Bounds on the Principal Frequency of the *p*-Laplacian

Guillaume Poliquin *Université de Montréal*

June 4, 2013

▶ Let Ω be a bounded *n*-dimensional open subset of \mathbb{R}^n .

- ▶ Let Ω be a bounded *n*-dimensional open subset of \mathbb{R}^n .
- ▶ Let Δ denote the Laplace operator.

- ▶ Let Ω be a bounded *n*-dimensional open subset of \mathbb{R}^n .
- ▶ Let Δ denote the Laplace operator.
- We consider the Dirichlet eigenvalue problem,

$$\begin{cases} \Delta u + \lambda u = 0 \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega. \end{cases}$$

- ▶ Let Ω be a bounded *n*-dimensional open subset of \mathbb{R}^n .
- ▶ Let Δ denote the Laplace operator.
- We consider the Dirichlet eigenvalue problem,

$$\begin{cases} \Delta u + \lambda u = 0 \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega. \end{cases}$$

► Set
$$||u||_2 = 1$$
.

Faber-Krahn (1923)

Among all domains with a given volume $|\Omega|$, the ball has the smallest λ :

$$\lambda(\Omega) \ge \frac{\lambda(B_1)}{|\Omega|^{\frac{2}{n}}} \tag{1}$$

where B_1 stands for the unit ball in \mathbb{R}^n .

Faber-Krahn (1923)

Among all domains with a given volume $|\Omega|$, the ball has the smallest λ :

$$\lambda(\Omega) \ge \frac{\lambda(B_1)}{|\Omega|^{\frac{2}{n}}} \tag{1}$$

where B_1 stands for the unit ball in \mathbb{R}^n .

A natural observation

If $\lambda(\Omega)$ is small, then Ω must not only have a large volume, it must also be "FAT" in some sense.

AIM OF THE TALK

AIM OF THE TALK

Figure : How to fit a ball inside Ω

0000000

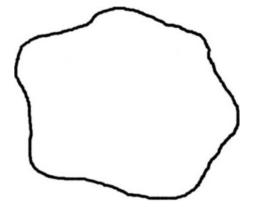


Figure : Inner radius $\rho_{\Omega} = \sup\{r : \exists B_r \subset \Omega\}.$

0000000

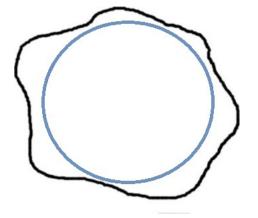


Figure : Inner radius $\rho_{\Omega} = \sup\{r : \exists B_r \subset \Omega\}.$

Question

Question

Can one find a constant $\alpha_n > 0$ depending only on n such that $\lambda(\Omega) \ge \alpha_n \rho_{\Omega}^{-2}$ (i.e. $\rho_{\Omega} \approx \lambda^{-\frac{1}{2}}$), where ρ_{Ω} is the radius of the largest ball contained in Ω ?

► n = 2:

Question

- ► n = 2:
 - ► Hayman (1977) showed that $\alpha_2 \ge 1/900$ provided Ω is simply connected.

Question

- ► *n* = 2:
 - ► Hayman (1977) showed that $\alpha_2 \ge 1/900$ provided Ω is simply connected.
 - ▶ Improved by Osserman (1978), $\alpha_2 \ge 1/4$.

Question

- ► *n* = 2:
 - ► Hayman (1977) showed that $\alpha_2 \ge 1/900$ provided Ω is simply connected.
 - ▶ Improved by Osserman (1978), $\alpha_2 \ge 1/4$.
 - ► Was also obtained by Makai (1965).

Question

- ► *n* = 2:
 - ► Hayman (1977) showed that $\alpha_2 \ge 1/900$ provided Ω is simply connected.
 - ▶ Improved by Osserman (1978), $\alpha_2 \ge 1/4$.
 - ▶ Was also obtained by Makai (1965).
 - ► Osserman (1979) extended the result to $\alpha_2 \ge 1/k^2$ for domain of connectivity $k \ge 2$.

Question

- ► *n* = 2:
 - ► Hayman (1977) showed that $\alpha_2 \ge 1/900$ provided Ω is simply connected.
 - ▶ Improved by Osserman (1978), $\alpha_2 \ge 1/4$.
 - ▶ Was also obtained by Makai (1965).
 - ▶ Osserman (1979) extended the result to $\alpha_2 \ge 1/k^2$ for domain of connectivity $k \ge 2$.
 - ► Croke (1981) improved the last result to $\alpha_2 \ge 1/2k$.

Question

- ► *n* = 2:
 - ► Hayman (1977) showed that $\alpha_2 \ge 1/900$ provided Ω is simply connected.
 - ▶ Improved by Osserman (1978), $\alpha_2 \ge 1/4$.
 - ▶ Was also obtained by Makai (1965).
 - ▶ Osserman (1979) extended the result to $\alpha_2 \ge 1/k^2$ for domain of connectivity $k \ge 2$.
 - ► Croke (1981) improved the last result to $\alpha_2 \ge 1/2k$.
 - ▶ Banuelos and Carroll $\alpha \approx 0.6197$ in 1994 (for the simply connected case).

A TROUBLING FIGURE

A TROUBLING FIGURE

Figure : Punctured ball.

KEY FACT

Hayman's observation for $n \ge 3$

If Ω is a ball with many narrow, inward pointing spikes removed from it, then $\lambda(\Omega) \approx \lambda(B)$, but $\rho_{\Omega} \approx 0$.

KEY FACT

Hayman's observation for $n \ge 3$

If Ω is a ball with many narrow, inward pointing spikes removed from it, then $\lambda(\Omega) \approx \lambda(B)$, but $\rho_{\Omega} \approx 0$.

Conclusions

1. Ω may not contain any ball of fixed radius R no matter how small $\lambda(\Omega)$ may be.

KEY FACT

Hayman's observation for $n \ge 3$

If Ω is a ball with many narrow, inward pointing spikes removed from it, then $\lambda(\Omega) \approx \lambda(B)$, but $\rho_{\Omega} \approx 0$.

Conclusions

- 1. Ω may not contain any ball of fixed radius R no matter how small $\lambda(\Omega)$ may be.
- 2. Small holes and spikes do not influence $\lambda(\Omega)$ very much, but they do have a great effect on the ability to insert a ball.

► For 1 , the <math>p-Laplacian of a function f on Ω is defined by $Δ_p f = -{\rm div}(|\nabla f|^{p-2} \nabla f)$.

- ▶ For 1 , the*p*-Laplacian of a function*f* $on <math>\Omega$ is defined by $\Delta_{p}f = -\text{div}(|\nabla f|^{p-2}\nabla f)$.
- ▶ Physical model: a nonlinear elastic membrane under the load f,

$$-\Delta_p(u) = f \qquad \text{in } \Omega,$$

$$u = 0 \qquad \text{on } \partial\Omega.$$
 (2)

The solution u_f stands for the deformation of the membrane from the rest position.

► For 1 , we study the following eigenvalue problem:

$$\Delta_p u + \lambda |u|^{p-2} u = 0 \text{ in } \Omega, \tag{3}$$

where we impose the Dirichlet boundary condition.

▶ For 1 , we study the following eigenvalueproblem:

$$\Delta_p u + \lambda |u|^{p-2} u = 0 \text{ in } \Omega, \tag{3}$$

where we impose the Dirichlet boundary condition.

• We say that λ is an eigenvalue of $-\Delta_v$ if (3) has a nontrivial weak solution $u_{\lambda} \in W_0^{1,p}(\Omega)$.

► For 1 , we study the following eigenvalue problem:

$$\Delta_p u + \lambda |u|^{p-2} u = 0 \text{ in } \Omega, \tag{3}$$

where we impose the Dirichlet boundary condition.

- ▶ We say that λ is an eigenvalue of $-\Delta_p$ if (3) has a nontrivial weak solution $u_{\lambda} \in W_0^{1,p}(\Omega)$.
- \blacktriangleright $\lambda_{1,p}$ admits the following variational characterization,

$$\lambda_{1,p} = \min_{0 \neq u \in W_0^{1,p}(\Omega)} \left\{ \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} |u|^p dx} \right\}.$$

► For 1 , we study the following eigenvalue problem:

$$\Delta_p u + \lambda |u|^{p-2} u = 0 \text{ in } \Omega, \tag{3}$$

where we impose the Dirichlet boundary condition.

- ▶ We say that λ is an eigenvalue of $-\Delta_p$ if (3) has a nontrivial weak solution $u_{\lambda} \in W_0^{1,p}(\Omega)$.
- \blacktriangleright $\lambda_{1,p}$ admits the following variational characterization,

$$\lambda_{1,p} = \min_{0 \neq u \in W_0^{1,p}(\Omega)} \left\{ \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} |u|^p dx} \right\}.$$

► Still have an extended version of Faber-Krahn, a certain version of Courant's Theorem ...

PLANAR CASE

Theorem 1 (P., 2013)

Let Ω be a domain in \mathbb{R}^2 . If Ω is simply connected, then

$$\lambda_{1,p}(\Omega) \ge \left(\frac{1}{p \,\rho_{\Omega}}\right)^p.$$
 (4)

PLANAR CASE

Theorem 1 (P., 2013)

Let Ω be a domain in \mathbb{R}^2 . If Ω is simply connected, then

$$\lambda_{1,p}(\Omega) \ge \left(\frac{1}{p \,\rho_{\Omega}}\right)^p.$$
 (4)

If Ω is of connectivity $k \geq 2$, then

$$\lambda_{1,p}(\Omega) \ge \frac{2^{p/2}}{k^{p/2}p^p \,\rho_{\Omega}^p}.\tag{5}$$

A result (s.c. case) for a similar operator to the *p*-Laplace operator was obtained by G. Bognar.

A LEMMA

Lemma 2 (P., 2013)

Let *D* be a domain of finite connectivity *k*. Let F_k be the family of relatively compact subdomains of D having smooth boundary and connectivity at most k. Let

$$h_k(D) = \inf_{D' \in F_k} \frac{L'}{A'},$$

Lemma 2 (P., 2013)

Let D be a domain of finite connectivity k. Let F_k be the family of relatively compact subdomains of D having smooth boundary and connectivity at most k. Let

$$h_k(D) = \inf_{D' \in F_k} \frac{L'}{A'},$$

where A' is the area of D' and L' is the length of its boundary. Then,

$$\lambda_{1,p}(D) \ge \left(\frac{h_k(D)}{p}\right)^p.$$

GEOMETRIC INEQUALITY

Two geometric inequalities (Osserman, Croke)

For simply connected domains, we have that

$$\rho_D |\partial D| \ge |D|,$$

and for k-connected domains, we have that

$$\frac{|\partial D|}{|D|} \ge \frac{\sqrt{2}}{\sqrt{k}\rho_D}$$

HIGHER DIMENSIONAL CASE

▶ E. Lieb : relaxing the condition that the ball has to be completely included in Ω .

Main results

- ▶ E. Lieb: relaxing the condition that the ball has to be completely included in Ω .
- ► We adapt Maz'ya and Shubin's approach.

HIGHER DIMENSIONAL CASE

- ▶ E. Lieb : relaxing the condition that the ball has to be completely included in Ω .
- ► We adapt Maz'ya and Shubin's approach.

Theorem 3 (P., 2013)

Let $K_1(\gamma, n, p)$, $K_2(\gamma, n, p)$ be positive constants that depend only on γ, n, p . We have the following inequality,

$$K_1(\gamma, n, p) r_{\Omega, \gamma}^{-p} \le \lambda_{1, p}(\Omega) \le K_2(\gamma, n, p) r_{\Omega, \gamma}^{-p}, \tag{6}$$

where $r_{\Omega,\gamma} = \sup \{r : \exists B_r, \overline{B}_r \setminus \Omega \text{ is } (p,\gamma) - \text{negligible} \}$ is the interior p-capacity radius.

OPEN QUESTIONS

▶ Bounds on the Hausdorff measure of nodal sets?

OPEN QUESTIONS

- ▶ Bounds on the Hausdorff measure of nodal sets?
- ▶ Bounds on the inner radius of nodal domains?