operatorname{Vol}\left(B_{k}\left(R_{k}^{\prime}\right)\right)$.
Further, the equality holds if and only if M is a geodesic sphere in \bar{M} and Ω is isometric to $B_{k}\left(R_{k}^{\prime}\right)$.

Inequality (7) becomes

$$
\begin{equation*}
\nu_{1}(\Omega) \leq \frac{\int_{\Omega}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}(S(p, R)) g^{2}(R)} \tag{10}
\end{equation*}
$$

Inequality (7) becomes

$$
\begin{gather*}
\nu_{1}(\Omega) \leq \frac{\int_{\Omega}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}(S(p, R)) g^{2}(R)} \tag{10}\\
\nu_{1}(\Omega) \leq \frac{\int_{\Omega}\left(g_{\delta}^{2} \sum_{i=1}^{n}\left\|\nabla^{S(r)}\left(\frac{x_{i}}{r}\right)\right\|^{2}+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right)} \tag{11}
\end{gather*}
$$

Inequality (7) becomes

$$
\begin{gather*}
\nu_{1}(\Omega) \leq \frac{\int_{\Omega}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}(S(p, R)) g^{2}(R)} \\
\nu_{1}(\Omega) \leq \frac{\int_{\Omega}\left(g_{\delta}^{2} \sum_{i=1}^{n}\left\|\nabla^{S(r)}\left(\frac{x_{i}}{r}\right)\right\|^{2}+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right)} \\
\int_{\Omega}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V \leq \int_{B(p, R)}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V . \tag{12}
\end{gather*}
$$

where $B(p, R)$ is a ball such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}(B(p, R))$.

Thus we get from inequality (10)

$$
\begin{aligned}
\nu_{1}(\Omega) & \leq \frac{\int_{B(p, R)}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}(S(p, R)) g^{2}(R)} \\
& =\nu_{1}(B(R))
\end{aligned}
$$

Thus we get from inequality (10)

$$
\begin{aligned}
\nu_{1}(\Omega) & \leq \frac{\int_{B(p, R)}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}(S(p, R)) g^{2}(R)} \\
& =\nu_{1}(B(R))
\end{aligned}
$$

This proves Theorem A!

Thus we get from inequality (10)

$$
\begin{aligned}
\nu_{1}(\Omega) & \leq \frac{\int_{B(p, R)}\left(g^{2} \lambda_{1}(S(r))+\left(g^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}(S(p, R)) g^{2}(R)} \\
& =\nu_{1}(B(R))
\end{aligned}
$$

This proves Theorem A!
Next lemma gives an estimate of

$$
\sum_{i=1}^{n}\left\|\nabla^{S(r)}\left(\frac{x_{i}}{r}\right)\right\|^{2}=\frac{1}{r^{2}} \sum_{i=1}^{n}\left\|\nabla^{S(r)} x_{i}\right\|^{2}
$$

Lemma

Let (\bar{M}, \bar{g}) be a complete, simply connected Riemannian manifold of dimension n such that the sectional curvature satisfies $K_{\bar{M}} \leq k$ where $k=-\delta^{2}$ or 0 . Fix a point $p \in \bar{M}$ and let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the geodesic normal coordinate system at p. Denote by $S(r)$, the geodesic sphere of radius $r>0$ center at p. Then

$$
\sum_{i=1}^{n}\left\|\nabla^{S(r)} x_{i}\right\|^{2} \leq(n-1) \frac{r^{2}}{\sin _{\delta}^{2} r}
$$

Lemma

Let (\bar{M}, \bar{g}) be a complete, simply connected Riemannian manifold of dimension n such that the sectional curvature satisfies $K_{\bar{M}} \leq k$ where $k=-\delta^{2}$ or 0 . Fix a point $p \in \bar{M}$ and let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the geodesic normal coordinate system at p. Denote by $S(r)$, the geodesic sphere of radius $r>0$ center at p. Then

$$
\sum_{i=1}^{n}\left\|\nabla^{S(r)} x_{i}\right\|^{2} \leq(n-1) \frac{r^{2}}{\sin _{\delta}^{2} r}
$$

Fact

$\lambda_{1}\left(S_{k}(r)\right)=\frac{n-1}{\sin _{\delta}^{2} r}$

Inequality (11) becomes

Inequality (11) becomes

$$
\begin{equation*}
\nu_{1}(\Omega) \operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right) \leq \int_{\Omega}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V \tag{13}
\end{equation*}
$$

Inequality (11) becomes

$$
\begin{equation*}
\nu_{1}(\Omega) \operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right) \leq \int_{\Omega}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V \tag{13}
\end{equation*}
$$

Let $R_{k}>0$ be such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}\left(B_{k}\left(R_{k}\right)\right)$, where $B_{k}\left(R_{k}\right)$ is a geodesic ball in $\mathbb{M}(k)$

Inequality (11) becomes

$$
\begin{equation*}
\nu_{1}(\Omega) \operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right) \leq \int_{\Omega}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V \tag{13}
\end{equation*}
$$

Let $R_{k}>0$ be such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}\left(B_{k}\left(R_{k}\right)\right)$, where $B_{k}\left(R_{k}\right)$ is a geodesic ball in $\mathbb{M}(k)$
$\int_{\Omega}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V \leq \int_{B\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V$.

Inequality (11) becomes

$$
\begin{equation*}
\nu_{1}(\Omega) \operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right) \leq \int_{\Omega}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V \tag{13}
\end{equation*}
$$

Let $R_{k}>0$ be such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}\left(B_{k}\left(R_{k}\right)\right)$, where $B_{k}\left(R_{k}\right)$ is a geodesic ball in $\mathbb{M}(k)$
$\int_{\Omega}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V \leq \int_{B\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V$.
Hence inequality (13) changes to

$$
\nu_{1}(\Omega) \leq \frac{\int_{B\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right)}
$$

Inequality (11) becomes

$$
\begin{equation*}
\nu_{1}(\Omega) \operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right) \leq \int_{\Omega}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V \tag{13}
\end{equation*}
$$

Let $R_{k}>0$ be such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}\left(B_{k}\left(R_{k}\right)\right)$, where $B_{k}\left(R_{k}\right)$ is a geodesic ball in $\mathbb{M}(k)$
$\int_{\Omega}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V \leq \int_{B\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V$.
Hence inequality (13) changes to

$$
\begin{gathered}
\nu_{1}(\Omega) \leq \frac{\int_{B\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{\operatorname{Vol}\left(S_{k}\left(R_{k}^{\prime}\right)\right) g_{\delta}^{2}\left(R_{k}^{\prime}\right)} \\
\nu_{1}(\Omega) \leq C_{k} \frac{\int_{B_{k}\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{g_{\delta}^{2}\left(R_{k}\right) \operatorname{Vol}\left(S_{k}\left(R_{k}\right)\right)}
\end{gathered}
$$

$$
C_{k}=\frac{g_{\delta}^{2}\left(R_{k}\right) \phi_{\delta}\left(R_{k}\right)}{g_{\delta}^{2}\left(R_{k}^{\prime}\right) \phi_{\delta}\left(R_{k}^{\prime}\right)} \frac{\int_{B\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{\int_{B_{k}\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}
$$

$$
C_{k}=\frac{g_{\delta}^{2}\left(R_{k}\right) \phi_{\delta}\left(R_{k}\right)}{g_{\delta}^{2}\left(R_{k}^{\prime}\right) \phi_{\delta}\left(R_{k}^{\prime}\right)} \frac{\int_{B\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{\int_{B_{k}\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}
$$

But we have

$$
\nu_{1}\left(B_{k}\left(R_{k}\right)\right)=\frac{\int_{B_{k}\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{g_{\delta}^{2}\left(R_{k}\right) \operatorname{Vol}\left(S_{k}\left(R_{k}\right)\right)}
$$

$$
C_{k}=\frac{g_{\delta}^{2}\left(R_{k}\right) \phi_{\delta}\left(R_{k}\right)}{g_{\delta}^{2}\left(R_{k}^{\prime}\right) \phi_{\delta}\left(R_{k}^{\prime}\right)} \frac{\int_{B\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{\int_{B_{k}\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}
$$

But we have

$$
\nu_{1}\left(B_{k}\left(R_{k}\right)\right)=\frac{\int_{B_{k}\left(R_{k}\right)}\left(g_{\delta}^{2} \lambda_{1}\left(S_{k}(r)\right)+\left(g_{\delta}^{\prime}\right)^{2}\right) d V}{g_{\delta}^{2}\left(R_{k}\right) \operatorname{Vol}\left(S_{k}\left(R_{k}\right)\right)}
$$

This implies,

$$
\nu_{1}(\Omega) \leq C_{k} \nu_{1}\left(B_{k}\left(R_{k}\right)\right)
$$

Thus the theorem B is proved!

■ Weinstock - 1954 [7]
For all two dimensional simply connected domains with analytic boundary of given area A, circle yeilds the maximum of ν_{1}, that is

$$
\nu_{1} \leq \frac{2 \pi}{A}
$$

■ Hersch and Payne - 1968 [6]
For all two dimensional simply

$$
\frac{1}{\nu_{1}}+\frac{1}{\nu_{2}} \geq \frac{A}{\pi}
$$

- J.F. Escobar - 1997 [2]

Proved lowerbounds for ν_{1}. Also found the values of $\nu_{1}(B(R))$ of geodesic balls in two dimensional simply connected spaces forms.

■ J.F. Escobar - 1999 [3]
Proved theorem A for bounded simpy connected domains in
2-dimensional simply connected space forms.
■ J.F. Escobar - 1999 [3, 4]
Proved the first comparison result for Steklov problem.
For a bounded domain Ω in a two dimensional, complete simply connected Riemannian manifold with non positive curvature,

$$
\nu_{1}(\Omega) \leq \nu_{1}(B(R))
$$

where $B(R) \subset \mathbb{R}^{2}$ is such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}(B(R))$
Under some more restrictions this result was extended to higher dimensions.

■ F. Brock - 2001 [1]
For a smooth domain $\Omega \subset \mathbb{R}^{n}$,

$$
\sum_{i=1}^{n} \frac{1}{\nu_{i}(\Omega)} \geq \frac{n}{\nu_{1}(B(R))}
$$

where $B(R)$ is geodesic ball such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}(B(R))$
■ A. Henrot, G.A. Philipin and A. Safouni - 2008 [5] Proved similar result for the product of first n nonzero Steklov eigenvalues of convex bounded domains in \mathbb{R}^{n}.

References I

目 F．Brock，
An isoperimetric inequality for the eigenvalues of the Stekloff problem，
ZAMMA．Angew．Math．Mech．81（2001）69－71．
围 J．F．Escobar，
The Geometry of the First Non－zer Stekloff Eigenvalue， J．Funct．Anal．150（1997）544－556．

围 J．F．Escobar，
An isoperimetric inequality and First Steklov Eigenvalue， J．Funct．Anal．257（1999）2635－2644．

References II

J. F. Escobar,

A Comparison Theorem for the First Non-zer Steklov
Eigenvalue,
J. Funct. Anal. 178(2000) 143-155.
A. Henrot; G.A. Philipin; A. Safouni,

Some isoperimetric inequalities with application to the Stekloff problem
J. Convex Anal. 15, no.3:(2006) 581-592.

目 J. Hersch; L. E. Payne,
Extremal principles and isometric inequalities for some mixed problems of Stekloff's type,
Z. Angew. Math. Phy. 19(1968), 802- 817.

References III

R R. Weinstock,
Inequalities for a classical eigenvalue problem, J. Rat. Mech. Anal. 3(1954), 745-753.

