Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions

A. BERGER

PhD Student under the direction of Édouard Oudet Bruno Colbois LJK, Grenoble Neuchâtel

> Neuchâtel Thursday, June 6

Description of the problem

Dimension 2

Some known results

Numerical results

New results

Dimension 3

Some known results

Numerical results

New results

Neumann boundary condition

Description of the problem

Numerical results

Elements/Ideas of the proofs

Dirichlet 2D: disc

Dirichlet 2D: unions of discs

Dirichlet 3D: derivative with respect to the domain

Problem

We are searching bounded open sets $\Omega^* \in \mathbb{R}^{2 \text{ or } 3}$ such that

$$\lambda_k(\Omega^*) = \min\{\lambda_k(\Omega); \Omega \in \mathbb{R}^{2 \text{ or } 3} \text{ bounded open st } |\Omega| = 1\}$$

where λ_k is the k-th eigenvalue of the Laplacian with Dirichlet boundary conditions i.e.

$$\begin{cases} -\Delta u = \lambda_k u & \text{on } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Description of the problem

Property (Homogeneity)

Let c > 0 be a real.

$$\lambda_j(c\Omega) = c^{-2}\lambda_j(\Omega). \tag{1}$$

Using this property there is equivalence between

$$\min\{\lambda_i(\Omega), |\Omega| = 1\}, i = 1, 2, \dots$$
 (2)

and

$$\min\{\lambda_i(\Omega)|\Omega|^{2/n}\},\ i=1,2,\ldots. \tag{3}$$

∟Dimension 2

Dirichlet boundary condition

Description of the problem

Dimension 2

Some known results

Numerical results

New results

Dimension 3

Some known results

Numerical results

New results

Neumann boundary condition

Elements/Ideas of the proofs

Some known results

Theorem (Faber-Krahn)

$$\lambda_1(B) = \min\{\lambda_1(\Omega), \ \Omega \subset \mathbb{R}^2 \ open, \ |\Omega| = 1\}$$

where B is the disc of area 1.

Theorem (Krahn-Szegö)

 $\min\{\lambda_2(\Omega), \Omega \subset \mathbb{R}^2 \ open, \ |\Omega|=1\}$ is realized by the union of two identical discs.

└ Dimension 2

Some known results

"We say that $\lambda_k(\Omega)$ is a local minimum of λ_k among bounded open sets of constant measure if for all local deformation of Ω the value of λ_k obtained is greater (or equal) than $\lambda_k(\Omega)$."

Theorem (Wolf-Keller)

 $\lambda_3(B)$, where B is the disc of area 1, is a local minimum of λ_3 .

└ Dimension 2

Numerical results

- ▶ old ones of Édouard Oudet ¹,
- ▶ improved ones of Pedro Antunes and Pedro Freitas ²,
- more recent ones from Édouard Oudet, Grégory Vial and myself obtained with ShapeBox ³

¹Numerical minimization of eigenmodes of a membrane with respect to the domain, É. Oudet, ESAIM: COCV, Vol. 10, N°3, 2004, p. 315-330

²Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians, P. R.S. Antunes and P. Freitas, Journal of Optimization Theory and Applications, Vol. 154, N°1, 2012, p. 235-257

 $^{^3\}mathsf{ShapeBox}$ is available on Édouard Oudet's personal webpage $\mathsf{http://www-ljk.imag.fr/membres/Edouard.Oudet/ShapeBox/solver.php}$

└ Dimension 2

Numerical results

λ_1		λ_5	6	λ_9	•	λ_{13}	
^1	18.1694		78.1651		132.4926		186.9762
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	••	λ_6		λ_{10}		λ_{14}	
λ_2	36.3371		88.5016		142.7458		199.2858
		λ_7	•	λ_{11}		λ_{15}	4
λ_3	46.1261		106.2106		159.8208		209.9532
	••	λ_8		λ_{12}			
λ_4	64.3060		118.9692		173.0350	P 4 = P	1∃} ∃ 9 4

└ Dimension 2

New results - Case of a disc

Theorem

 λ_1 and λ_3 are the only eigenvalues of the laplacian with Dirichlet boundary conditions locally minimized by the unit disc in dimension 2 among sets of constant measure.

☐Dimension 2

New results - Case of disjoint unions of discs

Theorem

- ► The 1st eigenvalue of the Laplacian-Dirichlet is minimized by the disc,
- ▶ the 2nd eigenvalue of the Laplacian-Dirichlet is minimized by the union of two identical discs,
- the 3rd eigenvalue of the Laplacian-Dirichlet can be minimized by the disc and by no other disjoint union of discs,
- ▶ the 4th eigenvalue of the Laplacian-Dirichlet can be minimized by an union of two discs (one of radius $\simeq 0.3$ and one of radius $\simeq 0.48$) and by no other disjoint union of discs, nor by the disc,
- ▶ the eigenvalues λ_k with $k \ge 5$ of the Laplacian-Dirichlet can not be minimized by the disc nor by a disjoint union of discs.

└─Dimension 2

Numerical results

λ_1	18.169	18.168		
		00		
λ_2	36.337	36.337		
λ_3	46.126	46.125		
	••	00		
λ_4	64.306	64.293		

└─Dimension 2

Numerical results

_	98	80		
λ_5	78.165	82.462		
λ_6	88.502	92.249		
,	•	00		
λ_7	106.211	110.418		
λ_8	118.969	127.883		

,	•	00		
λ_9	132.493	138.374		
,				
λ_{10}	142.746	154.624		
_		0		
λ_{11}	159.821	172.793		
,				
λ_{12}	173.035	180.902		

□Dimension 3

Dirichlet boundary condition

Description of the problem

Dimension 2

Some known results

Numerical results

New results

Dimension 3

Some known results

Numerical results

New results

Neumann boundary condition

Elements/Ideas of the proofs

└ Dimension 3

Some known results

Theorem (Faber-Krahn)

$$\lambda_1(B) = \min\{\lambda_1(\Omega), \, \Omega \subset \mathbb{R}^3 \text{ open, } |\Omega| = 1\}$$
 (4)

where B is the ball of measure 1.

Theorem (Krahn-Szegö)

 $\min\{\lambda_2(\Omega), \Omega \subset \mathbb{R}^3 \ open, |\Omega| = 1\}$ is realized by the union of two identical balls.

└ Dimension 3

Numerical results

└ Dimension 3

Numerical results

└ Dimension 3

New results - Simple eigenvalues on the ball

Theorem

Let λ_i be a simple eigenvalue of the Laplacian-Dirichlet on the ball in dimension 3.

The ball of measure 1 is a critical point for $t \mapsto |\Omega_t|^{2/3} \lambda_i(\Omega_t)$.

New results - Multiple eigenvalues on the ball

Theorem

Let be $k \in \mathbb{N}^*$ and $l \in \mathbb{N}^*$ such that $\lambda_{k-1}(B_R) < \lambda_k(B_R) = \lambda_{k+1}(B_R) = \cdots = \lambda_{k+2l}(B_R) < \lambda_{k+2l+1}(B_R)$ (that is to say $\lambda_k(B_R)$ is of multiplicity 2l+1).

Then the eigenvalues λ_k , λ_{k+1} , ... λ_{k+2l-1} of the Laplacian-Dirichlet are not locally minimized among sets of constant measure by the ball in dimension 3.

Examples:

- λ_2 , λ_3 , λ_{18} , λ_{19} , λ_{67} , λ_{68} , λ_{154} et λ_{155} (multiplicity 3),
- λ_5 , λ_6 , λ_7 , λ_8 , λ_{30} , λ_{31} , λ_{32} , λ_{33} , λ_{94} , λ_{95} , λ_{96} et λ_{97} (multiplicity 5)

└ Dimension 3

New results - Multiple eigenvalues on the ball

In particular,

Theorem

 λ_3 is not minimized by the ball!

└ Dimension 3

New results - Multiple eigenvalues on the ball

Remark: The proof of this theorem is not specific to this problem. In fact, we have the same result for all dimensions and for all bounded open sets of class \mathcal{C}^2 .

Neumann boundary condition

Description of the problem

Numerical results

Elements/Ideas of the proofs

Problem

We are searching bounded open sets $\Omega^* \in \mathbb{R}^{2 \text{ or } 3}$ such that

$$\mu_k(\Omega^*) = \max\{\mu_k(\Omega); \Omega \in \mathbb{R}^{2 \text{ or } 3} \text{ bounded open st } |\Omega| = 1\}$$

where μ_k is the k-th eigenvalue of the Laplacian with Neumann boundary conditions i.e.

$$\begin{cases} -\Delta u = \mu_k u & \text{on } \Omega \\ \partial_n u = 0 & \text{on } \partial \Omega \end{cases}$$

Remark that $\mu_1 = 0$.

Description of the problem

└ Numerical results

Numerical results

In dimension 2, existence of numerical results from Pedro Antunes and Pedro Freitas ⁴

⁴Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians, P. R.S. Antunes and P. Freitas, Journal of Optimization Theory and Applications, Vol. 154, N°1, 2012, p. 235-257

Numerical results - Neumann 2D

		μ_{6}	A	μ_{10}	
μ_2	10.6677		55.2265	. = .	101.5722
	••	μ_7	4	μ_{11}	•
μ_3	21.2887		67.2877		113.9835
	-	μ_8	₩.		
μ_4	33.0845		77.9826		
	•	μ 9	H		
μ_5	43.9481		89.4973		

Neumann boundary condition

Numerical results

Numerical results - Neumann 3D

Neumann boundary condition

Numerical results

Neumann boundary condition

Numerical results

Numerical results - Neumann 3D

Neumann boundary condition

Elements/Ideas of the proofs

Dirichlet 2D: disc

Dirichlet 2D: unions of discs

Dirichlet 3D: derivative with respect to the domain

└ Dirichlet 2D: disc

Polar coordinates in \mathbb{R}^2 :

$$\begin{cases} x = r\cos(\theta), \\ y = r\sin(\theta) \end{cases}$$

avec $r \in [0, R[$, R > 0, $\theta \in [0, 2\pi[$.

└ Dirichlet 2D: disc

Theorem

Let B_R be the disc of radius R. Then it's eigenvalues and eigenfunctions for le Laplacian-Dirichlet are

$$\lambda_{0,p} = \frac{j_{0,p}^2}{R^2}, \quad p \ge 1,$$
 $u_{0,p}(r,\theta) = \sqrt{\frac{1}{\pi}} \frac{1}{R|J_0'(j_{0,p})|} J_0\left(\frac{j_{0,p}r}{R}\right), \quad p \ge 1,$ $\lambda_{m,p} = \frac{j_{m,p}^2}{R^2}, \quad m,p \ge 1, \quad double \ eigenvalues$

$$u_{m,p}(r,\theta) = \begin{cases} \sqrt{\frac{2}{\pi}} \frac{1}{R|J'_{m}(j_{m,p})|} J_{m}\left(\frac{j_{m,p}r}{R}\right) \cos(m\theta) \\ \sqrt{\frac{2}{\pi}} \frac{1}{R|J'_{m}(j_{m,p})|} J_{n}\left(\frac{j_{m,p}r}{R}\right) \sin(m\theta) \end{cases}, \quad m, p \ge 1,$$
(5)

where $j_{m,p}$ is the p-th zero of the Bessel function J_m .

Elements/Ideas of the proofs

└ Dirichlet 2D: disc

- Area π
- Small variations of the boundary of the unit disc
- (r, θ) polar coordinates of the boundary points of the new domain Ω_{ε} with $r = R(\theta, \varepsilon)$ for small ε with

$$R(\theta,\varepsilon) = 1 + \varepsilon \sum_{n=-\infty}^{\infty} a_n e^{in\theta} + \varepsilon^2 \sum_{n=-\infty}^{\infty} b_n e^{in\theta} + O(\varepsilon^3)$$
 (6)

with $a_{-n} = \overline{a_n}$ and $b_{-n} = \overline{b_n}$ for all n.

Development to the second order necessary

Dirichlet 2D: disc

▶ Using $\left(\sum_{n=-\infty}^{\infty} a_n e^{in\theta}\right)^2 = \sum_{n,l=-\infty}^{\infty} a_l a_n e^{i(l+n)\theta}$, $a_n a_{-n} = |a_n|^2$ and $\int_0^{2\pi} e^{in\theta} d\theta = 0$ for $n \neq 0$ we show that the area of Ω_{ε} is

$$A = \int_0^{2\pi} \int_0^{R(\theta,\varepsilon)} r \, dr d\theta = \int_0^{2\pi} \frac{R(\theta,\varepsilon)^2}{2} \, d\theta$$
$$= \pi \left[1 + 2\varepsilon a_0 + \varepsilon^2 \left(2b_0 + \sum_{n=-\infty}^{\infty} |a_n|^2 \right) + O(\varepsilon^3) \right].$$

$$\blacktriangleright$$
 $A(\Omega_{\varepsilon}) = \pi \Rightarrow$

$$a_0 = 0$$
 and $b_0 = -\frac{1}{2} \sum_{n=-\infty}^{\infty} |a_n|^2$. (7)

└ Dirichlet 2D: disc

- lacktriangledown $\lambda=\omega^2$ eigenvalues of the Laplacien-Dirichlet on $\Omega_{arepsilon}$
- Associated eigenfunctions:

$$u(r,\theta,\varepsilon) = \sum_{n=-\infty}^{\infty} A_n(\varepsilon) J_n(\omega r) e^{in\theta}, \text{ with } A_{-n} = \overline{A_n}$$
 (8)

and

$$A_n(\varepsilon) = \delta_{|n|m}\alpha_n + \varepsilon\beta_n + \varepsilon^2\gamma_n + O(\varepsilon^3).$$
 (9)

- $A_{-n} = \overline{A_n} \Rightarrow \alpha_{-n} = \overline{\alpha_n}, \ \beta_{-n} = \overline{\beta_n}, \ \gamma_{-n} = \overline{\gamma_n}$
- ▶ Dirichlet boundary condition ⇒

$$u(R(\theta,\varepsilon),\theta,\varepsilon) = \sum_{n=-\infty}^{\infty} A_n(\varepsilon) J_n(\omega R(\theta,\varepsilon)) e^{in\theta} = 0. \quad (10)$$

Elements/Ideas of the proofs

└ Dirichlet 2D: disc

$$\sum_{n} \delta_{|n|m} \alpha_{n} J_{n}(\omega_{0}) e^{in\theta}$$

$$+ \varepsilon \sum_{n} \left(\beta_{n} J_{n}(\omega_{0}) + \delta_{|n|m} \alpha_{n} J'_{n}(\omega_{0}) \left[\omega_{1} + \omega_{0} \sum_{l} a_{l} e^{il\theta} \right] \right) e^{in\theta}$$

$$+ \varepsilon^{2} \sum_{n} \left(\gamma_{n} J_{n}(\omega_{0}) + \beta_{n} J'_{n}(\omega_{0}) \left[\omega_{1} + \omega_{0} \sum_{l} a_{l} e^{il\theta} \right] \right]$$

$$+ \delta_{|n|m} \alpha_{n} \left[J'_{n}(\omega_{0}) \left(\omega_{2} + \omega_{1} \sum_{l} a_{l} e^{il\theta} + \omega_{0} \sum_{l} b_{l} e^{il\theta} \right) \right]$$

$$+ \frac{1}{2} J''_{n}(\omega_{0}) \left(\omega_{1}^{2} + 2\omega_{0} \omega_{1} \sum_{l} a_{l} e^{il\theta} + \omega_{0}^{2} \left(\sum_{l} a_{l} e^{il\theta} \right)^{2} \right) \right] e^{in\theta}$$

$$+ O(\varepsilon^{3}) = 0. \quad (11)$$

└ Dirichlet 2D: disc

- ▶ Separate cases m = 0, m odd, m even
- $J_{-m} = (-1)^m J_m$

└─Dirichlet 2D: disc

$$\sum_{n} \delta_{|n|m} \alpha_n J_n(\omega_0) e^{in\theta}$$

Case
$$m=0 \Rightarrow \alpha_0 J_0(\omega_0)=0$$
.

But $\alpha_0 \neq 0$ else $u(r, \theta, 0) = 0$. So $J_0(\omega_0) = 0$ that is to say $\omega_0 = j_{0,p}$.

Case $m \neq 0$ even

$$\alpha_{m}J_{m}(\omega_{0})e^{im\theta} + \alpha_{-m}J_{-m}(\omega_{0})e^{-im\theta}$$
$$= 2\operatorname{Re}\left(\alpha_{m}e^{im\theta}\right)J_{m}(\omega_{0}) = 0 \qquad \forall \theta$$

so $J_m(\omega_0)=0$ that is to say $\omega_0=j_{m,p}$

Case m odd

$$\alpha_{m}J_{m}(\omega_{0})e^{im\theta} + \alpha_{-m}J_{-m}(\omega_{0})e^{-im\theta}$$
$$= 2\operatorname{Im}\left(\alpha_{m}e^{im\theta}\right)J_{m}(\omega_{0}) = 0 \qquad \forall \theta$$

so
$$J_m(\omega_0)=0$$
 that is to say $\omega_0=j_{\hat{m},\hat{p}}$

Dirichlet 2D: disc

Simple eigenvalues

Theorem

The eigenvalues of the Laplacian-Dirichlet in dimension 2 which are simple on the disc except the first one (λ_1) are not locally minimized by the disc among sets of constant measure.

Simple eigenvalues

$$\lambda = j_{0,p}^2 + 8\varepsilon^2 j_{0,p}^2 \sum_{l>0} \left(1 + \frac{j_{0,p} J_l'(j_{0,p})}{J_l(j_{0,p})} \right) |a_l|^2 + O(\varepsilon^3)$$

- ▶ $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}_+^*, xJ_n' = nJ_n xJ_{n+1} = -nJ_n + xJ_{n-1}$ et $\frac{2n}{x}J_n = J_{n-1} + J_{n+1}$
- $f(x) = 1 + x \frac{5x^2 24}{x(8 x^2)} = 4 \frac{x^2 4}{8 x^2}$
- $f(x) > 0 \ \forall x \in]2, 2\sqrt{2}[\text{ and } f(x) < 0]$ $\forall x \in]0, 2[\cup]2\sqrt{2}, +\infty[$
- ▶ $j_{0,1} \in \left] 2, 2\sqrt{2} \right[$ so $f(j_{0,1}) > 0$ whereas $j_{0,k} \ge j_{0,2} > 2\sqrt{2}$ so $f(j_{0,k}) < 0 \ \forall k \ge 2$
- $1 + \frac{j_{0,p}J_3'(j_{0,p})}{J_3(j_{0,p})} = f(j_{0,p})$

Simple eigenvalues

In conclusion, for (a_n) given by $a_i=0$, $\forall |i|\neq 3$, $a_3\neq 0$ and $a_{-3}=\overline{a_3}$, and for (b_n) such that $b_0=-|a_3|^2$ and $\sum\limits_{n=-\infty}^{\infty}b_ne^{in\theta}$ convergent

$$\lambda = j_{0,p}^2 + 8\varepsilon^2 j_{0,p}^2 \underbrace{\left(1 + \frac{j_{0,p} J_3'(j_{0,p})}{J_3(j_{0,p})}\right)}_{<0} |a_3|^2 + O(\varepsilon^3) \quad \forall p \ge 2.$$

Remark that it corresponds to the case

$$\begin{split} R(\theta,\varepsilon) &= 1 + 2\varepsilon \left[\mathrm{Re}(a_3) \cos(3\theta) - \mathrm{Im}(a_3) \sin(3\theta) \right] - \varepsilon^2 |a_3|^2 \\ &+ \varepsilon^2 \sum_{n \geq 1} \left(b_n \mathrm{e}^{\mathrm{i} n\theta} + \overline{b_n} \mathrm{e}^{-\mathrm{i} n\theta} \right) + O(\varepsilon^3). \end{split}$$

Dirichlet 2D: disc

Double eigenvalues

Theorem

The eigenvalues of the Laplacian-Dirichlet in dimension 2 which are double on the disc except λ_3 are not locally minimized by the disc among sets of constant measure.

- $m \neq 0$
- First order:

$$\lambda_k = j_{m,p}^2 \left(1 - 2\varepsilon |a_{2m}| \right) \leq \lambda_{k+1} = j_{m,p}^2 \left(1 + 2\varepsilon |a_{2m}| \right).$$

- ▶ for all families (a_n) with $a_{2m} \neq 0$ $\lambda_k < j_{m,p}^2$ that is to say λ_k is not locally minimized by the disc,
- ▶ for all families (a_n) with $a_{2m} \neq 0$ $\lambda_k > j_{m,p}^2$ but we have to study the case $a_{2m} = 0$, and so the second order, in order to conclude.

▶ Second order, case $a_{2m} = 0$

$$\begin{split} \lambda_{k} &= j_{m,p}^{2} \left[1 + 2\varepsilon^{2} \left(2 \sum_{|I| \neq m} \left(1 + \frac{j_{m,p} J_{I}'(j_{m,p})}{J_{I}(j_{m,p})} \right) |a_{m-I}|^{2} \right. \\ &\left. - \left| b_{2m} - \sum_{|I| \neq m} \left(\frac{1}{2} + j_{m,p} \frac{J_{I}'(j_{m,p})}{J_{I}(j_{m,p})} \right) a_{m-I} a_{I+m} \right| \right) \right] \\ &\leq \lambda_{k+1} = j_{m,p}^{2} \left[1 + 2\varepsilon^{2} \left(2 \sum_{|I| \neq m} \left(1 + \frac{j_{m,p} J_{I}'(j_{m,p})}{J_{I}(j_{m,p})} \right) |a_{m-I}|^{2} \right. \\ &\left. + \left| b_{2m} - \sum_{|I| \neq m} \left(\frac{1}{2} + j_{m,p} \frac{J_{I}'(j_{m,p})}{J_{I}(j_{m,p})} \right) a_{m-I} a_{I+m} \right| \right) \right] \end{split}$$

└ Dirichlet 2D: disc

Double eigenvalues

For m > 1

$$\left(1 + \frac{j_{m,p}J'_{m+2}(j_{m,p})}{J_{m+2}(j_{m,p})}\right) + \left(1 + \frac{j_{m,p}J'_{m-2}(j_{m,p})}{J_{m-2}(j_{m,p})}\right)
= -\left(\frac{j_{m,p}^2}{(m+1)(m-1)} + 2\right) < 0, \quad \forall p \in \mathbb{N}^*$$

In conclusion, $\forall m > 1$, $\forall p \in \mathbb{N}^*$, for (a_n) , given by $a_i = 0$, $\forall |i| \neq 2$, $a_2 \neq 0$ and $a_{-2} = \overline{a_2}$, and for (b_n) , such that $b_0 = -|a_2|^2$, $b_{2m} = b_{-2m} = 0$ and $\sum_{n=-\infty}^{\infty} b_n e^{in\theta}$ convergent

$$\lambda = j_{m,p}^2 + 4\varepsilon^2 j_{m,p}^2 \underbrace{\left(1 + \frac{j_{m,p} J'_{m+2}(j_{m,p})}{J_{m+2}(j_{m,p})} + 1 + \frac{j_{m,p} J'_{m-2}(j_{m,p})}{J_{m-2}(j_{m,p})}\right)}_{<0} |a_2|^2 + O(\varepsilon^3) \quad \forall p > 1.$$

Remark that it corresponds to the case

$$R(\theta,\varepsilon) = 1 + 2\varepsilon \left[\operatorname{Re}(a_2) \cos(2\theta) - \operatorname{Im}(a_2) \sin(2\theta) \right] - \varepsilon^2 |a_2|^2$$
$$+ \varepsilon^2 \sum_{\substack{n \geq 1 \\ n \neq 2m}} \left(b_n e^{in\theta} + \overline{b_n} e^{-in\theta} \right) + O(\varepsilon^3).$$

- For m=1
 - $f(x) = \frac{8x^2 96}{24 x^2}$
 - ► f(x) > 0 for $x \in]2\sqrt{3}, 2\sqrt{6}[$ and f(x) < 0 for $x \in [0, 2\sqrt{3}[\cup]2\sqrt{6}, +\infty[$
 - ▶ $j_{1,1} \in]2\sqrt{3}, 2\sqrt{6}[$ so $f(j_{1,1}) > 0$ whereas $j_{1,p} \ge j_{1,2} > 2\sqrt{6}$ so $f(j_{1,p}) < 0 \ \forall p \ge 2$
 - $\qquad \qquad \left(1 + \frac{j_{1,\rho} J_2'(j_{1,\rho})}{J_2(j_{1,\rho})}\right) + \left(1 + j_{1,\rho} \frac{J_4'(j_{1,\rho})}{J_4(j_{1,\rho})}\right) = f(j_{1,\rho})$

In conclusion, $\forall p \in \mathbb{N} \setminus \{0,1\}$, for (a_n) , given by $a_i = 0$, $\forall |i| \neq 3$, $a_3 \neq 0$ and $a_{-3} = \overline{a_3}$, and for (b_n) such that $b_0 = -|a_3|^2$, $b_{2m} = b_{-2m} = 0$ and $\sum_{n=0}^{\infty} b_n e^{in\theta}$ convergent

$$\lambda = j_{1,p}^2 + 4\varepsilon^2 j_{1,p}^2 \underbrace{\left(\left(1 + \frac{j_{1,p}J_2'(j_{1,p})}{J_2(j_{1,p})}\right) + \left(1 + \frac{j_{1,p}J_4'(j_{1,p})}{J_4(j_{1,p})}\right)\right)}_{<0} |a_3|^2 + O(\varepsilon^3) \quad \forall p > 2.$$

Remark that it corresponds to the case

$$R(\theta,\varepsilon) = 1 + 2\varepsilon \left[\operatorname{Re}(a_3) \cos(3\theta) - \operatorname{Im}(a_3) \sin(3\theta) \right] - \varepsilon^2 |a_3|^2$$
$$+ \varepsilon^2 \sum_{\substack{n \geq 1 \\ n \neq 2m}} \left(b_n e^{in\theta} + \overline{b_n} e^{-in\theta} \right) + O(\varepsilon^3).$$

└ Dirichlet 2D: unions of discs

Dirichlet boundary condition

Neumann boundary condition

Elements/Ideas of the proofs

Dirichlet 2D: disc

Dirichlet 2D: unions of discs

Dirichlet 3D: derivative with respect to the domain

└ Dirichlet 2D: unions of discs

$$\lambda_n^* = \lambda_n(\Omega_n^*) = \min\{\lambda_n(\Omega); \Omega \text{ open st } |\Omega| = 1\}$$

Theorem (Wolf-Keller)

Suppose that Ω_n^* is the union of at least two disjoint open sets, each of positive measure. Then

$$(\lambda_n^*)^{N/2} = (\lambda_i^*)^{N/2} + (\lambda_{n-i}^*)^{N/2} = \min_{1 \le j \le \frac{n-1}{2}} \left[(\lambda_j^*)^{N/2} + (\lambda_{n-j}^*)^{N/2} \right]$$
(12)

where i is a value of $1 \le j \le \frac{n-1}{2}$ minimizing the sum $(\lambda_j^*)^{N/2} + (\lambda_{n-j}^*)^{N/2}$. Moreover,

$$\Omega_n^* = \left[\left(\frac{\lambda_i^*}{\lambda_n^*} \right)^{1/2} \Omega_i^* \right] \bigcup \left[\left(\frac{\lambda_{n-i}^*}{\lambda_n^*} \right)^{1/2} \Omega_{n-i}^* \right] \quad (disjoint \ union).$$
(13)

Dirichlet 2D: unions of discs

Using

- ► Wolf-Keller theorem which allows to determine iteratively which disjoint union of discs minimize the eigenvalues,
- numerical results of Édouard Oudet or the improved ones of Pedro Antunes and Pedro Freitas ⁵ ⁶

we obtain the result

⁵Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians, P. R.S. Antunes and P. Freitas, Journal of Optimization Theory and Applications, Vol. 154, N°1, 2012, p. 235-257

⁶Numerical minimization of eigenmodes of a membrane with respect to the domain, É. Oudet, ESAIM: COCV, Vol. 10, N°3, 2004, p. 315-330 → ⟨₹⟩ → ₹⟩

└ Dirichlet 2D: unions of discs

For instance,

- suppose λ_k minimized by union of 2 balls
- ▶ $\exists i < k \text{ st } \lambda_i \text{ minimized by 1 ball and } \lambda_{k-i} \text{ minimized by 1 ball}$
- $ightharpoonup \Rightarrow i \in \{1,3\}$ and $k-i \in \{1,3\}$
- ▶ \Rightarrow $k \in \{2, 4, 6\}$
- ightharpoonup case k=6 not possible because

Dirichlet 3D: derivative with respect to the domain

Dirichlet boundary condition

Neumann boundary condition

Elements/Ideas of the proofs

Dirichlet 2D: disc

Dirichlet 2D: unions of discs

Dirichlet 3D: derivative with respect to the domain

Dirichlet 3D: derivative with respect to the domain

- ► The technique used in dimension 2 is not usable in dimension 3
- ► The following technique can be used in dimension 2, but not enough in order to show the same result (need derivatives of second order)
- Multiple eigenvalues are not differentiable (all dimensions)
- ▶ Use of directional derivatives for multiple eigenvalues

Dirichlet 3D: derivative with respect to the domain

 Ω bounded open set.

Let's denote by $\Omega_t = (Id + tV)(\Omega)$ and $\lambda_k(t) = \lambda_k(\Omega_t)$ the k-th eigenvalue of the Laplacian-Dirichlet on Ω_t .

Dirichlet 3D: derivative with respect to the domain

Theorem (Derivation of the volume)

Let Ω be a bounded open set and $Vol(t) := |\Omega_t|$ the volume of Ω_t . Then the function $t \mapsto Vol(t)$ is differentiable at t = 0 with

$$Vol'(0) = \int_{\Omega} div(V) dx.$$
 (14)

Moreover, if Ω is Lipschitz,

$$Vol'(0) = \int_{\Omega} V.nd\sigma. \tag{15}$$

Theorem (Derivative of a multiple Dirichlet eigenvalue)

Let Ω be a bounded open set of class C^2 . Assume that $\lambda_k(\Omega)$ is a multiple eigenvalue of order $p \geq 2$. Let us denote by $u_{k_1}, u_{k_2}, \ldots, u_{k_p}$ an orthonormal (for the L^2 -scalar product) family of eigenfunctions associated to λ_k . Then $t \mapsto \lambda_k(\Omega_t)$ has a (directional) derivative at t=0 which is one of the eigenvalues of the $p \times p$ matrix $\mathcal M$ defined by

$$\mathcal{M} = (m_{i,j}) \quad avec \ m_{i,j} = -\int_{\partial\Omega} \left(\frac{\partial u_{k_i}}{\partial n} \frac{\partial u_{k_j}}{\partial n} \right) V.nd\sigma$$
 (16)

where $\frac{\partial u_{k_i}}{\partial n}$ denotes the normal derivative of the k_i -th eigenfunction u_{k_i} and V.n is the normal displacement of the boundary induced by the deformation field V.

Dirichlet 3D: derivative with respect to the domain

- deformation in direction of the vector field V
- if exists a vector field V for which the first derivative is < 0 then the eigenvalue is decreasing so that the ball is not a minimizer

Eigenvalues of multiplicity 2l + 1, l > 0

Theorem

Let be $k \in \mathbb{N}^*$ and $l \in \mathbb{N}^*$ such that $\lambda_{k-1}(B_R) < \lambda_k(B_R) = \lambda_{k+1}(B_R) = \cdots = \lambda_{k+2l}(B_R) < \lambda_{k+2l+1}(B_R)$ (that is to say $\lambda_k(B_R)$ is of multiplicity 2l+1).

Then the eigenvalues λ_k , λ_{k+1} , ... λ_{k+2l-1} of the Laplacian-Dirichlet are not minimized among sets of constant measure by the ball in dimension 3.

Examples:

- λ_2 , λ_3 , λ_{18} , λ_{19} , λ_{67} , λ_{68} , λ_{154} et λ_{155} (multiplicity 3),
- λ_5 , λ_6 , λ_7 , λ_8 , λ_{30} , λ_{31} , λ_{32} , λ_{33} , λ_{94} , λ_{95} , λ_{96} et λ_{97} (multiplicity 5)

Eigenvalues of multiplicity 2l + 1, l > 0

- ▶ B ball of \mathbb{R}^3
- ▶ $u_1, \dots u_{2l+1}$ basis of eigenfunctions of the Laplacien-Dirichlet on the ball associated to $\lambda_k(B)$
- $F_r(t) = |\Omega_t^r|^{2/3} \lambda_k(\Omega_t^r)$ with $\Omega_t^r = (\mathrm{Id} + tV^r)(B)$ (so $\Omega_0^r = B$)

•

$$F_r'(0) = |B|^{2/3} \mathrm{eig}(\mathcal{M}^r) + \frac{2}{3} \lambda_k(B) |B|^{-1/3} \int_{\partial B} V^r \cdot n d\sigma$$

where

$$\mathcal{M}_{i,j}^{r} = \int_{\partial B} \left(\frac{\partial u_{i}}{\partial n} \frac{\partial u_{j}}{\partial n} \right) V^{r} \cdot n d\sigma$$

Dirichlet 3D: derivative with respect to the domain

Eigenvalues of multiplicity 2l + 1, l > 0

- can't compute for any V
- for $V = a\delta_{(\theta_0,\phi_0)}$

essentially $\mathcal{M}\simeq \left(\frac{\partial u_{k_i}}{\partial n}\frac{\partial u_{k_j}}{\partial n}\right)_{i,j}$ so 0 is an eigenvalue of \mathcal{M} of multiplicity 2l and $F_r'(0)$ has 2l-times the same value that can be negative

Dirichlet 3D: derivative with respect to the domain

Eigenvalues of multiplicity 2l + 1, l > 0

Dirichlet 3D: derivative with respect to the domain

Simple eigenvalues

Theorem

Let λ_i be a simple eigenvalue of the Laplacian-Dirichlet on the ball in dimension 3.

The ball of measure 1 is a critical point for $t \mapsto |\Omega_t|^{2/3} \lambda_i(\Omega_t)$.

Simple eigenvalues

$$\lambda_{0,k}(B_R) = \frac{j_{\frac{1}{2},k}^2}{R^2}$$

$$v_k(r,\theta,\phi) = \sqrt{\frac{2R}{k}} \frac{1}{\pi r} \sin\left(\frac{k\pi}{R}r\right)$$

$$\lambda'_{0,k}(0) = -\frac{k^2\pi}{2R^3} \int_0^{\pi} \int_{-\pi}^{\pi} \sin(\theta) V_r(R,\theta,\phi) d\phi d\theta$$

$$\operatorname{Vol}'(0) = R^2 \int_0^{\pi} \int_{-\pi}^{\pi} V_r(R,\theta,\phi) \sin(\theta) d\theta d\phi$$

Let's define

$$F(t) = |\Omega_t|^{2/3} \lambda_{0,k}(\Omega_t)$$

Then F'(0) = 0.

Questions?

Thanks