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Schrodinger Operators

» Let (M, g) be a compact Riemannian manifold of dimension
m and let g € C(M). The operator L := A, + q is called the
Schrodinger operator.
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Schrodinger Operators

» Let (M, g) be a compact Riemannian manifold of dimension
m and let g € C(M). The operator L := A, + q is called the
Schrodinger operator.

» Eigenvalues of L = Az + g form a nondecreasing sequence of
real numbers

where each A\i(L) has finite multiplicity.
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» The min-max theorem

Vf[2dvol f2qdvol
Ak(L) = min _max Ju|VefPdvol + ]y Fqdvo ,
Vi 0#£feV fM f2dVO].

where Vi is a k-dimensional linear subspace of H(M).
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» The min-max theorem

Vf[2dvol f2qdvol
Ak(L) = min _max Ju|VefPdvol + ]y Fqdvo ,
Vi 0#£feV fM f2dVO].

where Vi is a k-dimensional linear subspace of H(M).

> It is easy to see that
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El Soufi and llias (1992)

For the second eigenvalue of the Schrodinger operator L, we have

Vc([g])) m  fyqdvol
vol(M)

(L) = m (vol(M)

where V([g]) is the conformal volume that is defined by Li and
Yau (1982).
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El Soufi and llias (1992)

For an orientable Riemannian surface (¥, g) of genus ~, one has

gdvol
A2(L) o [7+3] f):w

<
~ Area(X,) | 2 Area(X,)’

where [%’3] is the integer part of %3
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El Soufi and llias (1992)

For an orientable Riemannian surface (X, g) of genus ~, one has

A2(L)

o 8 v+3 f):7 qdvol
~ Area(%,) | 2 Area(X,)’

where [7T+3] is the integer part of VTH

One can not use the method that gives the above upper bounds to
obtain upper bounds for higher eigenvalues and we need new ideas.
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Grigor'yan, Netrusov, Yau (2004)

Let (M, g) be a compact Riemannian manifold and N and Gy be
some positive constants such that M satisfies the (2, NV)-covering
property and vol(B(x, r)) < Cor?, for every x € M and every

r > 0. Then for every positive Schrodinger operator L = Ag + g
on M, we have

Ck + [,, gdvol

evol(M) @

)\k(L) <

where € € (0,1) depends only on N and C depends on N and Cp.
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Grigor'yan, Netrusov, Yau (2004)

Let (M, g) be a compact Riemannian manifold and N and Cp be
some positive constants such that M satisfies the (2, N)-covering

property and |vol(B(x, r)) < Cor?|, for every x € M and every
r > 0. Then for every positive Schrodinger operator L = A, + g
on M, we have

Ck + [, gdvol

—_— o
evol(M)

A(L) <

where € € (0,1) depends only on N and C depends on N and .
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A metric space (X, d) has (2, N)-covering property if each ball of
radius r > 0 can be covered by at most N balls of radius r/2.
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A metric space (X, d) has (2, N)-covering property if each ball of
radius r > 0 can be covered by at most N balls of radius r/2.

Examples

» Any metric measure space (X, d, i) that has the doubling
property i.e. there exists a positive constant C such that

p(B(x,2r))
u(B(x,r))

has (2, N)-covering property with for example N = C*.

< C, Vx € X, r >0,
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A metric space (X, d) has (2, N)-covering property if each ball of
radius r > 0 can be covered by at most N balls of radius r/2.

Examples

» Any metric measure space (X, d, i) that has the doubling
property i.e. there exists a positive constant C such that

p(B(x,2r))
u(B(x,r))

has (2, N)-covering property with for example N = C*.

<C, Vx € X, r >0,

» Every compact Riemannian manifold (M, g) has
(2, N)-covering property.
If for example Ricciz > 0 then N depends only on the
dimension.

6
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Grigor'yan, Netrusov, Yau (2004)

Let (M, g) be a compact Riemannian manifold and N and Gy be
some positive constants such that M satisfies the (2, N)-covering
property and vol(B(x, r)) < Cor?, for every x € M and every

r > 0. Then for every Schrodinger operator L = Ag + q on M, we
have

Ck+d071 [, q dvol =6 [, g~ dvol

<
A(Bg +q) < vol(M) ’

where ¢ € (0,1) is a constant which depends only on N, C >0 is a
constant which depends on N and Cp, and g= = max{| + g|,0}.
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Grigor'yan, Netrusov, Yau (2004)

Let (M, g) be a compact Riemannian manifold and N and Cy be
some positive constants such that M satisfies the (2, N)-covering

property and | vol(B(x, r)) < Cor?|, for every x € M and every
r > 0. Then for every Schrodinger operator L = Ag 4+ q on M, we
have

Ck+671 [, g dvol =4 [,,q dvol
vol(M) ’

)‘k(Ag A q) <

where 0 € (0,1) is a constant which depends only on N, C > 0is a
constant which depends on N and Cp, and g = max{| + g|,0}.
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Grigor'yan, Netrusov, Yau (2004)

Let 3, be a compact orientable surface of genus . Then for every
Riemannian metric g on X, and for every positive Schrodinger
operator L = Az + g on X, we have

Q(y+ 1)k + o [, qdA

)\k(L) < Area(Zv) ’

where «a and @ > 0 are absolute constants.
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Grigor'yan, Netrusov, Yau (2004)

Let ¥, be a compact orientable surface of genus . Then for every
Riemannian metric g on ¥, and for every Schrodinger operator
L=Ag+qonX,, wehave

Q(y+1)k+d671 fi,gTdA—6 [, dA

)\k(L) < Area(Zv) )

where § € (0,1) and @ are absolute constants.
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Weyl's Law

3

(L) ~ am(W’M) . K=o

_2
where o, = 472w, ™ and wy, is the volume of the unit ball in the
standard R™.
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Weyl's Law

3

(L) ~ am(ml("M)> . K=o

_2
where o, = 472w, ™ and wy, is the volume of the unit ball in the
standard R™.

Grigor'yan, Netrusov, Yau

Ck + [, qdvol

AL = evol(M)

Q(y+ 1)k +46 [;, qdA

s Area(X,) ’
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Let (M, g) be a compact Riemannian manifold of dimension m, we
define its min-conformal volume as follows:

V([g]) = inf{volg (M) : go € [g], Riccig, > —(m—1)}.
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Theorem (H. 2012)

There exist constants A,,;,, By, and C,, depending only on m such
that for every m-dimensional compact Riemannian manifold (M, g)
and every positive Schrodinger operator L = Ag 4+ q on M, we have

Compare with
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Theorem (H. 2012)

There exist constants o, € (0,1), By, and Cp, depending only on
m such that for every m-dimensional compact Riemannian

manifold (M, g) and every Schrédinger operator L = A,z + g on
M, we have

am™t [, g dvol — ap, [, g~ dvol
(L) <« Z2—=M i
QORE vol(M) *

oo (o) (stom)

Compare with
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H. 2012

Ay+Bk+a [z qdA

ML) = Area(X,)

where a, A and B are absolute constants.

Y
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H. 2012

Ay + Bk +a f;_qdA
Area(X) ’

where a, A and B are absolute constants.

A(L) <

Grigor'yan, Netrusov, Yau (2004)

Qv+ 1)k +3 [;_qdA

(L) = Area(X,),

where @ and ¢ are absolute constants.
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Bakry—Emery Laplacian

» A Riemannian manifold (M, g) with the weighted measure
e~ ?dvol, where ¢ € C?(M), is denoted by the triple
(M, g, ¢) and is called a Bakry—Emery manifold.
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Bakry—Emery Laplacian

» A Riemannian manifold (M, g) with the weighted measure
e~ ?dvol, where ¢ € C?(M), is denoted by the triple
(M, g, ¢) and is called a Bakry—Emery manifold.

» The weighted Laplacian Ay also called Bakry—Emery
Laplacian is defined by

Dy =Dg+Vep Vg =—ediv(e ?V,).
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Bakry—Emery Laplacian

» The Bakry—Emery Laplacian Ay = Ay +Vgo- Vg is symetric
with respect to the weighted measure e~?dvol. Indeed, for
every f,g € C§°(M),

/ Agfhe™?dvol = / (Vgf,Vghye ?dvol.
M M

Furthermore, the operator Ay with the domain C§°(M)

admits the Friedrichs extension to a self-adjoint operator in
L2(M, e=?dvol).
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Bakry—Emery Laplacian

» On Bakry—Emery manifolds, we have a new notion of curvature
called the Bakry—Emery Ricci tensor which is defined by

Riccig = Riccig + Hessg.

13/25



Bakry—Emery Laplacian

» On Bakry-Emery manifolds, we have a new notion of curvature
called the Bakry—Emery Ricci tensor which is defined by

Riccig = Riccig + Hesso.

» The Bakry—Emery Laplacian A, is unitarily equivalent to the
positive Schrodinger operator L = A, + SA,¢ + |V
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Theorem (H. 2012)

There exist constants A, > 1, B, and C,;, depending only on
m € N*, such that for every m-dimensional compact Riemannian
manifold (M, g), every ¢ € C2(M) and every k € N*, we have

3n

MB4) € BBV, ()

+n (aim)
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Theorem (H. 2012)

3~

Am

MB9) < 2B 61 (D)

«(satm)

We know A, is unitary equivalent to the positive Schrodinger
operator L = Ag + %quﬁ + %|Vg¢|2. Hence, by replacing

1 1 1
/M §Ag¢+ Z|Vg¢|2dV01 = Z||vg¢||L2(M)

in the previous result, we get the desired inequality.
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Theorem (H. 2012)

Let (M, g, ¢) be a compact Bakry—Emery manifold with
|Vg¢| < o for some o > 0. Then, there exist constants A(m) and
B(m) such that for every k € N*,

3
3N

Me(Dg) < A(m) max{o?, 1} (V‘gﬁ[(ﬂ)))

+ B(m) (vol¢(M))
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Theorem (H. 2012)

Vi([g]) = inf{vols(M, &) : go € [g], Riccig(M, go) > —(m—1)}.
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Theorem (H. 2012)

Let (M, g, ¢) be a compact Bakry—Emery manifold with
|Vg¢| < o for some o > 0. Then, there exist constants A(m) and
B(m) such that for every k € N*,

3
3N

Me(Dg) < A(m) max{o?, 1} (V‘gﬁ[(ﬂ)))

+ B(m) (vol¢(M))
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> If Riccig(M) > —k?(m — 1) and |Vz¢| < o for some
constants k and o > 0, then

3v

M(Dg) < A(m)max{c?,1}x% + B(m) <Vol¢k(l\/l))
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> If Riccig(M) > —k?(m — 1) and |Vz¢| < o for some
constants k and o > 0, then

3v

M(Dg) < A(m)max{c?,1}x% + B(m) <vol¢k(l\/l))

» If Riccig(M, go) > 0 for some gy € [g], then

3™

Ae(Ag) < B(m) <1:<M)>
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A few words about the proof

Let {f,-},’-‘:1 be a family of disjointly supported test functions.

J | Vefil2e=?dvol
S f2e=¢dvol

Ak(Ag) < max
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A few words about the proof

Let {f;}*_, be a family of disjointly supported test functions.

Ju |V efil2e=?dvol
[y Fre=¢dvol

Ak(Ag) < max

2 _2
(S Ve filme=¢dvolg) ™ (fi Lauppre ¢dvol) ™™
[y fre=¢dvol ’

)\k(Aqg) < max

where gp € [g].
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Grigor'yan, Netrusov, Yau 2004

Let (X, d, ) be an m — m space with a finite non-atomic Borel
measure p satisfying the (2, N)-covering property for some N > 0.
Then for every n € N*, there exists a family {A;}7_; of annuli in X
such that for each i, p(A;) > “(N) where Cyy is a positive
constant depending only on N and 2A; are mutually disjoint.

2A; = A(x, 3r,2R)
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Colbois, Maerten 2008

Let (X, d, ) be an m — m space with a finite non-atomic Borel
measure y satisfying the (2, N; p)-covering property for some
p > 0. For every n € N*, let 0 < r < p be such that for every
x € X, u(B(x,r)) < MC(ZXn) where Cp is a positive constant
depending only on N. TNhen there exists a family {A;}"_; of
measurable subsets of X such that for each i, p(A;) > uX)

CNn !
the subsets {A7}" | are mutually disjoint.

and
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A few words about the proof

2 _2
(i [ Vo il me=?dvolgy) ™ ( foy Louppe™dlvol) ™
Juy fPe=¢dvol

Ak(Ay) < max
1
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A few words about the proof

2 (o 1-2
(fM |vgofi|me_¢dvolgo) m ( 1¢k(M)>

voly (M)
Cnk

A(Dg) < max
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A few words about the proof

3n

2
k m
< |ma—¢ - =
A(Ag) < miaxCN (/M|Vgof,| e dvolgo) (vol¢(M)>
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A few words about the proof

If volys(B(x,r),g0) < Dr™, Vr>0

3v

2
m k
< .| m _¢ -
A(Dg) < max Cn (/M|Vgof,\ e dvolg0> (vol¢(M)>

2A; = A(x, 3r,2R)
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A few words about the proof

If volys(B(x,r),g0) < Dr™, Vr>0

3n

M(Bg) < CnCp (W)

2A; = A(x, 3r,2R)

20/25



A few words about the proof

3n

2
O k
< f;|me~%dvol —
M(Bg) < Cy (/ngo | Me =% dvo go) (V01¢(M)>
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A few words about the proof

3~
3[v

1 [voly(M,

(Volqbk( M ))
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A few words about the proof

2
1 VO]¢(A4,gb) m
< = (| NI EY)
Ak(Bg) < Cn ( volg(M)
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GNY-construction leads to

3o

CM-construction leads to

Bl
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GNY-construction leads to

3o

CM-construction leads to

3n

1 /voly(M,
Me(Dg) < Cmr_2 (M)

V01¢(M)
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H. 2011

Let (X, d, u) be an m — m space with a finite non-atomic Borel
measure p satisfying the (2, N; p)-covering property. Then for
every n € N*, there exists a family {A;}7_; of subsets of X with
the following properties:

. X
(i) n(Ai) = ”C(Nn)
(i) the family {A;}"_, is such that either
(a) all the A; are annuli and 2A; are mutually disjoint with outer

radii smaller than p, or
(b) all the A; are domains in X and AP are mutually disjoint with

__p
"o = 1600 -
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GNY-construction leads to

3o

A(Bg) < CuCop (v01¢l(<M)>

CM-construction leads to

V01¢(M)
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Thank you for your attention!
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