Optimization of planar Neumann eigenvalues.

Guillaume Roy-Fortin

Université de Montréal groyfortin@dms.umontreal.ca
Joint work with G. Poliquin.

June 6, 2013

Overview

- Introduction
- Optimization of eigenvalues
- 3 Caracterization of extremal eigenvalues of disconnected domains
- Φ μ_{22} is not maximized by a disk or any union of disks.
- Proof of main theorem.
- 6 Discussion

Dirichlet and Neumann problems

- $\Omega \subset \mathbb{R}^d$; open, bounded (with Lipschitz boundary).
- ullet Ω is not necessarily connected and has Lebesgue measure of 1.
- $\Delta = \sum_{k=1}^{d} \frac{\partial^2}{\partial x_k^2}$ is the usual Euclidean Laplacian.

Two eigenvalue problems

Dirichlet:
$$\begin{cases} \Delta u + \lambda u = 0 & \text{in } \Omega, \\ u \equiv 0 & \text{on } \partial \Omega. \end{cases}$$
 (1)

Neumann:
$$\begin{cases} \Delta u + \mu u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} \equiv 0 & \text{on } \partial \Omega. \end{cases}$$
 (2)

Dirichlet and Neumann spectra.

For the Dirichlet problem, the spectrum $\sigma_D(\Omega)$ is composed by the following increasing sequence of eigenvalues:

$$0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots \nearrow \infty. \tag{3}$$

If $\partial\Omega$ is Lipschitz, then the Neumann problem also admits a discrete spectrum $\sigma_N(\Omega)$:

$$0 = \mu_0 \le \mu_1 \le \mu_2 \le \cdots \nearrow \infty. \tag{4}$$

If Ω is the disjoint union of two connected components Ω_1 and Ω_2 , then

$$\sigma(\Omega) = \sigma(\Omega_1) \cup \sigma(\Omega_2), \tag{5}$$

that is, the spectrum of the union is the ordered union of the two spectra.

Examples: spectrum of a rectangle, disk.

We recall the Neumann spectrum of a rectangle $\Omega = [0, a] \times [0, b]$:

$$\mu_{m,n}([0,a]\times[0,b]) = \pi^2\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right); \quad m, \ n \in \mathbb{N} \cup \{0\}.$$
 (6)

For the open unit disk \mathbb{D} , we have

$$\mu_{m,n}(\mathbb{D}) = \pi j_{m,n}^{2}; \quad m \in \mathbb{N}, n \in \mathbb{N} \cup \{0\}, \tag{7}$$

where $j'_{m,n}$ is the *m*-th zero of the derivative of the *n*-th order Bessel function of the first type J_n .

Optimization problems.

For the Dirichlet problem, we want to find the unit area Ω which minimizes given eigenvalue λ_k :

$$\lambda_k^* \coloneqq \min_{|\Omega|=1} \lambda_k(\Omega). \tag{8}$$

In the Neumann case, we have a maximization problem:

$$\mu_k^* \coloneqq \max_{|\Omega|=1} \mu_k(\Omega). \tag{9}$$

For the Neumann case, we assume that the max exists. Denote by Ω_n^* the domain realizing the extremum of the *n*-th eigenvalue.

Known results

Eigenvalue	Ω^*	Who?
$ \begin{array}{c} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{array} $	Disk Two id. disks Disk	Faber-Krahn. Krahn, Szegő. Conj. by Oudet, Henrot, WK.
μ_1 μ_2	Disk Two id. disks	Szegő-Weinberger. Girouard, Nadi., Polterovich.

Remark that for μ_2 , the authors have shown that, in the class of simply connected domain of unit area, the eigenvalue is maximized in the limit by a sequence of domains degenerating to a disjoint union of two identical disks.

A natural question

Question

Are all Dirichlet/Neumann eigenvalues optimized by disks or union of disks?

- For the Dirichlet problem, the answer is no (Wolf-Keller, 94): λ_{13} is not minimized by a disk or any union of disks.
- Oudet: numerical candidates for minimizers which were no longer union of disks starting with λ_5 .
- For the Neumann problem, we also provide a negative answer:

Theorem 1 (Poliquin, R.-F.)

 μ_{22} is not maximized by a disk or any union of disks.

Caracterization of extremal eigenvalues of disconnected domains

Our main tool is the following theorem:

Theorem 2 (Extremal e.v. of disconnected domains)

Suppose that the domain Ω_n^* realizing the maximal Neumann eigenvalue μ_n^* is a disjoint union of m connected domains Ω_i , m < n and of total volume 1. Then,

$$\left(\mu_{n}^{*}\right)^{\frac{d}{2}} = \left(\mu_{i}^{*}\right)^{\frac{d}{2}} + \left(\mu_{n-i}^{*}\right)^{\frac{d}{2}} = \max_{1 \leq j \leq \frac{n}{2}} \left\{ \left(\mu_{i}^{*}\right)^{\frac{d}{2}} + \left(\mu_{n-i}^{*}\right)^{\frac{d}{2}} \right\}.$$

Also, the geometry of Ω_n^* is given by:

$$\Omega_n^* = \left(\left(\frac{\mu_i^*}{\mu_n^*} \right)^{\frac{1}{2}} \Omega_i^* \right) \cup \left(\left(\frac{\mu_{n-i}^*}{\mu_n^*} \right)^{\frac{1}{2}} \Omega_{n-i}^* \right).$$

◆ロト ◆母 ト ◆注 ト ◆注 ト 注 ・ りゅう

Caracterization of extremal eigenvalues of disconnected domains

We right away get the following corollary:

Corollary 3

If there exists a $\Omega \in \mathbb{R}^d$ such that $|\Omega| = 1$ and

$$(\mu_n(\Omega))^{\frac{d}{2}} > (\mu_i^*)^{\frac{d}{2}} + (\mu_{n-i}^*)^{\frac{d}{2}}, \ \forall i = 1, \dots, \frac{n}{2},$$

then Ω_n^* is connected.

As an application, Antuñes and Freitas have found a numerical candidate Ω such that

$$\mu_3(\Omega) > \mu_1^* + \mu_2^*,$$

which means that Ω_3^* is connected.

μ_{22} is not maximized by a disk or any union of disks.

We setup a fight between disks and squares. We start with μ_3 .

• Use Theorem 2 to compute the maximal $\mu_3(\mathbf{UD})$ for a union of disk:

$$\mu_3^* = \mu_1^* + \mu_2^* = 3\mu_1^* \approx 31.95.$$

• Compare that value with $\mu_3(\mathbb{D}) \approx 29.3$ and obtain the maximal possible e.v. in the class of disk and union of disks:

$$\mu_3^*(\mathbf{Disks}) \approx 31.95.$$

- Repeat the first two steps but for squares and union of squares, note the maximal possible eigenvalue $\mu_3^*($ Squares).
- Compare the maximum obtained.

Table: Maximal eigenvalues for disjoint unions of disks and disjoint unions of squares computed using Theorem 2.

1	2	3	4	5	6	7	8	9	10
n	$\mu_n(\mathbf{D})$	$\mu_n(\mathbf{D})$	$\mu_n^*(UD)$	μ_n^*	$\mu_{\it n}^*$	$(j^2 + k^2)$	$\mu_n^*(US)/\pi$	μ_n^*	μ_{n}^*
1	$\pi j_{1,1}^{'2}$	10.650	-	μ_1	10.65	1+0	-	μ_1	9.87
2	$\pi j_{1,1}^{'2}$	10.650	21.300	$2\mu_1$	21.30	0+1	2	$2\mu_1$	19.74
3	$\pi j_{2,1}^{'2}$	29.306	31.950	$3\mu_1$	31.95	1+1	3	$3\mu_1$	29.61
4	$\pi j_{2,1}^{'2}$	29.306	42.599	$4\mu_1$	42.60	4+0	4	$4\mu_1=\mu_4$	39.48
5	$\pi j_{0,2}^{'2}$	46.125	53.249	$5\mu_1$	53.25	0+4	5	$5\mu_1$	49.35
6	$\pi j_{3,1}^{'2}$	55.449	63.899	$6\mu_1$	63.90	4+1	6	$6\mu_1$	59.22
21	$\pi j_{1,3}^{'2}$	228.924	230.915	$2\mu_8 + 5\mu_1$	230.92	4+16	22	$\mu_{15} + 6\mu_1$	217.13
22	$\pi j_{1,3}^{'2}$	228.924	241.565	$2\mu_8 + 6\mu_1$	241.56	16+9	23	μ_{22}	246.74

Proof of Theorem 2 (1/4)

We suppose that $\Omega_n^* = \Omega_1 \cup \Omega_2$, with $|\Omega_{1,2}| > 0$ and $|\Omega| = 1$.

A.
$$\mu_i(\Omega_1) \leq \mu_{n-i}(\Omega_2)$$

- Suppose WLOG that $\mu_n^* = \mu_i(\Omega_1)$, for a certain $0 \le i \le n$. We consider the following spectra:
 - $\sigma(\Omega_1)$: $\mu_0(\Omega_1) \leq \mu_1(\Omega_1) \leq \cdots \leq \mu_i(\Omega_1) \leq \ldots$
 - $\sigma(\Omega_2)$: $\mu_0(\Omega_2) \leq \cdots \leq \mu_{n-i}(\Omega_2) \leq \ldots$
 - $\sigma(\Omega)$: $\mu_0(\Omega) \leq \mu_1(\Omega) \leq \dots \mu_n(\Omega) \leq \dots$
- The first n eigenvalues of $\sigma(\Omega)$ are composed of exactly i e.v. of $\sigma(\Omega_1)$, whence we conclude that the contribution Ω_2 has to be of precisely (n-i) e.v., all of them $\leq \mu_i(\Omega_1)$. Thus,

$$\mu_{n-i}(\Omega_2) \ge \mu_n(\Omega) = \mu_i(\Omega_1).$$

Proof of Theorem 2 (2/4)

B.
$$\mu_i(\Omega_1) = \mu_{n-i}(\Omega_2)$$
, and $1 \le i < n$

• Suppose that $\mu_i(\Omega_1) < \mu_{n-i}(\Omega_2)$. Then, there exist constants $\alpha < 1, \beta > 1$ such that $|\alpha \Omega_1| + |\beta \Omega_2| = 1$ and that

$$\mu_{n-i}(\beta\Omega_2) > \mu_i(\alpha\Omega_1)$$

still holds.Then, the *n*-th e.v. of the union has to come from $\alpha\Omega_1$ and

$$\mu_i(\alpha\Omega_1) = \frac{1}{\alpha^2}\mu_i(\Omega_1) > \mu_i(\Omega_1) = \mu_n^*,$$

which contradicts the fact that μ_n^* is a maximizer.

• Also, i = 0 or i = n implies that $\mu_n^* = 0$, which is of course impossible.

Proof of Theorem 2 (3/4)

C.
$$(\mu_n^*)^{\frac{d}{2}} = (\mu_i^*)^{\frac{d}{2}} + (\mu_{n-i}^*)^{\frac{d}{2}}$$

• We replace Ω_1 by $|\Omega_1|^{\frac{1}{d}}\Omega_i^*$, which doesn't affect the n-dimensional volume:

$$\left|\left|\Omega_1\right|^{\frac{1}{d}}\Omega_i^*\right| = \left|\Omega_1\right|^{\frac{d}{d}}\left|\Omega_i^*\right| = \left|\Omega_1\right|.$$

Since Ω_1^* maximizes μ_i for the Ω of unit volume, $|\Omega_1|^{\frac{1}{d}}\Omega_i^*$ does the same for domains of volume $|\Omega_1|$. Hence, $\Omega_1 = |\Omega_1|^{\frac{1}{d}}\Omega_i^*$.

- Similarly, $\Omega_2 = |\Omega_1|^{\frac{1}{d}} \Omega_{n-i}^*$.
- Hence,

$$\mu_n^* = \mu_i(\Omega_1) = \mu_i\left(|\Omega_1|^{\frac{1}{d}}\Omega_i^*\right) = \frac{1}{|\Omega_1|^{\frac{2}{d}}}\mu_i^*,$$

from which we get

$$|\Omega_1| = \left(\frac{\mu_i^*}{\mu_n^*}\right)^{\frac{d}{2}}.$$

Proof of Theorem 2 (4/4)

• A similar computation gives :

$$|\Omega_2| = \left(\frac{\mu_{n-i}^*}{\mu_n^*}\right)^{\frac{d}{2}}.$$

• Since $|\Omega^*| = 1$, we have

$$1 = |\Omega_1| + |\Omega_2| = \frac{(\mu_i^*)^{\frac{d}{2}} + (\mu_{n-i}^*)^{\frac{d}{2}}}{(\mu_n^*)^{\frac{d}{2}}}, \text{i.e.}$$

$$(\mu_n^*)^{\frac{d}{2}} = (\mu_i^*)^{\frac{d}{2}} + (\mu_{n-i}^*)^{\frac{d}{2}}, \text{ for some } 1 \le i \le \frac{n}{2}.$$

What happens in higher dimension?

More complicated!

- For d = 3, can obtain explicit formulas for eigenvalues of a ball in terms of root of the derivative of spherical Bessel functions.
- Conducted numerical experiments (n = 1, 2, ..., 640.), but for all these n, there exists a union of disks which beats any union of squares.
- For d ≥ 4, eigenvalues of the ball have not yet been studied systematically.