Upper bounds for eigenvalues of perturbed Laplace operators

Asma Hassannezhad

MAXIMILIANS UNIVERSITÄT
MÜNCHEN

June 2013
Neuchâtel University

Schrödinger Operators

- Let (M, g) be a compact Riemannian manifold of dimension m and let $q \in C(M)$. The operator $L:=\Delta_{g}+q$ is called the Schrödinger operator.

Schrödinger Operators

- Let (M, g) be a compact Riemannian manifold of dimension m and let $q \in C(M)$. The operator $L:=\Delta_{g}+q$ is called the Schrödinger operator.
- Eigenvalues of $L=\Delta_{g}+q$ form a nondecreasing sequence of real numbers

$$
\lambda_{1}(L) \leq \lambda_{2}(L) \leq \cdots \leq \lambda_{k}(L) \leq \cdots \nearrow \infty
$$

where each $\lambda_{k}(L)$ has finite multiplicity.

- The min-max theorem

$$
\lambda_{k}(L)=\min _{V_{k}} \max _{0 \neq f \in V_{k}} \frac{\int_{M}\left|\nabla_{g} f\right|^{2} d \mathrm{vol}+\int_{M} f^{2} q d \mathrm{vol}}{\int_{M} f^{2} d \mathrm{vol}}
$$

where V_{k} is a k-dimensional linear subspace of $H^{1}(M)$.

- The min-max theorem

$$
\lambda_{k}(L)=\min _{V_{k}} \max _{0 \neq f \in V_{k}} \frac{\int_{M}\left|\nabla_{g} f\right|^{2} d \mathrm{vol}+\int_{M} f^{2} q d \mathrm{vol}}{\int_{M} f^{2} d \mathrm{vol}}
$$

where V_{k} is a k-dimensional linear subspace of $H^{1}(M)$.

- It is easy to see that

$$
\lambda_{1}(L) \leq \frac{1}{\operatorname{vol}(M)} \int_{M} q d \operatorname{vol} .
$$

El Soufi and Ilias (1992)

For the second eigenvalue of the Schrödinger operator L, we have

$$
\lambda_{2}(L) \leq m\left(\frac{V_{c}([g])}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}+\frac{\int_{M} q d \operatorname{vol}}{\operatorname{vol}(M)}
$$

where $V_{c}([g])$ is the conformal volume that is defined by Li and Yau (1982).

El Soufi and Ilias (1992)

For an orientable Riemannian surface $\left(\Sigma_{\gamma}, g\right)$ of genus γ, one has

$$
\lambda_{2}(L) \leq \frac{8 \pi}{\operatorname{Area}\left(\Sigma_{\gamma}\right)}\left[\frac{\gamma+3}{2}\right]+\frac{\int_{\Sigma_{\gamma}} q d \mathrm{vol}}{\operatorname{Area}\left(\Sigma_{\gamma}\right)},
$$

where $\left[\frac{\gamma+3}{2}\right]$ is the integer part of $\frac{\gamma+3}{2}$.

El Soufi and Ilias (1992)

For an orientable Riemannian surface $\left(\Sigma_{\gamma}, g\right)$ of genus γ, one has

$$
\lambda_{2}(L) \leq \frac{8 \pi}{\operatorname{Area}\left(\Sigma_{\gamma}\right)}\left[\frac{\gamma+3}{2}\right]+\frac{\int_{\Sigma_{\gamma}} q d \mathrm{vol}}{\operatorname{Area}\left(\Sigma_{\gamma}\right)},
$$

where $\left[\frac{\gamma+3}{2}\right]$ is the integer part of $\frac{\gamma+3}{2}$.

One can not use the method that gives the above upper bounds to obtain upper bounds for higher eigenvalues and we need new ideas.

Grigor'yan, Netrusov, Yau (2004)

Let (M, g) be a compact Riemannian manifold and N and C_{0} be some positive constants such that M satisfies the $(2, N)$-covering property and $\operatorname{vol}(B(x, r)) \leq C_{0} r^{2}$, for every $x \in M$ and every $r>0$. Then for every positive Schrödinger operator $L=\Delta_{g}+q$ on M, we have

$$
\lambda_{k}(L) \leq \frac{C k+\int_{M} q d \operatorname{vol}}{\epsilon \operatorname{vol}(M)}
$$

where $\epsilon \in(0,1)$ depends only on N and C depends on N and C_{0}.

Grigor'yan, Netrusov, Yau (2004)

Let (M, g) be a compact Riemannian manifold and N and C_{0} be some positive constants such that M satisfies the $(2, N)$-covering property and $\operatorname{vol}(B(x, r)) \leq C_{0} r^{2}$, for every $x \in M$ and every $r>0$. Then for every positive Schrödinger operator $L=\Delta_{g}+q$ on M, we have

$$
\lambda_{k}(L) \leq \frac{C k+\int_{M} q d \mathrm{vol}}{\epsilon \operatorname{vol}(M)}
$$

where $\epsilon \in(0,1)$ depends only on N and C depends on N and C_{0}.

A metric space (X, d) has $(2, N)$-covering property if each ball of radius $r>0$ can be covered by at most N balls of radius $r / 2$.

A metric space (X, d) has $(2, N)$-covering property if each ball of radius $r>0$ can be covered by at most N balls of radius $r / 2$.

Examples

- Any metric measure space (X, d, μ) that has the doubling property i.e. there exists a positive constant C such that

$$
\frac{\mu(B(x, 2 r))}{\mu(B(x, r))} \leq C, \quad \forall x \in X, r>0
$$

has $(2, N)$-covering property with for example $N=C^{4}$.

A metric space (X, d) has $(2, N)$-covering property if each ball of radius $r>0$ can be covered by at most N balls of radius $r / 2$.

Examples

- Any metric measure space (X, d, μ) that has the doubling property i.e. there exists a positive constant C such that

$$
\frac{\mu(B(x, 2 r))}{\mu(B(x, r))} \leq C, \quad \forall x \in X, r>0
$$

has $(2, N)$-covering property with for example $N=C^{4}$.

- Every compact Riemannian manifold (M, g) has (2, N)-covering property. If for example Riccig ≥ 0 then N depends only on the dimension.

Grigor'yan, Netrusov, Yau (2004)

Let (M, g) be a compact Riemannian manifold and N and C_{0} be some positive constants such that M satisfies the $(2, N)$-covering property and $\operatorname{vol}(B(x, r)) \leq C_{0} r^{2}$, for every $x \in M$ and every $r>0$. Then for every Schrödinger operator $L=\Delta_{g}+q$ on M, we have

$$
\lambda_{k}\left(\Delta_{g}+q\right) \leq \frac{C k+\delta^{-1} \int_{M} q^{+} d \mathrm{vol}-\delta \int_{M} q^{-} d \mathrm{vol}}{\operatorname{vol}(M)}
$$

where $\delta \in(0,1)$ is a constant which depends only on $N, C>0$ is a constant which depends on N and C_{0}, and $q^{ \pm}=\max \{| \pm q|, 0\}$.

Grigor'yan, Netrusov, Yau (2004)

Let (M, g) be a compact Riemannian manifold and N and C_{0} be some positive constants such that M satisfies the $(2, N)$-covering property and $\operatorname{vol}(B(x, r)) \leq C_{0} r^{2}$, for every $x \in M$ and every $r>0$. Then for every Schrödinger operator $L=\Delta_{g}+q$ on M, we have

$$
\lambda_{k}\left(\Delta_{g}+q\right) \leq \frac{C k+\delta^{-1} \int_{M} q^{+} d \mathrm{vol}-\delta \int_{M} q^{-} d \mathrm{vol}}{\operatorname{vol}(M)}
$$

where $\delta \in(0,1)$ is a constant which depends only on $N, C>0$ is a constant which depends on N and C_{0}, and $q^{ \pm}=\max \{| \pm q|, 0\}$.

Grigor'yan, Netrusov, Yau (2004)

Let Σ_{γ} be a compact orientable surface of genus γ. Then for every Riemannian metric g on Σ_{γ} and for every positive Schrödinger operator $L=\Delta_{g}+q$ on Σ_{γ}, we have

$$
\lambda_{k}(L) \leq \frac{Q(\gamma+1) k+\alpha \int_{M} q d A}{\operatorname{Area}\left(\Sigma_{\gamma}\right)}
$$

where α and $Q>0$ are absolute constants.

Grigor'yan, Netrusov, Yau (2004)

Let Σ_{γ} be a compact orientable surface of genus γ. Then for every Riemannian metric g on Σ_{γ} and for every Schrödinger operator $L=\Delta_{g}+q$ on Σ_{γ}, we have

$$
\lambda_{k}(L) \leq \frac{Q(\gamma+1) k+\delta^{-1} \int_{M} q^{+} d A-\delta \int_{M} q^{-} d A}{\operatorname{Area}\left(\Sigma_{\gamma}\right)}
$$

where $\delta \in(0,1)$ and Q are absolute constants.

Weyl's Law

$$
\lambda_{k}(L) \sim \alpha_{m}\left(\frac{k}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}, \quad k \rightarrow \infty
$$

where $\alpha_{m}=4 \pi^{2} \omega_{m}^{-\frac{2}{m}}$ and ω_{m} is the volume of the unit ball in the standard \mathbb{R}^{m}.

Weyl's Law

$$
\lambda_{k}(L) \sim \alpha_{m}\left(\frac{k}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}, \quad k \rightarrow \infty
$$

where $\alpha_{m}=4 \pi^{2} \omega_{m}^{-\frac{2}{m}}$ and ω_{m} is the volume of the unit ball in the standard \mathbb{R}^{m}.

Grigor'yan, Netrusov, Yau

$$
\lambda_{k}(L) \leq \frac{C k+\int_{M} q d \mathrm{vol}}{\epsilon \operatorname{vol}(M)}
$$

$$
\lambda_{k}(L) \leq \frac{Q(\gamma+1) k+\delta \int_{M} q d A}{\operatorname{Area}\left(\Sigma_{\gamma}\right)}
$$

Definition

Let (M, g) be a compact Riemannian manifold of dimension m, we define its min-conformal volume as follows:

$$
V([g])=\inf \left\{\operatorname{vol}_{g_{0}}(M): g_{0} \in[g], \operatorname{Ricci}_{g_{0}} \geq-(m-1)\right\}
$$

Theorem (H. 2012)

There exist constants A_{m}, B_{m} and C_{m} depending only on m such that for every m-dimensional compact Riemannian manifold (M, g) and every positive Schrödinger operator $L=\Delta_{g}+q$ on M, we have

$$
\lambda_{k}(L) \leq A_{m} \frac{\int_{M} q d \operatorname{vol}}{\operatorname{vol}(M)}+B_{m}\left(\frac{V([g])}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}+C_{m}\left(\frac{k}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}
$$

Compare with © GNY (2004)

Theorem (H. 2012)

There exist constants $\alpha_{m} \in(0,1), B_{m}$ and C_{m} depending only on m such that for every m-dimensional compact Riemannian manifold (M, g) and every Schrödinger operator $L=\Delta_{g}+q$ on M, we have

$$
\begin{array}{r}
\lambda_{k}(L) \leq \\
\frac{\alpha_{m}^{-1} \int_{M} q^{+} d \operatorname{vol}-\alpha_{m} \int_{M} q^{-} d \operatorname{vol}}{\operatorname{vol}(M)}+ \\
B_{m}\left(\frac{V([g])}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}+C_{m}\left(\frac{k}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}
\end{array}
$$

Compare with GNY (2004)
H. 2012

$$
\lambda_{k}(L) \leq \frac{A \gamma+B k+a \int_{\Sigma_{\gamma}} q d A}{\operatorname{Area}\left(\Sigma_{\gamma}\right)}
$$

where a, A and B are absolute constants.
H. 2012

$$
\lambda_{k}(L) \leq \frac{A \gamma+B k+a \int_{\Sigma_{\gamma}} q d A}{\operatorname{Area}\left(\Sigma_{\gamma}\right)}
$$

where a, A and B are absolute constants.

Grigor'yan, Netrusov, Yau (2004)

$$
\lambda_{k}(L) \leq \frac{Q(\gamma+1) k+\delta \int_{\Sigma_{\gamma}} q d A}{\operatorname{Area}\left(\Sigma_{\gamma}\right)}
$$

where Q and δ are absolute constants.

Bakry-Émery Laplacian

- A Riemannian manifold (M, g) with the weighted measure $e^{-\phi} d$ vol, where $\phi \in C^{2}(M)$, is denoted by the triple (M, g, ϕ) and is called a Bakry-Émery manifold.

Bakry-Émery Laplacian

- A Riemannian manifold (M, g) with the weighted measure $e^{-\phi} d$ vol, where $\phi \in C^{2}(M)$, is denoted by the triple (M, g, ϕ) and is called a Bakry-Émery manifold.
- The weighted Laplacian Δ_{ϕ} also called Bakry-Émery Laplacian is defined by

$$
\Delta_{\phi}=\Delta_{g}+\nabla_{g} \phi \cdot \nabla_{g}=-e^{\phi} \operatorname{div}\left(e^{-\phi} \nabla_{g}\right)
$$

Bakry-Émery Laplacian

- The Bakry-Émery Laplacian $\Delta_{\phi}=\Delta_{g}+\nabla_{g} \phi \cdot \nabla_{g}$ is symetric with respect to the weighted measure $e^{-\phi} d$ vol. Indeed, for every $f, g \in C_{0}^{\infty}(M)$,

$$
\int_{M} \Delta_{\phi} f h e^{-\phi} d \mathrm{vol}=\int_{M}\left\langle\nabla_{g} f, \nabla_{g} h\right\rangle e^{-\phi} d \mathrm{vol}
$$

Furthermore, the operator Δ_{ϕ} with the domain $C_{0}^{\infty}(M)$ admits the Friedrichs extension to a self-adjoint operator in $L^{2}\left(M, e^{-\phi} d \mathrm{vol}\right)$.

Bakry-Émery Laplacian

- On Bakry-Émery manifolds, we have a new notion of curvature called the Bakry-Émery Ricci tensor which is defined by

$$
\operatorname{Ricci}_{\phi}=\operatorname{Ricci}_{g}+\operatorname{Hess} \phi
$$

Bakry-Émery Laplacian

- On Bakry-Émery manifolds, we have a new notion of curvature called the Bakry-Émery Ricci tensor which is defined by

$$
\operatorname{Ricci}_{\phi}=\operatorname{Ricci}_{g}+\operatorname{Hess} \phi
$$

- The Bakry-Émery Laplacian Δ_{ϕ} is unitarily equivalent to the positive Schrödinger operator $L=\Delta_{g}+\frac{1}{2} \Delta_{g} \phi+\frac{1}{4}\left|\nabla_{g} \phi\right|^{2}$.

Theorem (H. 2012)

There exist constants $A_{m}>1, B_{m}$ and C_{m} depending only on $m \in \mathbb{N}^{*}$, such that for every m-dimensional compact Riemannian manifold (M, g), every $\phi \in C^{2}(M)$ and every $k \in \mathbb{N}^{*}$, we have

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \frac{A_{m}}{\operatorname{vol}(M)}\left\|\nabla_{g} \phi\right\|_{L^{2}(M)}^{2}+B_{m}\left(\frac{V([g])}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}+C_{m}\left(\frac{k}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}
$$

Theorem (H. 2012)

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \frac{A_{m}}{\operatorname{vol}(M)}\left\|\nabla_{g} \phi\right\|_{L^{2}(M)}^{2}+B_{m}\left(\frac{V([g])}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}+C_{m}\left(\frac{k}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}
$$

We know Δ_{ϕ} is unitary equivalent to the positive Schrödinger operator $L=\Delta_{g}+\frac{1}{2} \Delta_{g} \phi+\frac{1}{4}\left|\nabla_{g} \phi\right|^{2}$. Hence, by replacing

$$
\int_{M} \frac{1}{2} \Delta_{g} \phi+\frac{1}{4}\left|\nabla_{g} \phi\right|^{2} d \mathrm{vol}=\frac{1}{4}\left\|\nabla_{g} \phi\right\|_{L^{2}(M)}
$$

in the previous result, we get the desired inequality.

Theorem (H. 2012)

Let (M, g, ϕ) be a compact Bakry-Émery manifold with $\left|\nabla_{g} \phi\right| \leq \sigma$ for some $\sigma \geq 0$. Then, there exist constants $A(m)$ and $B(m)$ such that for every $k \in \mathbb{N}^{*}$,

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq A(m) \max \left\{\sigma^{2}, 1\right\}\left(\frac{V_{\phi}([g])}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}+B(m)\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

Theorem (H. 2012)

$V_{\phi}([g])=\inf \left\{\operatorname{vol}_{\phi}\left(M, g_{0}\right): g_{0} \in[g], \operatorname{Ricci}_{\phi}\left(M, g_{0}\right) \geq-(m-1)\right\}$.

Theorem (H. 2012)

Let (M, g, ϕ) be a compact Bakry-Émery manifold with $\left|\nabla_{g} \phi\right| \leq \sigma$ for some $\sigma \geq 0$. Then, there exist constants $A(m)$ and $B(m)$ such that for every $k \in \mathbb{N}^{*}$,

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq A(m) \max \left\{\sigma^{2}, 1\right\}\left(\frac{V_{\phi}([g])}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}+B(m)\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

- If $\operatorname{Ricci}_{\phi}(M) \geq-\kappa^{2}(m-1)$ and $\left|\nabla_{g} \phi\right| \leq \sigma$ for some constants κ and $\sigma \geq 0$, then

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq A(m) \max \left\{\sigma^{2}, 1\right\} \kappa^{2}+B(m)\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

- If $\operatorname{Ricci}_{\phi}(M) \geq-\kappa^{2}(m-1)$ and $\left|\nabla_{g} \phi\right| \leq \sigma$ for some constants κ and $\sigma \geq 0$, then

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq A(m) \max \left\{\sigma^{2}, 1\right\} \kappa^{2}+B(m)\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

- If $\operatorname{Ricci}_{\phi}\left(M, g_{0}\right) \geq 0$ for some $g_{0} \in[g]$, then

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq B(m)\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

A few words about the proof

Let $\left\{f_{i}\right\}_{i=1}^{k}$ be a family of disjointly supported test functions.

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} \frac{\int_{M}\left|\nabla_{g} f_{i}\right|^{2} e^{-\phi} d \mathrm{vol}}{\int_{M} f_{i}^{2} e^{-\phi} d \mathrm{vol}}
$$

A few words about the proof

Let $\left\{f_{i}\right\}_{i=1}^{k}$ be a family of disjointly supported test functions.

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} \frac{\int_{M}\left|\nabla_{g} f_{i}\right|^{2} e^{-\phi} d \mathrm{vol}}{\int_{M} f_{i}^{2} e^{-\phi} d \mathrm{vol}}
$$

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} \frac{\left(\int_{M}\left|\nabla_{g} f_{i}\right|^{m} e^{-\phi} d \mathrm{vol}\right)^{\frac{2}{m}}\left(\int_{M} 1_{\text {supp }_{i}} e^{-\phi} d \mathrm{vol}\right)^{1-\frac{2}{m}}}{\int_{M} f_{i}^{2} e^{-\phi} d \mathrm{vol}}
$$

A few words about the proof

Let $\left\{f_{i}\right\}_{i=1}^{k}$ be a family of disjointly supported test functions.

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} \frac{\int_{M}\left|\nabla_{g} f_{i}\right|^{2} e^{-\phi} d \mathrm{vol}}{\int_{M} f_{i}^{2} e^{-\phi} d \mathrm{vol}}
$$

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} \frac{\left(\int_{M}\left|\nabla_{g} f_{i}\right|^{m} e^{-\phi} d \mathrm{vol}\right)^{\frac{2}{m}}\left(\int_{M} 1_{\text {supp }_{i}} e^{-\phi} d \mathrm{vol}\right)^{1-\frac{2}{m}}}{\int_{M} f_{i}^{2} e^{-\phi} d \mathrm{vol}}
$$

A few words about the proof

Let $\left\{f_{i}\right\}_{i=1}^{k}$ be a family of disjointly supported test functions.

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} \frac{\int_{M}\left|\nabla_{g} f_{i}\right|^{2} e^{-\phi} d \mathrm{vol}}{\int_{M} f_{i}^{2} e^{-\phi} d \mathrm{vol}}
$$

$\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} \frac{\left(\int_{M}\left|\nabla_{g_{0}} f_{i}\right|^{m} e^{-\phi} d \operatorname{vol}_{g_{0}}\right)^{\frac{2}{m}}\left(\int_{M} 1_{\text {supp }_{i}} e^{-\phi} d \mathrm{vol}\right)^{1-\frac{2}{m}}}{\int_{M} f_{i}^{2} e^{-\phi} d \mathrm{vol}}$, where $g_{0} \in[g]$.

Grigor'yan, Netrusov, Yau 2004
Let (X, d, μ) be an $m-m$ space with a finite non-atomic Borel measure μ satisfying the ($2, N$)-covering property for some $N>0$. Then for every $n \in \mathbb{N}^{*}$, there exists a family $\left\{A_{i}\right\}_{i=1}^{n}$ of annuli in X such that for each $i, \mu\left(A_{i}\right) \geq \frac{\mu(X)}{C_{N} n}$, where C_{N} is a positive constant depending only on N and $2 A_{i}$ are mutually disjoint.

Colbois, Maerten 2008

Let (X, d, μ) be an $m-m$ space with a finite non-atomic Borel measure μ satisfying the $(2, N ; \rho)$-covering property for some $\rho>0$. For every $n \in \mathbb{N}^{*}$, let $0<r \leq \rho$ be such that for every $x \in X, \mu(B(x, r)) \leq \frac{\mu(X)}{C_{N}^{2} n}$, where C_{N} is a positive constant depending only on N. Then there exists a family $\left\{A_{i}\right\}_{i=1}^{n}$ of measurable subsets of X such that for each $i, \mu\left(A_{i}\right) \geq \frac{\mu(X)}{C_{N} n}$, and the subsets $\left\{A_{i}^{r}\right\}_{i=1}^{n}$ are mutually disjoint.

A few words about the proof

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} \frac{\left(\int_{M}\left|\nabla_{g_{0}} f_{i}\right|^{m} e^{-\phi} d \operatorname{vol}_{g_{0}}\right)^{\frac{2}{m}}\left(\int_{M} 1_{\text {supp } f_{i}} e^{-\phi} d \mathrm{vol}\right)^{1-\frac{2}{m}}}{\int_{M} f_{i}^{2} e^{-\phi} d \mathrm{vol}}
$$

A few words about the proof

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} \frac{\left(\int_{M}\left|\nabla_{g_{0}} f_{i}\right|^{m} e^{-\phi} d \operatorname{vol}_{g_{0}}\right)^{\frac{2}{m}}\left(\frac{\operatorname{vol}_{\phi}(M)}{k}\right)^{1-\frac{2}{m}}}{\frac{\operatorname{vol}_{\phi}(M)}{C_{N} k}}
$$

A few words about the proof

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} C_{N}\left(\int_{M}\left|\nabla_{g_{0}} f_{i}\right|^{m} e^{-\phi} d \operatorname{vol}_{g_{0}}\right)^{\frac{2}{m}}\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

A few words about the proof

$$
\text { If } \operatorname{vol}_{\phi}\left(B(x, r), g_{0}\right) \leq D r^{m}, \quad \forall r>0
$$

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq \max _{i} C_{N}\left(\int_{M}\left|\nabla_{g_{0}} f_{i}\right|^{m} e^{-\phi} d \operatorname{vol}_{g_{0}}\right)^{\frac{2}{m}}\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

A few words about the proof

$$
\text { If } \operatorname{vol}_{\phi}\left(B(x, r), g_{0}\right) \leq D r^{m}, \quad \forall r>0
$$

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{N} C_{D}\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

A few words about the proof

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{N}\left(\int_{M}\left|\nabla_{g_{0}} f_{i}\right|^{m} e^{-\phi} d \operatorname{vol}_{g_{0}}\right)^{\frac{2}{m}}\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

A few words about the proof

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{N} \frac{1}{r^{2}}\left(\frac{\operatorname{vol}_{\phi}\left(M, g_{0}\right)}{k}\right)^{\frac{2}{m}}\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

A few words about the proof

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{N} \frac{1}{r^{2}}\left(\frac{\operatorname{vol}_{\phi}\left(M, g_{0}\right)}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

GNY-construction leads to

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{N} C_{D}\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

CM-construction leads to

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{N} \frac{1}{r^{2}}\left(\frac{\operatorname{vol}_{\phi}\left(M, g_{0}\right)}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

GNY-construction leads to

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{N} C_{D}\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

CM-construction leads to

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{m} \frac{1}{r^{2}}\left(\frac{\operatorname{vol}_{\phi}\left(M, g_{0}\right)}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

Let (X, d, μ) be an $m-m$ space with a finite non-atomic Borel measure μ satisfying the $(2, N ; \rho)$-covering property. Then for every $n \in \mathbb{N}^{*}$, there exists a family $\left\{A_{i}\right\}_{i=1}^{n}$ of subsets of X with the following properties:
(i) $\mu\left(A_{i}\right) \geq \frac{\mu(X)}{C_{N} n}$,
(ii) the family $\left\{A_{i}\right\}_{i=1}^{n}$ is such that either
(a) all the A_{i} are annuli and $2 A_{i}$ are mutually disjoint with outer radii smaller than ρ, or
(b) all the A_{i} are domains in X and $A_{i}^{r_{0}}$ are mutually disjoint with

$$
r_{0}=\frac{\rho}{1600} .
$$

GNY-construction leads to

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{N} C_{D}\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

CM-construction leads to

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq C_{m} \frac{1}{r^{2}}\left(\frac{\operatorname{vol}_{\phi}\left(M, g_{0}\right)}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

H. 2012

$$
\lambda_{k}\left(\Delta_{\phi}\right) \leq A(m) \max \left\{\sigma^{2}, 1\right\}\left(\frac{V_{\phi}([g])}{\operatorname{vol}_{\phi}(M, g)}\right)^{\frac{2}{m}}+B(m)\left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}
$$

Thank you for your attention!

