Optimization of planar Neumann eigenvalues.

Guillaume Roy-Fortin

Université de Montréal
groyfortin@dms.umontreal.ca
Joint work with G. Poliquin.

June 6, 2013

Overview

(1) Introduction
(2) Optimization of eigenvalues
(3) Caracterization of extremal eigenvalues of disconnected domains
(4) μ_{22} is not maximized by a disk or any union of disks.
(5) Proof of main theorem.
(6) Discussion

Dirichlet and Neumann problems

- $\Omega \subset \mathbb{R}^{d}$; open, bounded (with Lipschitz boundary).
- Ω is not necessarily connected and has Lebesgue measure of 1 .
- $\Delta=\sum_{k=1}^{d} \frac{\partial^{2}}{\partial x_{k}^{2}}$ is the usual Euclidean Laplacian.

Two eigenvalue problems

$$
\begin{align*}
& \text { Dirichlet: }\left\{\begin{array}{l}
\Delta u+\lambda u=0 \text { in } \Omega, \\
u \equiv 0 \text { on } \partial \Omega
\end{array}\right. \tag{1}\\
& \text { Neumann: }\left\{\begin{array}{l}
\Delta u+\mu u=0 \text { in } \Omega, \\
\frac{\Delta u}{\partial \nu} \equiv 0 \text { on } \partial \Omega
\end{array}\right. \tag{2}
\end{align*}
$$

Dirichlet and Neumann spectra.

For the Dirichlet problem, the spectrum $\sigma_{D}(\Omega)$ is composed by the following increasing sequence of eigenvalues:

$$
\begin{equation*}
0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots \nearrow \infty . \tag{3}
\end{equation*}
$$

If $\partial \Omega$ is Lipschitz, then the Neumann problem also admits a discrete spectrum $\sigma_{N}(\Omega)$:

$$
\begin{equation*}
0=\mu_{0} \leq \mu_{1} \leq \mu_{2} \leq \cdots \not \subset \infty . \tag{4}
\end{equation*}
$$

If Ω is the disjoint union of two connected components Ω_{1} and Ω_{2}, then

$$
\begin{equation*}
\sigma(\Omega)=\sigma\left(\Omega_{1}\right) \cup \sigma\left(\Omega_{2}\right) \tag{5}
\end{equation*}
$$

that is, the spectrum of the union is the ordered union of the two spectra.

Examples: spectrum of a rectangle, disk.

We recall the Neumann spectrum of a rectangle $\Omega=[0, a] \times[0, b]$:

$$
\begin{equation*}
\mu_{m, n}([0, a] \times[0, b])=\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right) ; m, n \in \mathbb{N} \cup\{0\} . \tag{6}
\end{equation*}
$$

For the open unit disk \mathbb{D}, we have

$$
\begin{equation*}
\mu_{m, n}(\mathbb{D})=\pi j_{m, n}^{\prime 2} ; \quad m \in \mathbb{N}, n \in \mathbb{N} \cup\{0\} \tag{7}
\end{equation*}
$$

where $j_{m, n}^{\prime}$ is the m-th zero of the derivative of the n-th order Bessel function of the first type J_{n}.

Optimization problems.

For the Dirichlet problem, we want to find the unit area Ω which minimizes given eigenvalue λ_{k} :

$$
\begin{equation*}
\lambda_{k}^{*}:=\min _{|\Omega|=1} \lambda_{k}(\Omega) \tag{8}
\end{equation*}
$$

In the Neumann case, we have a maximization problem:

$$
\begin{equation*}
\mu_{k}^{*}:=\max _{|\Omega|=1} \mu_{k}(\Omega) \tag{9}
\end{equation*}
$$

For the Neumann case, we assume that the max exists. Denote by Ω_{n}^{*} the domain realizing the extremum of the n-th eigenvalue.

Known results

Eigenvalue	Ω^{*}	Who?
λ_{1}	Disk	Faber-Krahn.
λ_{2}	Two id. disks	Krahn, Szegő.
λ_{3}	Disk	Conj. by Oudet, Henrot, W.-K.
μ_{1}	Disk	Szegö-Weinberger.
μ_{2}	Two id. disks	Girouard, Nadi., Polterovich.

Remark that for μ_{2}, the authors have shown that, in the class of simply connected domain of unit area, the eigenvalue is maximized in the limit by a sequence of domains degenerating to a disjoint union of two identical disks.

A natural question

Question

Are all Dirichlet/Neumann eigenvalues optimized by disks or union of disks?

- For the Dirichlet problem, the answer is no (Wolf-Keller, 94): λ_{13} is not minimized by a disk or any union of disks.
- Oudet: numerical candidates for minimizers which were no longer union of disks starting with λ_{5}.
- For the Neumann problem, we also provide a negative answer:

Theorem 1 (Poliquin, R.-F.)

μ_{22} is not maximized by a disk or any union of disks.

Caracterization of extremal eigenvalues of disconnected domains

Our main tool is the following theorem:

Theorem 2 (Extremal e.v. of disconnected domains)

Suppose that the domain Ω_{n}^{*} realizing the maximal Neumann eigenvalue μ_{n}^{*} is a disjoint union of m connected domains $\Omega_{i}, m<n$ and of total volume 1. Then,

$$
\left(\mu_{n}^{*}\right)^{\frac{d}{2}}=\left(\mu_{i}^{*}\right)^{\frac{d}{2}}+\left(\mu_{n-i}^{*}\right)^{\frac{d}{2}}=\max _{1 \leq j \leq \frac{n}{2}}\left\{\left(\mu_{i}^{*}\right)^{\frac{d}{2}}+\left(\mu_{n-i}^{*}\right)^{\frac{d}{2}}\right\} .
$$

Also, the geometry of Ω_{n}^{*} is given by:

$$
\Omega_{n}^{*}=\left(\left(\frac{\mu_{i}^{*}}{\mu_{n}^{*}}\right)^{\frac{1}{2}} \Omega_{i}^{*}\right) \cup\left(\left(\frac{\mu_{n-i}^{*}}{\mu_{n}^{*}}\right)^{\frac{1}{2}} \Omega_{n-i}^{*}\right) .
$$

Caracterization of extremal eigenvalues of disconnected domains

We right away get the following corollary:

Corollary 3

If there exists a $\Omega \in \mathbb{R}^{d}$ such that $|\Omega|=1$ and

$$
\left(\mu_{n}(\Omega)\right)^{\frac{d}{2}}>\left(\mu_{i}^{*}\right)^{\frac{d}{2}}+\left(\mu_{n-i}^{*}\right)^{\frac{d}{2}}, \quad \forall i=1, \ldots, \frac{n}{2}
$$

then Ω_{n}^{*} is connected.

As an application, Antuñes and Freitas have found a numerical candidate Ω such that

$$
\mu_{3}(\Omega)>\mu_{1}^{*}+\mu_{2}^{*},
$$

which means that Ω_{3}^{*} is connected.

μ_{22} is not maximized by a disk or any union of disks.

We setup a fight between disks and squares. We start with μ_{3}.

- Use Theorem 2 to compute the maximal μ_{3} (UD) for a union of disk:

$$
\mu_{3}^{*}=\mu_{1}^{*}+\mu_{2}^{*}=3 \mu_{1}^{*} \approx 31.95 .
$$

- Compare that value with $\mu_{3}(\mathbb{D}) \approx 29.3$ and obtain the maximal possible e.v. in the class of disk and union of disks:
$\mu_{3}^{*}($ Disks $) \approx 31.95$.
- Repeat the first two steps but for squares and union of squares, note the maximal possible eigenvalue μ_{3}^{*} (Squares).
- Compare the maximum obtained.

Table : Maximal eigenvalues for disjoint unions of disks and disjoint unions of squares computed using Theorem 2.

1	2	3	4	5	6	7	8	9	10
n	$\mu_{n}(\mathbf{D})$	$\mu_{n}(\mathbf{D})$	$\mu_{n}^{*}(\mathbf{U D})$	μ_{n}^{*}	μ_{n}^{*}	$\left(j^{2}+k^{2}\right)$	$\mu_{n}^{*}(\mathbf{U S}) / \pi$	μ_{n}^{*}	μ_{n}^{*}
1	$\pi j_{1,1}^{\prime 2}$	10.650	-	μ_{1}	10.65	$1+0$	-	μ_{1}	9.87
2	$\pi j_{1,1}^{\prime 2}$	10.650	21.300	$2 \mu_{1}$	21.30	$0+1$	2	$2 \mu_{1}$	19.74
3	$\pi j_{2,1}^{\prime 2}$	29.306	31.950	$3 \mu_{1}$	31.95	$1+1$	3	$3 \mu_{1}$	29.61
4	$\pi j_{2,1}^{2}$	29.306	42.599	$4 \mu_{1}$	42.60	$4+0$	4	$4 \mu_{1}=\mu_{4}$	39.48
5	$\pi j_{0}^{\prime 2}$	46.125	53.249	$5 \mu_{1}$	53.25	$0+4$	5	$5 \mu_{1}$	49.35
6	$\pi j_{3,1}^{\prime 2}$	55.449	63.899	$6 \mu_{1}$	63.90	$4+1$	6	$6 \mu_{1}$	59.22
21	$\pi j_{1,3}^{2}$	228.924	230.915	$2 \mu_{8}+5 \mu_{1}$	230.92	$4+16$	22	$\mu_{15}+6 \mu_{1}$	217.13
22	$\pi j_{1,3}^{\prime 2}$	228.924	241.565	$2 \mu_{8}+6 \mu_{1}$	$\mathbf{2 4 1 . 5 6}$	$16+9$	23	μ_{22}	$\mathbf{2 4 6 . 7 4}$

Proof of Theorem 2 (1/4)

We suppose that $\Omega_{n}^{*}=\Omega_{1} \cup \Omega_{2}$, with $\left|\Omega_{1,2}\right|>0$ and $|\Omega|=1$.
A. $\mu_{i}\left(\Omega_{1}\right) \leq \mu_{n-i}\left(\Omega_{2}\right)$

- Suppose WLOG that $\mu_{n}^{*}=\mu_{i}\left(\Omega_{1}\right)$, for a certain $0 \leq i \leq n$. We consider the following spectra:
- $\sigma\left(\Omega_{1}\right): \mu_{0}\left(\Omega_{1}\right) \leq \mu_{1}\left(\Omega_{1}\right) \leq \cdots \leq \mu_{i}\left(\Omega_{1}\right) \leq \ldots$
- $\sigma\left(\Omega_{2}\right): \mu_{0}\left(\Omega_{2}\right) \leq \cdots \leq \mu_{n-i}\left(\Omega_{2}\right) \leq \ldots$
- $\sigma(\Omega): \mu_{0}(\Omega) \leq \mu_{1}(\Omega) \leq \ldots \mu_{n}(\Omega) \leq \ldots$
- The first n eigenvalues of $\sigma(\Omega)$ are composed of exactly i e.v. of $\sigma\left(\Omega_{1}\right)$, whence we conclude that the contribution Ω_{2} has to be of precisely ($n-i$) e.v., all of them $\leq \mu_{i}\left(\Omega_{1}\right)$. Thus,

$$
\mu_{n-i}\left(\Omega_{2}\right) \geq \mu_{n}(\Omega)=\mu_{i}\left(\Omega_{1}\right)
$$

Proof of Theorem $2(2 / 4)$

B. $\mu_{i}\left(\Omega_{1}\right)=\mu_{n-i}\left(\Omega_{2}\right)$, and $1 \leq i<n$

- Suppose that $\mu_{i}\left(\Omega_{1}\right)<\mu_{n-i}\left(\Omega_{2}\right)$. Then, there exist constants $\alpha<1, \beta>1$ such that $\left|\alpha \Omega_{1}\right|+\left|\beta \Omega_{2}\right|=1$ and that

$$
\mu_{n-i}\left(\beta \Omega_{2}\right)>\mu_{i}\left(\alpha \Omega_{1}\right)
$$

still holds. Then, the n-th e.v. of the union has to come from $\alpha \Omega_{1}$ and

$$
\mu_{i}\left(\alpha \Omega_{1}\right)=\frac{1}{\alpha^{2}} \mu_{i}\left(\Omega_{1}\right)>\mu_{i}\left(\Omega_{1}\right)=\mu_{n}^{*}
$$

which contradicts the fact that μ_{n}^{*} is a maximizer.

- Also, $i=0$ or $i=n$ implies that $\mu_{n}^{*}=0$, which is of course impossible.

Proof of Theorem $2(3 / 4)$

C. $\left(\mu_{n}^{*}\right)^{\frac{d}{2}}=\left(\mu_{i}^{*}\right)^{\frac{d}{2}}+\left(\mu_{n-i}^{*}\right)^{\frac{d}{2}}$

- We replace Ω_{1} by $\left|\Omega_{1}\right|^{\frac{1}{d}} \Omega_{i}^{*}$, which doesn't affect the n-dimensional volume:

$$
\left|\left|\Omega_{1}\right|^{\frac{1}{d}} \Omega_{i}^{*}\right|=\left|\Omega_{1}\right|^{\frac{d}{d}}\left|\Omega_{i}^{*}\right|=\left|\Omega_{1}\right| .
$$

Since Ω_{1}^{*} maximizes μ_{i} for the Ω of unit volume, $\left|\Omega_{1}\right|^{\frac{1}{d}} \Omega_{i}^{*}$ does the same for domains of volume $\left|\Omega_{1}\right|$. Hence, $\Omega_{1}=\left|\Omega_{1}\right|^{\frac{1}{d}} \Omega_{i}^{*}$.

- Similarly, $\Omega_{2}=\left|\Omega_{1}\right|^{\frac{1}{d}} \Omega_{n-i}^{*}$.
- Hence,

$$
\mu_{n}^{*}=\mu_{i}\left(\Omega_{1}\right)=\mu_{i}\left(\left|\Omega_{1}\right|^{\frac{1}{d}} \Omega_{i}^{*}\right)=\frac{1}{\left|\Omega_{1}\right|^{\frac{2}{d}}} \mu_{i}^{*}
$$

from which we get

$$
\left|\Omega_{1}\right|=\left(\frac{\mu_{i}^{*}}{\mu_{n}^{*}}\right)^{\frac{d}{2}} .
$$

Proof of Theorem 2 (4/4)

- A similar computation gives :

$$
\left|\Omega_{2}\right|=\left(\frac{\mu_{n-i}^{*}}{\mu_{n}^{*}}\right)^{\frac{d}{2}} .
$$

- Since $\left|\Omega^{*}\right|=1$, we have

$$
\begin{gathered}
1=\left|\Omega_{1}\right|+\left|\Omega_{2}\right|=\frac{\left(\mu_{i}^{*}\right)^{\frac{d}{2}}+\left(\mu_{n-i}^{*}\right)^{\frac{d}{2}}}{\left(\mu_{n}^{*}\right)^{\frac{d}{2}}} \text {, i.e. } \\
\left(\mu_{n}^{*}\right)^{\frac{d}{2}}=\left(\mu_{i}^{*}\right)^{\frac{d}{2}}+\left(\mu_{n-i}^{*}\right)^{\frac{d}{2}}, \text { for some } 1 \leq i \leq \frac{n}{2} .
\end{gathered}
$$

What happens in higher dimension?

More complicated!

- For $d=3$, can obtain explicit formulas for eigenvalues of a ball in terms of root of the derivative of spherical Bessel functions.
- Conducted numerical experiments ($n=1,2, \ldots, 640$.) , but for all these n, there exists a union of disks which beats any union of squares.
- For $d \geq 4$, eigenvalues of the ball have not yet been studied systematically.

