Bounds on the Principal Frequency of the p-Laplacian

Guillaume Poliquin
Université de Montréal

June 4, 2013

Motivation

- Let Ω be a bounded n-dimensional open subset of \mathbb{R}^{n}.

Motivation

- Let Ω be a bounded n-dimensional open subset of \mathbb{R}^{n}.
- Let Δ denote the Laplace operator.

Motivation

- Let Ω be a bounded n-dimensional open subset of \mathbb{R}^{n}.
- Let Δ denote the Laplace operator.
- We consider the Dirichlet eigenvalue problem,

$$
\left\{\begin{array}{l}
\Delta u+\lambda u=0 \text { in } \Omega, \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Motivation

- Let Ω be a bounded n-dimensional open subset of \mathbb{R}^{n}.
- Let Δ denote the Laplace operator.
- We consider the Dirichlet eigenvalue problem,

$$
\left\{\begin{array}{l}
\Delta u+\lambda u=0 \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

- Set $\|u\|_{2}=1$.

Faber-Krahn (1923)

Among all domains with a given volume $|\Omega|$, the ball has the smallest λ :

$$
\begin{equation*}
\lambda(\Omega) \geq \frac{\lambda\left(B_{1}\right)}{|\Omega|^{\frac{2}{n}}} \tag{1}
\end{equation*}
$$

where B_{1} stands for the unit ball in \mathbb{R}^{n}.

Faber-Krahn (1923)

Among all domains with a given volume $|\Omega|$, the ball has the smallest λ :

$$
\begin{equation*}
\lambda(\Omega) \geq \frac{\lambda\left(B_{1}\right)}{|\Omega|^{\frac{2}{n}}} \tag{1}
\end{equation*}
$$

where B_{1} stands for the unit ball in \mathbb{R}^{n}.

A natural observation

If $\lambda(\Omega)$ is small, then Ω must not only have a large volume, it must also be "FAT" in some sense.

AIM OF THE TALK

AIM OF THE TALK

Figure : How to fit a ball inside Ω

MORE SERIOUSLY

Figure : Inner radius $\rho_{\Omega}=\sup \left\{r: \exists B_{r} \subset \Omega\right\}$.

More seriously

Figure : Inner radius $\rho_{\Omega}=\sup \left\{r: \exists B_{r} \subset \Omega\right\}$.

SOME RESULTS

Question

Can one find a constant $\alpha_{n}>0$ depending only on n such that $\lambda(\Omega) \geq \alpha_{n} \rho_{\Omega}^{-2}$ (i.e. $\rho_{\Omega} \approx \lambda^{-\frac{1}{2}}$), where ρ_{Ω} is the radius of the largest ball contained in Ω ?

SOME RESULTS

Question

Can one find a constant $\alpha_{n}>0$ depending only on n such that $\lambda(\Omega) \geq \alpha_{n} \rho_{\Omega}^{-2}$ (i.e. $\rho_{\Omega} \approx \lambda^{-\frac{1}{2}}$), where ρ_{Ω} is the radius of the largest ball contained in Ω ?

- $n=2$:

Some results

Question

Can one find a constant $\alpha_{n}>0$ depending only on n such that $\lambda(\Omega) \geq \alpha_{n} \rho_{\Omega}^{-2}$ (i.e. $\rho_{\Omega} \approx \lambda^{-\frac{1}{2}}$), where ρ_{Ω} is the radius of the largest ball contained in Ω ?

- $n=2$:
- Hayman (1977) showed that $\alpha_{2} \geq 1 / 900$ provided Ω is simply connected.

Some results

Question

Can one find a constant $\alpha_{n}>0$ depending only on n such that $\lambda(\Omega) \geq \alpha_{n} \rho_{\Omega}^{-2}$ (i.e. $\rho_{\Omega} \approx \lambda^{-\frac{1}{2}}$), where ρ_{Ω} is the radius of the largest ball contained in Ω ?

- $n=2$:
- Hayman (1977) showed that $\alpha_{2} \geq 1 / 900$ provided Ω is simply connected.
- Improved by Osserman (1978), $\alpha_{2} \geq 1 / 4$.

Some results

Question

Can one find a constant $\alpha_{n}>0$ depending only on n such that $\lambda(\Omega) \geq \alpha_{n} \rho_{\Omega}^{-2}$ (i.e. $\rho_{\Omega} \approx \lambda^{-\frac{1}{2}}$), where ρ_{Ω} is the radius of the largest ball contained in Ω ?

- $n=2$:
- Hayman (1977) showed that $\alpha_{2} \geq 1 / 900$ provided Ω is simply connected.
- Improved by Osserman (1978), $\alpha_{2} \geq 1 / 4$.
- Was also obtained by Makai (1965).

SOME RESULTS

Question

Can one find a constant $\alpha_{n}>0$ depending only on n such that $\lambda(\Omega) \geq \alpha_{n} \rho_{\Omega}^{-2}$ (i.e. $\rho_{\Omega} \approx \lambda^{-\frac{1}{2}}$), where ρ_{Ω} is the radius of the largest ball contained in Ω ?

- $n=2$:
- Hayman (1977) showed that $\alpha_{2} \geq 1 / 900$ provided Ω is simply connected.
- Improved by Osserman (1978), $\alpha_{2} \geq 1 / 4$.
- Was also obtained by Makai (1965).
- Osserman (1979) extended the result to $\alpha_{2} \geq 1 / k^{2}$ for domain of connectivity $k \geq 2$.

SOME RESULTS

Question

Can one find a constant $\alpha_{n}>0$ depending only on n such that $\lambda(\Omega) \geq \alpha_{n} \rho_{\Omega}^{-2}$ (i.e. $\rho_{\Omega} \approx \lambda^{-\frac{1}{2}}$), where ρ_{Ω} is the radius of the largest ball contained in Ω ?

- $n=2$:
- Hayman (1977) showed that $\alpha_{2} \geq 1 / 900$ provided Ω is simply connected.
- Improved by Osserman (1978), $\alpha_{2} \geq 1 / 4$.
- Was also obtained by Makai (1965).
- Osserman (1979) extended the result to $\alpha_{2} \geq 1 / k^{2}$ for domain of connectivity $k \geq 2$.
- Croke (1981) improved the last result to $\alpha_{2} \geq 1 / 2 k$.

SOME RESULTS

Question

Can one find a constant $\alpha_{n}>0$ depending only on n such that $\lambda(\Omega) \geq \alpha_{n} \rho_{\Omega}^{-2}$ (i.e. $\rho_{\Omega} \approx \lambda^{-\frac{1}{2}}$), where ρ_{Ω} is the radius of the largest ball contained in Ω ?

- $n=2$:
- Hayman (1977) showed that $\alpha_{2} \geq 1 / 900$ provided Ω is simply connected.
- Improved by Osserman (1978), $\alpha_{2} \geq 1 / 4$.
- Was also obtained by Makai (1965).
- Osserman (1979) extended the result to $\alpha_{2} \geq 1 / k^{2}$ for domain of connectivity $k \geq 2$.
- Croke (1981) improved the last result to $\alpha_{2} \geq 1 / 2 k$.
- Banuelos and Carroll $\alpha \approx 0.6197$ in 1994 (for the simply connected case).

A troubling figure

A troubling figure

Figure : Punctured ball.

KEy fact

Hayman's observation for $n \geq 3$
If Ω is a ball with many narrow, inward pointing spikes removed from it, then $\lambda(\Omega) \approx \lambda(B)$, but $\rho_{\Omega} \approx 0$.

KEy fact

Hayman's observation for $n \geq 3$

If Ω is a ball with many narrow, inward pointing spikes removed from it, then $\lambda(\Omega) \approx \lambda(B)$, but $\rho_{\Omega} \approx 0$.

Conclusions

1. Ω may not contain any ball of fixed radius R no matter how small $\lambda(\Omega)$ may be.

KEy fact

Hayman's observation for $n \geq 3$

If Ω is a ball with many narrow, inward pointing spikes removed from it, then $\lambda(\Omega) \approx \lambda(B)$, but $\rho_{\Omega} \approx 0$.

Conclusions

1. Ω may not contain any ball of fixed radius R no matter how small $\lambda(\Omega)$ may be.
2. Small holes and spikes do not influence $\lambda(\Omega)$ very much, but they do have a great effect on the ability to insert a ball.

Setting

- For $1<p<\infty$, the p-Laplacian of a function f on Ω is defined by $\Delta_{p} f=-\operatorname{div}\left(|\nabla f|^{p-2} \nabla f\right)$.

Setting

- For $1<p<\infty$, the p-Laplacian of a function f on Ω is defined by $\Delta_{p} f=-\operatorname{div}\left(|\nabla f|^{p-2} \nabla f\right)$.
- Physical model : a nonlinear elastic membrane under the load f,

$$
\begin{array}{cc}
-\Delta_{p}(u)=f & \text { in } \Omega \tag{2}\\
u=0 & \text { on } \partial \Omega .
\end{array}
$$

The solution u_{f} stands for the deformation of the membrane from the rest position.

Setting

- For $1<p<\infty$, we study the following eigenvalue problem:

$$
\begin{equation*}
\Delta_{p} u+\lambda|u|^{p-2} u=0 \text { in } \Omega \tag{3}
\end{equation*}
$$

where we impose the Dirichlet boundary condition.

Setting

- For $1<p<\infty$, we study the following eigenvalue problem:

$$
\begin{equation*}
\Delta_{p} u+\lambda|u|^{p-2} u=0 \text { in } \Omega, \tag{3}
\end{equation*}
$$

where we impose the Dirichlet boundary condition.

- We say that λ is an eigenvalue of $-\Delta_{p}$ if (3) has a nontrivial weak solution $u_{\lambda} \in W_{0}^{1, p}(\Omega)$.

Setting

- For $1<p<\infty$, we study the following eigenvalue problem:

$$
\begin{equation*}
\Delta_{p} u+\lambda|u|^{p-2} u=0 \text { in } \Omega \tag{3}
\end{equation*}
$$

where we impose the Dirichlet boundary condition.

- We say that λ is an eigenvalue of $-\Delta_{p}$ if (3) has a nontrivial weak solution $u_{\lambda} \in W_{0}^{1, p}(\Omega)$.
- $\lambda_{1, p}$ admits the following variational characterization,

$$
\lambda_{1, p}=\min _{0 \neq u \in W_{0}^{1, p}(\Omega)}\left\{\frac{\int_{\Omega}|\nabla u|^{p} d x}{\int_{\Omega}|u|^{p} d x}\right\} .
$$

Setting

- For $1<p<\infty$, we study the following eigenvalue problem:

$$
\begin{equation*}
\Delta_{p} u+\lambda|u|^{p-2} u=0 \text { in } \Omega \tag{3}
\end{equation*}
$$

where we impose the Dirichlet boundary condition.

- We say that λ is an eigenvalue of $-\Delta_{p}$ if (3) has a nontrivial weak solution $u_{\lambda} \in W_{0}^{1, p}(\Omega)$.
- $\lambda_{1, p}$ admits the following variational characterization,

$$
\lambda_{1, p}=\min _{0 \neq u \in W_{0}^{1, p}(\Omega)}\left\{\frac{\int_{\Omega}|\nabla u|^{p} d x}{\int_{\Omega}|u|^{p} d x}\right\} .
$$

- Still have an extended version of Faber-Krahn, a certain version of Courant's Theorem ...

Planar CASE

Theorem 1 (P., 2013)

Let Ω be a domain in \mathbb{R}^{2}. If Ω is simply connected, then

$$
\begin{equation*}
\lambda_{1, p}(\Omega) \geq\left(\frac{1}{p \rho_{\Omega}}\right)^{p} \tag{4}
\end{equation*}
$$

Planar CASE

Theorem 1 (P., 2013)

Let Ω be a domain in \mathbb{R}^{2}. If Ω is simply connected, then

$$
\begin{equation*}
\lambda_{1, p}(\Omega) \geq\left(\frac{1}{p \rho_{\Omega}}\right)^{p} \tag{4}
\end{equation*}
$$

If Ω is of connectivity $k \geq 2$, then

$$
\begin{equation*}
\lambda_{1, p}(\Omega) \geq \frac{2^{p / 2}}{k^{p / 2} p^{p} \rho_{\Omega}^{p}} \tag{5}
\end{equation*}
$$

A result (s.c. case) for a similar operator to the p-Laplace operator was obtained by G. Bognar.

A LEMMA

Lemma 2 (P., 2013)

Let D be a domain of finite connectivity k. Let F_{k} be the family of relatively compact subdomains of D having smooth boundary and connectivity at most k. Let

$$
h_{k}(D)=\inf _{D^{\prime} \in F_{k}} \frac{L^{\prime}}{A^{\prime}},
$$

A LEMMA

Lemma 2 (P., 2013)

Let D be a domain of finite connectivity k. Let F_{k} be the family of relatively compact subdomains of D having smooth boundary and connectivity at most k. Let

$$
h_{k}(D)=\inf _{D^{\prime} \in F_{k}} \frac{L^{\prime}}{A^{\prime}},
$$

where A^{\prime} is the area of D^{\prime} and L^{\prime} is the length of its boundary. Then,

$$
\lambda_{1, p}(D) \geq\left(\frac{h_{k}(D)}{p}\right)^{p}
$$

GEOMETRIC INEQUALITY

Two geometric inequalities (Osserman, Croke)

For simply connected domains, we have that

$$
\rho_{D}|\partial D| \geq|D|,
$$

and for k-connected domains, we have that

$$
\frac{|\partial D|}{|D|} \geq \frac{\sqrt{2}}{\sqrt{k} \rho_{D}} .
$$

Higher dimensional case

- E. Lieb : relaxing the condition that the ball has to be completely included in Ω.

Higher dimensional case

- E. Lieb : relaxing the condition that the ball has to be completely included in Ω.
- We adapt Maz'ya and Shubin's approach.

Higher dimensional case

- E. Lieb : relaxing the condition that the ball has to be completely included in Ω.
- We adapt Maz'ya and Shubin's approach.

Theorem 3 (P., 2013)

Let $K_{1}(\gamma, n, p), K_{2}(\gamma, n, p)$ be positive constants that depend only on γ, n, p. We have the following inequality,

$$
\begin{equation*}
K_{1}(\gamma, n, p) r_{\Omega, \gamma}^{-p} \leq \lambda_{1, p}(\Omega) \leq K_{2}(\gamma, n, p) r_{\Omega, \gamma}^{-p}, \tag{6}
\end{equation*}
$$

where $r_{\Omega, \gamma}=\sup \left\{r: \exists B_{r}, \bar{B}_{r} \backslash \Omega\right.$ is $(p, \gamma)-$ negligible $\}$ is the interior p-capacity radius.

Open Questions

- Bounds on the Hausdorff measure of nodal sets ?

Open Questions

- Bounds on the Hausdorff measure of nodal sets ?
- Bounds on the inner radius of nodal domains ?

