Upper bounds for eigenvalues of perturbed Laplace operators

Asma Hassannezhad

June 2013 Neuchâtel University

Schrödinger Operators

▶ Let (M, g) be a compact Riemannian manifold of dimension m and let $q \in C(M)$. The operator $L := \Delta_g + q$ is called the Schrödinger operator.

Schrödinger Operators

- ▶ Let (M, g) be a compact Riemannian manifold of dimension m and let $q \in C(M)$. The operator $L := \Delta_g + q$ is called the Schrödinger operator.
- ► Eigenvalues of $L = \Delta_g + q$ form a nondecreasing sequence of real numbers

$$\lambda_1(L) \leq \lambda_2(L) \leq \cdots \leq \lambda_k(L) \leq \cdots \nearrow \infty.$$

where each $\lambda_k(L)$ has finite multiplicity.

► The min-max theorem

$$\lambda_k(L) = \min_{V_k} \max_{0 \neq f \in V_k} \frac{\int_M |\nabla_g f|^2 d\mathrm{vol} + \int_M f^2 q d\mathrm{vol}}{\int_M f^2 d\mathrm{vol}},$$

where V_k is a k-dimensional linear subspace of $H^1(M)$.

▶ The min-max theorem

$$\lambda_k(L) = \min_{V_k} \max_{0 \neq f \in V_k} \frac{\int_M |\nabla_g f|^2 d\mathrm{vol} + \int_M f^2 q d\mathrm{vol}}{\int_M f^2 d\mathrm{vol}},$$

where V_k is a k-dimensional linear subspace of $H^1(M)$.

▶ It is easy to see that

$$\lambda_1(L) \leq \frac{1}{\operatorname{vol}(M)} \int_M q \ d\operatorname{vol}.$$

El Soufi and Ilias (1992)

For the second eigenvalue of the Schrödinger operator L, we have

$$\lambda_2(L) \leq m \left(\frac{V_c([g])}{\operatorname{vol}(M)}\right)^{\frac{2}{m}} + \frac{\int_M q d \operatorname{vol}}{\operatorname{vol}(M)},$$

where $V_c([g])$ is the conformal volume that is defined by Li and Yau (1982).

El Soufi and Ilias (1992)

For an orientable Riemannian surface (Σ_{γ}, g) of genus γ , one has

$$\lambda_2(L) \leq \frac{8\pi}{\operatorname{Area}(\Sigma_{\gamma})} \left[\frac{\gamma+3}{2} \right] + \frac{\int_{\Sigma_{\gamma}} q d \operatorname{vol}}{\operatorname{Area}(\Sigma_{\gamma})},$$

where $\left[\frac{\gamma+3}{2}\right]$ is the integer part of $\frac{\gamma+3}{2}$.

El Soufi and Ilias (1992)

For an orientable Riemannian surface (Σ_{γ}, g) of genus γ , one has

$$\lambda_2(\mathit{L}) \leq \frac{8\pi}{\operatorname{Area}(\Sigma_\gamma)} \left[\frac{\gamma+3}{2} \right] + \frac{\int_{\Sigma_\gamma} q d \mathrm{vol}}{\operatorname{Area}(\Sigma_\gamma)},$$

where $\left[\frac{\gamma+3}{2}\right]$ is the integer part of $\frac{\gamma+3}{2}$.

One can not use the method that gives the above upper bounds to obtain upper bounds for higher eigenvalues and we need new ideas.

Let (M,g) be a compact Riemannian manifold and N and C_0 be some positive constants such that M satisfies the (2,N)-covering property and $\operatorname{vol}(B(x,r)) \leq C_0 r^2$, for every $x \in M$ and every r > 0. Then for every positive Schrödinger operator $L = \Delta_g + q$ on M, we have

$$\lambda_k(L) \leq \frac{Ck + \int_M qd \text{vol}}{\epsilon \text{vol}(M)},$$

where $\epsilon \in (0,1)$ depends only on N and C depends on N and C_0 .

Let (M,g) be a compact Riemannian manifold and N and C_0 be some positive constants such that M satisfies the (2,N)-covering property and $vol(B(x,r)) \leq C_0 r^2$, for every $x \in M$ and every r > 0. Then for every positive Schrödinger operator $L = \Delta_g + q$ on M, we have

$$\lambda_k(L) \leq \frac{Ck + \int_M qd \text{vol}}{\epsilon \text{vol}(M)},$$

where $\epsilon \in (0,1)$ depends only on N and C depends on N and C_0 .

A metric space (X, d) has (2, N)-covering property if each ball of radius r > 0 can be covered by at most N balls of radius r/2.

A metric space (X, d) has (2, N)-covering property if each ball of radius r > 0 can be covered by at most N balls of radius r/2.

Examples

Any metric measure space (X, d, μ) that has the doubling property i.e. there exists a positive constant C such that

$$\frac{\mu(B(x,2r))}{\mu(B(x,r))} \le C, \qquad \forall x \in X, r > 0,$$

has (2, N)-covering property with for example $N = C^4$.

A metric space (X, d) has (2, N)-covering property if each ball of radius r > 0 can be covered by at most N balls of radius r/2.

Examples

Any metric measure space (X, d, μ) that has the doubling property i.e. there exists a positive constant C such that

$$\frac{\mu(B(x,2r))}{\mu(B(x,r))} \le C, \qquad \forall x \in X, r > 0,$$

has (2, N)-covering property with for example $N = C^4$.

Every compact Riemannian manifold (M, g) has (2, N)-covering property. If for example Ricci_g ≥ 0 then N depends only on the dimension.

Let (M,g) be a compact Riemannian manifold and N and C_0 be some positive constants such that M satisfies the (2,N)-covering property and $\operatorname{vol}(B(x,r)) \leq C_0 r^2$, for every $x \in M$ and every r>0. Then for every Schrödinger operator $L=\Delta_g+q$ on M, we have

$$\lambda_k(\Delta_g + q) \leq \frac{Ck + \delta^{-1} \int_M q^+ d \operatorname{vol} - \delta \int_M q^- d \operatorname{vol}}{\operatorname{vol}(M)},$$

where $\delta \in (0,1)$ is a constant which depends only on N, C > 0 is a constant which depends on N and C_0 , and $q^{\pm} = \max\{|\pm q|, 0\}$.

Let (M,g) be a compact Riemannian manifold and N and C_0 be some positive constants such that M satisfies the (2,N)-covering property and $vol(B(x,r)) \leq C_0 r^2$, for every $x \in M$ and every r>0. Then for every Schrödinger operator $L=\Delta_g+q$ on M, we have

$$\lambda_k(\Delta_g + q) \leq \frac{Ck + \delta^{-1} \int_M q^+ d \operatorname{vol} - \delta \int_M q^- d \operatorname{vol}}{\operatorname{vol}(M)},$$

where $\delta \in (0,1)$ is a constant which depends only on N, C > 0 is a constant which depends on N and C_0 , and $q^{\pm} = \max\{|\pm q|, 0\}$.

Let Σ_{γ} be a compact orientable surface of genus γ . Then for every Riemannian metric g on Σ_{γ} and for every positive Schrödinger operator $L=\Delta_g+q$ on Σ_{γ} , we have

$$\lambda_k(L) \leq \frac{Q(\gamma+1)k + \alpha \int_M qdA}{\operatorname{Area}(\Sigma_{\gamma})},$$

where α and Q > 0 are absolute constants.

Let Σ_{γ} be a compact orientable surface of genus γ . Then for every Riemannian metric g on Σ_{γ} and for every Schrödinger operator $L=\Delta_g+q$ on Σ_{γ} , we have

$$\lambda_k(L) \leq \frac{Q(\gamma+1)k + \delta^{-1} \int_M q^+ dA - \delta \int_M q^- dA}{\operatorname{Area}(\Sigma_{\gamma})},$$

where $\delta \in (0,1)$ and Q are absolute constants.

Weyl's Law

$$\lambda_k(L) \sim \frac{\alpha_m}{\operatorname{vol}(M)} \sum_{m=1}^{\frac{2}{m}} k \to \infty$$

where $\alpha_m = 4\pi^2 \omega_m^{-\frac{2}{m}}$ and ω_m is the volume of the unit ball in the standard \mathbb{R}^m .

Weyl's Law

$$\lambda_k(L) \sim \frac{\alpha_m}{\operatorname{vol}(M)} \sum_{m=1}^{2m} k \to \infty$$

where $\alpha_m = 4\pi^2 \omega_m^{-\frac{2}{m}}$ and ω_m is the volume of the unit ball in the standard \mathbb{R}^m .

Grigor'yan, Netrusov, Yau

$$\lambda_k(L) \leq \frac{Ck + \int_M q d \operatorname{vol}}{\epsilon \operatorname{vol}(M)},$$

$$\lambda_k(L) \leq \frac{Q(\gamma+1)k + \delta \int_M q dA}{\operatorname{Area}(\Sigma_{\gamma})},$$

Definition

Let (M, g) be a compact Riemannian manifold of dimension m, we define its min-conformal volume as follows:

$$V([g]) = \inf \{ \operatorname{vol}_{g_0}(M) \ : \ g_0 \in [g], \ \operatorname{Ricci}_{g_0} \geq -(m-1) \}.$$

There exist constants A_m , B_m and C_m depending only on m such that for every m-dimensional compact Riemannian manifold (M,g) and every positive Schrödinger operator $L = \Delta_g + q$ on M, we have

$$\lambda_k(L) \leq \frac{A_m \frac{\int_M q d \operatorname{vol}}{\operatorname{vol}(M)} + B_m \left(\frac{V([g])}{\operatorname{vol}(M)}\right)^{\frac{2}{m}} + C_m \left(\frac{k}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}.$$

Compare with GNY (2004)

There exist constants $\alpha_m \in (0,1)$, B_m and C_m depending only on m such that for every m-dimensional compact Riemannian manifold (M,g) and every Schrödinger operator $L=\Delta_g+q$ on M, we have

$$\lambda_k(L) \leq \frac{\alpha_m^{-1} \int_M q^+ d \mathrm{vol} - \alpha_m \int_M q^- d \mathrm{vol}}{\mathrm{vol}(M)} + \frac{B_m \left(\frac{V([g])}{\mathrm{vol}(M)}\right)^{\frac{2}{m}} + C_m \left(\frac{k}{\mathrm{vol}(M)}\right)^{\frac{2}{m}}}{}.$$

Compare with GNY (2004)

H. 2012

$$\lambda_k(L) \leq \frac{A\gamma + Bk + a \int_{\Sigma_{\gamma}} q dA}{\operatorname{Area}(\Sigma_{\gamma})},$$

where a, A and B are absolute constants.

H. 2012

$$\lambda_k(L) \leq \frac{A\gamma + Bk + a \int_{\Sigma_{\gamma}} q dA}{\operatorname{Area}(\Sigma_{\gamma})},$$

where a, A and B are absolute constants.

Grigor'yan, Netrusov, Yau (2004)

$$\lambda_k(L) \leq \frac{Q(\gamma+1)k + \delta \int_{\Sigma_{\gamma}} q dA}{\operatorname{Area}(\Sigma_{\gamma}),}$$

where Q and δ are absolute constants.

Bakry–Émery Laplacian

▶ A Riemannian manifold (M,g) with the weighted measure $e^{-\phi}d\mathrm{vol}$, where $\phi \in C^2(M)$, is denoted by the triple (M,g,ϕ) and is called a Bakry–Émery manifold.

Bakry–Émery Laplacian

- ▶ A Riemannian manifold (M,g) with the weighted measure $e^{-\phi}d\mathrm{vol}$, where $\phi \in C^2(M)$, is denoted by the triple (M,g,ϕ) and is called a Bakry–Émery manifold.
- ▶ The weighted Laplacian Δ_{ϕ} also called Bakry–Émery Laplacian is defined by

$$\Delta_{\phi} = \Delta_{g} + \nabla_{g}\phi \cdot \nabla_{g} = -e^{\phi} \mathrm{div}(e^{-\phi}\nabla_{g}).$$

Bakry-Émery Laplacian

▶ The Bakry–Émery Laplacian $\Delta_{\phi} = \Delta_g + \nabla_g \phi \cdot \nabla_g$ is symetric with respect to the weighted measure $e^{-\phi} d \text{vol}$. Indeed, for every $f, g \in C_0^{\infty}(M)$,

$$\int_{M} \Delta_{\phi} f h e^{-\phi} d \text{vol} = \int_{M} \langle \nabla_{g} f, \nabla_{g} h \rangle e^{-\phi} d \text{vol}.$$

Furthermore, the operator Δ_{ϕ} with the domain $C_0^{\infty}(M)$ admits the Friedrichs extension to a self-adjoint operator in $L^2(M, e^{-\phi} d \mathrm{vol})$.

Bakry-Émery Laplacian

► On Bakry-Émery manifolds, we have a new notion of curvature called the Bakry-Émery Ricci tensor which is defined by

$$Ricci_{\phi} = Ricci_{g} + Hess\phi.$$

Bakry–Émery Laplacian

► On Bakry-Émery manifolds, we have a new notion of curvature called the Bakry-Émery Ricci tensor which is defined by

$$Ricci_{\phi} = Ricci_{g} + Hess\phi.$$

► The Bakry–Émery Laplacian Δ_{ϕ} is unitarily equivalent to the positive Schrödinger operator $L = \Delta_g + \frac{1}{2}\Delta_g\phi + \frac{1}{4}|\nabla_g\phi|^2$.

There exist constants $A_m > 1$, B_m and C_m depending only on $m \in \mathbb{N}^*$, such that for every m-dimensional compact Riemannian manifold (M,g), every $\phi \in C^2(M)$ and every $k \in \mathbb{N}^*$, we have

$$\lambda_k(\Delta_{\phi}) \leq \frac{A_m}{\operatorname{vol}(M)} \|\nabla_{\mathbf{g}}\phi\|_{L^2(M)}^2 + B_m \left(\frac{V([\mathbf{g}])}{\operatorname{vol}(M)}\right)^{\frac{2}{m}} + C_m \left(\frac{k}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}$$

$$\lambda_k(\Delta_{\phi}) \leq \frac{A_m}{\operatorname{vol}(M)} \|\nabla_{\mathbf{g}}\phi\|_{L^2(M)}^2 + B_m \left(\frac{V([\mathbf{g}])}{\operatorname{vol}(M)}\right)^{\frac{2}{m}} + C_m \left(\frac{k}{\operatorname{vol}(M)}\right)^{\frac{2}{m}}$$

Proof

We know Δ_{ϕ} is unitary equivalent to the positive Schrödinger operator $L=\Delta_g+\frac{1}{2}\Delta_g\phi+\frac{1}{4}|\nabla_g\phi|^2$. Hence, by replacing

$$\int_{M} \frac{1}{2} \Delta_{g} \phi + \frac{1}{4} |\nabla_{g} \phi|^{2} d \operatorname{vol} = \frac{1}{4} ||\nabla_{g} \phi||_{L^{2}(M)}$$

in the previous result, we get the desired inequality.

Let (M, g, ϕ) be a compact Bakry–Émery manifold with $|\nabla_g \phi| \leq \sigma$ for some $\sigma \geq 0$. Then, there exist constants A(m) and B(m) such that for every $k \in \mathbb{N}^*$,

$$\lambda_k(\Delta_\phi) \leq A(m) \max\{\sigma^2, 1\} \left(\frac{V_\phi([g])}{\operatorname{vol}_\phi(M)}\right)^{\frac{2}{m}} + B(m) \left(\frac{k}{\operatorname{vol}_\phi(M)}\right)^{\frac{2}{m}}$$

$$V_\phi([g])=\inf\{\operatorname{vol}_\phi(M,g_0)\ :\ g_0\in[g],\ \operatorname{Ricci}_\phi(M,g_0)\geq -(m\!-\!1)\}.$$

Let (M, g, ϕ) be a compact Bakry–Émery manifold with $|\nabla_g \phi| \leq \sigma$ for some $\sigma \geq 0$. Then, there exist constants A(m) and B(m) such that for every $k \in \mathbb{N}^*$,

$$\lambda_k(\Delta_\phi) \leq A(m) \max\{\sigma^2, 1\} \left(\frac{V_\phi([g])}{\operatorname{vol}_\phi(M)}\right)^{\frac{2}{m}} + B(m) \left(\frac{k}{\operatorname{vol}_\phi(M)}\right)^{\frac{2}{m}}$$

▶ If $\mathrm{Ricci}_{\phi}(M) \geq -\kappa^2(m-1)$ and $|\nabla_g \phi| \leq \sigma$ for some constants κ and $\sigma \geq 0$, then

$$\lambda_k(\Delta_\phi) \leq A(m) \max\{\sigma^2,1\} \kappa^2 + B(m) \left(rac{k}{\operatorname{vol}_\phi(M)}
ight)^{rac{k}{m}}.$$

▶ If $\mathrm{Ricci}_{\phi}(M) \geq -\kappa^2(m-1)$ and $|\nabla_g \phi| \leq \sigma$ for some constants κ and $\sigma \geq 0$, then

$$\lambda_k(\Delta_\phi) \leq A(m) \max\{\sigma^2, 1\} \kappa^2 + B(m) \left(\frac{k}{\operatorname{vol}_\phi(M)}\right)^{\frac{2}{m}}.$$

▶ If $\mathrm{Ricci}_{\phi}(M,g_0) \geq 0$ for some $g_0 \in [g]$, then

$$\lambda_k(\Delta_\phi) \leq B(m) \left(\frac{k}{\operatorname{vol}_\phi(M)}\right)^{\frac{2}{m}}.$$

$$\lambda_k(\Delta_\phi) \leq \max_i rac{\int_M |
abla_g f_i|^2 e^{-\phi} d\mathrm{vol}}{\int_M f_i^2 e^{-\phi} d\mathrm{vol}}.$$

$$\lambda_k(\Delta_\phi) \leq \max_i rac{\int_M |
abla_g f_i|^2 e^{-\phi} d\mathrm{vol}}{\int_M f_i^2 e^{-\phi} d\mathrm{vol}}.$$

$$\lambda_k(\Delta_\phi) \leq \max_i \frac{\left(\int_M |\nabla_g f_i|^m e^{-\phi} d\mathrm{vol}\right)^{\frac{2}{m}} \left(\int_M 1_{\mathrm{supp} f_i} e^{-\phi} d\mathrm{vol}\right)^{1-\frac{2}{m}}}{\int_M f_i^2 e^{-\phi} d\mathrm{vol}}.$$

$$\lambda_k(\Delta_\phi) \leq \max_i rac{\int_M |
abla_g f_i|^2 e^{-\phi} d\mathrm{vol}}{\int_M f_i^2 e^{-\phi} d\mathrm{vol}}.$$

$$\lambda_k(\Delta_\phi) \leq \max_i \frac{\left(\int_M |\nabla_g f_i|^m e^{-\phi} d\mathrm{vol}\right)^{\frac{2}{m}} \left(\int_M 1_{\mathrm{supp} f_i} e^{-\phi} d\mathrm{vol}\right)^{1-\frac{2}{m}}}{\int_M f_i^2 e^{-\phi} d\mathrm{vol}}.$$

$$\lambda_k(\Delta_\phi) \leq \max_i \frac{\int_M |\nabla_g f_i|^2 e^{-\phi} d\mathrm{vol}}{\int_M f_i^2 e^{-\phi} d\mathrm{vol}}.$$

$$\lambda_k(\Delta_\phi) \leq \max_i \frac{\left(\int_M |\nabla_{g_0} f_i|^m e^{-\phi} d\mathrm{vol}_{g_0}\right)^{\frac{2}{m}} \left(\int_M 1_{\mathrm{supp} f_i} e^{-\phi} d\mathrm{vol}\right)^{1-\frac{2}{m}}}{\int_M f_i^2 e^{-\phi} d\mathrm{vol}},$$
 where $g_0 \in [g]$.

Grigor'yan, Netrusov, Yau 2004

Let (X,d,μ) be an m-m space with a finite non-atomic Borel measure μ satisfying the (2,N)-covering property for some N>0. Then for every $n\in\mathbb{N}^*$, there exists a family $\{A_i\}_{i=1}^n$ of annuli in X such that for each $i,\ \mu(A_i)\geq \frac{\mu(X)}{C_N n},$ where C_N is a positive constant depending only on N and $2A_i$ are mutually disjoint.

Colbois, Maerten 2008

Let (X,d,μ) be an m-m space with a finite non-atomic Borel measure μ satisfying the $(2,N;\rho)$ -covering property for some $\rho>0$. For every $n\in\mathbb{N}^*$, let $0< r\le \rho$ be such that for every $x\in X,\ \mu(B(x,r))\le \frac{\mu(X)}{C_N^2n}$, where C_N is a positive constant depending only on N. Then there exists a family $\{A_i\}_{i=1}^n$ of measurable subsets of X such that for each $i,\ \mu(A_i)\ge \frac{\mu(X)}{C_Nn}$, and the subsets $\{A_i^r\}_{i=1}^n$ are mutually disjoint.

$$\lambda_k(\Delta_\phi) \leq \max_i \frac{\left(\int_M |\nabla_{g_0} f_i|^m e^{-\phi} d\mathrm{vol}_{g_0}\right)^{\frac{2}{m}} \left(\int_M 1_{\mathrm{supp} f_i} e^{-\phi} d\mathrm{vol}\right)^{1-\frac{2}{m}}}{\int_M f_i^2 e^{-\phi} d\mathrm{vol}}$$

$$\lambda_k(\Delta_{\phi}) \leq \max_i \frac{\left(\int_M |\nabla_{g_0} f_i|^m e^{-\phi} d\mathrm{vol}_{g_0}\right)^{\frac{2}{m}} \left(\frac{\mathrm{vol}_{\phi}(M)}{k}\right)^{1-\frac{2}{m}}}{\frac{\mathrm{vol}_{\phi}(M)}{C_N k}}$$

$$\lambda_k(\Delta_{\phi}) \leq \max_i C_N \left(\int_M |\nabla_{g_0} f_i|^m e^{-\phi} d\mathrm{vol}_{g_0} \right)^{\frac{2}{m}} \left(\frac{k}{\mathrm{vol}_{\phi}(M)} \right)^{\frac{2}{m}}$$

If
$$\operatorname{vol}_{\phi}(B(x,r),g_0) \leq Dr^m$$
, $\forall r > 0$

$$\lambda_k(\Delta_{\phi}) \leq \max_i C_N \left(\int_M |\nabla_{g_0} f_i|^m e^{-\phi} d\mathrm{vol}_{g_0} \right)^{\frac{2}{m}} \left(\frac{k}{\mathrm{vol}_{\phi}(M)} \right)^{\frac{2}{m}}$$

If
$$\operatorname{vol}_{\phi}(B(x,r),g_0) \leq Dr^m, \qquad \forall r > 0$$

$$\lambda_k(\Delta_{\phi}) \leq C_N C_D \left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}$$

$$\lambda_{k}(\Delta_{\phi}) \leq C_{N} \left(\int_{M} |\nabla_{g_{0}} f_{i}|^{m} e^{-\phi} d \operatorname{vol}_{g_{0}} \right)^{\frac{2}{m}} \left(\frac{k}{\operatorname{vol}_{\phi}(M)} \right)^{\frac{2}{m}}$$

$$\lambda_k(\Delta_{\phi}) \leq C_N \frac{1}{r^2} \left(\frac{\operatorname{vol}_{\phi}(M, g_0)}{k} \right)^{\frac{2}{m}} \left(\frac{k}{\operatorname{vol}_{\phi}(M)} \right)^{\frac{2}{m}}$$

$$\lambda_k(\Delta_\phi) \leq C_N \frac{1}{r^2} \left(\frac{\operatorname{vol}_\phi(M, g_0)}{\operatorname{vol}_\phi(M)} \right)^{\frac{2}{m}}$$

GNY-construction leads to

$$\lambda_k(\Delta_\phi) \leq \frac{\mathsf{C}_N \mathsf{C}_D}{\operatorname{vol}_\phi(M)}^{\frac{2}{m}}$$

CM-construction leads to

$$\lambda_k(\Delta_\phi) \leq \frac{C_N}{r^2} \left(\frac{\operatorname{vol}_\phi(M, g_0)}{\operatorname{vol}_\phi(M)} \right)^{\frac{2}{m}}$$

GNY-construction leads to

$$\lambda_k(\Delta_\phi) \leq \frac{\mathsf{C}_N \mathsf{C}_D}{\operatorname{vol}_\phi(M)}^{\frac{2}{m}}$$

CM-construction leads to

$$\lambda_k(\Delta_{\phi}) \leq C_m \frac{1}{r^2} \left(\frac{\operatorname{vol}_{\phi}(M, g_0)}{\operatorname{vol}_{\phi}(M)} \right)^{\frac{2}{m}}$$

H. 2011

Let (X,d,μ) be an m-m space with a finite non-atomic Borel measure μ satisfying the $(2,N;\rho)$ -covering property. Then for every $n\in\mathbb{N}^*$, there exists a family $\{A_i\}_{i=1}^n$ of subsets of X with the following properties:

- (i) $\mu(A_i) \geq \frac{\mu(X)}{C_N n}$,
- (ii) the family $\{A_i\}_{i=1}^n$ is such that either
 - (a) all the A_i are annuli and $2A_i$ are mutually disjoint with outer radii smaller than ρ , or
 - (b) all the A_i are domains in X and $A_i^{r_0}$ are mutually disjoint with $r_0 = \frac{\rho}{1600}$.

GNY-construction leads to

$$\lambda_k(\Delta_\phi) \leq \frac{\mathsf{C}_N \mathsf{C}_D}{\operatorname{Vol}_\phi(M)}^{\frac{2}{m}}$$

CM-construction leads to

$$\lambda_k(\Delta_\phi) \leq C_m \frac{1}{r^2} \left(\frac{\operatorname{vol}_\phi(M, g_0)}{\operatorname{vol}_\phi(M)} \right)^{\frac{2}{m}}$$

H. 2012

$$\lambda_k(\Delta_{\phi}) \leq A(m) \max\{\sigma^2, 1\} \left(\frac{V_{\phi}([g])}{\operatorname{vol}_{\phi}(M, g)}\right)^{\frac{2}{m}} + B(m) \left(\frac{k}{\operatorname{vol}_{\phi}(M)}\right)^{\frac{2}{m}}$$

Thank you for your attention!