# Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions 

A. BERGER<br>PhD Student under the direction of<br>Édouard Oudet<br>LJK, Grenoble<br>Bruno Colbois<br>Neuchâtel

Neuchâtel
Thursday, June 6

Dirichlet boundary condition
Description of the problem
Dimension 2
Some known results
Numerical results
New results
Dimension 3
Some known results
Numerical results
New results
Neumann boundary condition
Description of the problem
Numerical results
Elements/Ideas of the proofs
Dirichlet 2D: disc
Dirichlet 2D: unions of discs
Dirichlet 3D: derivative with respect to the domain

## Problem

We are searching bounded open sets $\Omega^{*} \in \mathbb{R}^{2}$ or 3 such that

$$
\lambda_{k}\left(\Omega^{*}\right)=\min \left\{\lambda_{k}(\Omega) ; \Omega \in \mathbb{R}^{2} \text { or } 3 \text { bounded open st }|\Omega|=1\right\}
$$

where $\lambda_{k}$ is the $k$-th eigenvalue of the Laplacian with Dirichlet boundary conditions i.e.

$$
\begin{cases}-\Delta u=\lambda_{k} u & \text { on } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Property (Homogeneity)
Let c>0 be a real.

$$
\begin{equation*}
\lambda_{j}(c \Omega)=c^{-2} \lambda_{j}(\Omega) \tag{1}
\end{equation*}
$$

Using this property there is equivalence between

$$
\begin{equation*}
\min \left\{\lambda_{i}(\Omega),|\Omega|=1\right\}, i=1,2, \ldots \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left\{\lambda_{i}(\Omega)|\Omega|^{2 / n}\right\}, \quad i=1,2, \ldots \tag{3}
\end{equation*}
$$

## Dirichlet boundary condition

Description of the problem Dimension 2

Some known results Numerical results
New results
Dimension 3
Some known results
Numerical results
New results

Neumann boundary condition
Elements/Ideas of the proofs

## Some known results

Theorem (Faber-Krahn)

$$
\lambda_{1}(B)=\min \left\{\lambda_{1}(\Omega), \Omega \subset \mathbb{R}^{2} \text { open, }|\Omega|=1\right\}
$$

where $B$ is the disc of area 1 .

Theorem (Krahn-Szegö)
$\min \left\{\lambda_{2}(\Omega), \Omega \subset \mathbb{R}^{2}\right.$ open, $\left.|\Omega|=1\right\}$ is realized by the union of two identical discs.

## Some known results

"We say that $\lambda_{k}(\Omega)$ is a local minimum of $\lambda_{k}$ among bounded open sets of constant measure if for all local deformation of $\Omega$ the value of $\lambda_{k}$ obtained is greater (or equal) than $\lambda_{k}(\Omega)$."

Theorem (Wolf-Keller)
$\lambda_{3}(B)$, where $B$ is the disc of area 1 , is a local minimum of $\lambda_{3}$.

## Numerical results

- old ones of Édouard Oudet ${ }^{1}$,
- improved ones of Pedro Antunes and Pedro Freitas ${ }^{2}$,
- more recent ones from Édouard Oudet, Grégory Vial and myself obtained with ShapeBox ${ }^{3}$

[^0]Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
L Dirichlet boundary condition

- Dimension 2

Numerical results

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda_{1}$ | 18.1694 |  | 78.1651 |  | 132.4926 |  | 186.9762 |
|  |  |  |  |  |  |  |  |
| $\lambda_{2}$ | 36.3371 |  | 88.5016 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| $\lambda_{3}$ | 46.1261 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## New results - Case of a disc

Theorem
$\lambda_{1}$ and $\lambda_{3}$ are the only eigenvalues of the laplacian with Dirichlet boundary conditions locally minimized by the unit disc in dimension 2 among sets of constant measure.

## New results - Case of disjoint unions of discs

## Theorem

- The 1st eigenvalue of the Laplacian-Dirichlet is minimized by the disc,
- the 2nd eigenvalue of the Laplacian-Dirichlet is minimized by the union of two identical discs,
- the 3rd eigenvalue of the Laplacian-Dirichlet can be minimized by the disc and by no other disjoint union of discs,
- the 4th eigenvalue of the Laplacian-Dirichlet can be minimized by an union of two discs (one of radius $\simeq 0.3$ and one of radius $\simeq 0.48$ ) and by no other disjoint union of discs, nor by the disc,
- the eigenvalues $\lambda_{k}$ with $k \geq 5$ of the Laplacian-Dirichlet can not be minimized by the disc nor by a disjoint union of discs.

Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
$\left\llcorner_{\text {Dirichlet boundary condition }}\right.$

- Dimension 2


## Numerical results

|  |  | $\bigcirc$ |
| :--- | :---: | :---: |
| $\lambda_{1}$ | 18.169 | 18.168 |
| $\lambda_{2}$ | 36.337 | 36.337 |
|  |  | $\bigcirc$ |
| $\lambda_{3}$ | 46.126 | 46.125 |
|  | $\bigcirc$ | $\bigcirc$ |
| $\lambda_{4}$ | 64.306 | 64.293 |

Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
$\left\llcorner_{\text {Dirichlet boundary condition }}\right.$
-Dimension 2

## Numerical results

|  | $\bigcirc$ | $\bigcirc \bigcirc$ |
| :---: | :---: | :---: |
| $\lambda_{5}$ | 78.165 | 82.462 |
|  |  | $\bigcirc \bigcirc$ |
| $\lambda_{6}$ | 88.502 | 92.249 |
|  |  | $\bigcirc$ |
| $\lambda_{7}$ | 106.211 | 110.418 |
|  | $\bigcirc$ | $\bigcirc$ |
| $\lambda_{8}$ | 118.969 | 127.883 |


|  |  | $\bigcirc$ |
| :--- | :---: | :---: |
| $\lambda_{9}$ | 132.493 | 138.374 |
|  |  | $\bigcirc$ |
| $\lambda_{10}$ | 142.746 | 154.624 |
|  |  | $\bigcirc$ |
| $\lambda_{11}$ | 159.821 | 172.793 |
|  |  | $\square$ |
| $\lambda_{12}$ | 173.035 | 180.902 |

Dirichlet boundary condition
Description of the problem Dimension 2
Some known results Numerical results
New results
Dimension 3
Some known results
Numerical results
New results

Neumann boundary condition

Elements/Ideas of the proofs

## Some known results

Theorem (Faber-Krahn)

$$
\begin{equation*}
\lambda_{1}(B)=\min \left\{\lambda_{1}(\Omega), \Omega \subset \mathbb{R}^{3} \text { open, }|\Omega|=1\right\} \tag{4}
\end{equation*}
$$

where $B$ is the ball of measure 1 .

Theorem (Krahn-Szegö)
$\min \left\{\lambda_{2}(\Omega), \Omega \subset \mathbb{R}^{3}\right.$ open, $\left.|\Omega|=1\right\}$ is realized by the union of two identical balls.

Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
L Dirichlet boundary condition

- Dimension 3

Numerical results

| $\lambda_{1}$ | 25.90 | $\lambda_{2}$ |  | $\lambda_{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda_{4}$ | 52.84 | $\lambda_{5}$ | 64.47 | $\lambda_{6}$ | $73.80$ |

Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
L Dirichlet boundary condition
-Dimension 3

## Numerical results



## New results - Simple eigenvalues on the ball

Theorem
Let $\lambda_{i}$ be a simple eigenvalue of the Laplacian-Dirichlet on the ball in dimension 3.
The ball of measure 1 is a critical point for $t \mapsto\left|\Omega_{t}\right|^{2 / 3} \lambda_{i}\left(\Omega_{t}\right)$.

## New results - Multiple eigenvalues on the ball

## Theorem

Let be $k \in \mathbb{N}^{*}$ and $I \in \mathbb{N}^{*}$ such that $\lambda_{k-1}\left(B_{R}\right)<\lambda_{k}\left(B_{R}\right)=$ $\lambda_{k+1}\left(B_{R}\right)=\cdots=\lambda_{k+2 I}\left(B_{R}\right)<\lambda_{k+2 I+1}\left(B_{R}\right)$ (that is to say $\lambda_{k}\left(B_{R}\right)$ is of multiplicity $\left.2 l+1\right)$.
Then the eigenvalues $\lambda_{k}, \lambda_{k+1}, \ldots \lambda_{k+2 /-1}$ of the
Laplacian-Dirichlet are not locally minimized among sets of constant measure by the ball in dimension 3.

Examples:

- $\lambda_{2}, \lambda_{3}, \lambda_{18}, \lambda_{19}, \lambda_{67}, \lambda_{68}, \lambda_{154}$ et $\lambda_{155}$ (multiplicity 3),
- $\lambda_{5}, \lambda_{6}, \lambda_{7}, \lambda_{8}, \lambda_{30}, \lambda_{31}, \lambda_{32}, \lambda_{33}, \lambda_{94}, \lambda_{95}, \lambda_{96}$ et $\lambda_{97}$ (multiplicity 5)


# New results - Multiple eigenvalues on the ball 

In particular,<br>Theorem<br>$\lambda_{3}$ is not minimized by the ball!



## New results - Multiple eigenvalues on the ball

Remark: The proof of this theorem is not specific to this problem. In fact, we have the same result for all dimensions and for all bounded open sets of class $\mathcal{C}^{2}$.

## Dirichlet boundary condition

Neumann boundary condition
Description of the problem Numerical results

## Elements/Ideas of the proofs

## Problem

We are searching bounded open sets $\Omega^{*} \in \mathbb{R}^{2}$ or 3 such that

$$
\mu_{k}\left(\Omega^{*}\right)=\max \left\{\mu_{k}(\Omega) ; \Omega \in \mathbb{R}^{2} \text { or } 3 \text { bounded open st }|\Omega|=1\right\}
$$

where $\mu_{k}$ is the $k$-th eigenvalue of the Laplacian with Neumann boundary conditions i.e.

$$
\begin{cases}-\Delta u=\mu_{k} u & \text { on } \Omega \\ \partial_{n} u=0 & \text { on } \partial \Omega\end{cases}
$$

Remark that $\mu_{1}=0$.

## Numerical results

In dimension 2, existence of numerical results from Pedro Antunes and Pedro Freitas ${ }^{4}$

[^1]Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
$L_{\text {Neumann boundary condition }}$

- Numerical results

Numerical results - Neumann 2D

| $\mu_{2}$ | $10.6677$ | $\mu_{6}$ |  | $\mu_{10}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu_{3}$ | $21.2887$ | $\mu_{7}$ | $67.2877$ | $\mu_{11}$ |  |
| $\mu_{4}$ | $33.0845$ | $\mu_{8}$ | $77.9826$ |  |  |
| $\mu_{5}$ |  | $\mu_{9}$ | $\begin{gathered} \text { •? } \\ 89.4973 \end{gathered}$ |  |  |

Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
$L_{\text {Neumann boundary condition }}$

- Numerical results

Numerical results - Neumann 3D

| $\mu_{2}$ | 11.23 | $\mu_{3}$ | 17.87 | $\mu_{4}$ | $23.67$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu_{5}$ |  | $\mu_{6}$ |  | $\mu_{7}$ |  |

Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
$L_{\text {Neumann boundary condition }}$

- Numerical results


## Numerical results - Neumann 3D

|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mu_{8}$ | 43.04 | $\mu_{9}$ | 47.17 |  |  |
|  |  |  |  |  |  |

## Dirichlet boundary condition

Neumann boundary condition

Elements/Ideas of the proofs
Dirichlet 2D: disc
Dirichlet 2D: unions of discs
Dirichlet 3D: derivative with respect to the domain

Polar coordinates in $\mathbb{R}^{2}$ :

$$
\left\{\begin{array}{l}
x=r \cos (\theta) \\
y=r \sin (\theta)
\end{array}\right.
$$

avec $r \in[0, R[, R>0, \theta \in[0,2 \pi[$.



## Theorem

Let $B_{R}$ be the disc of radius $R$. Then it's eigenvalues and eigenfunctions for le Laplacian-Dirichlet are

$$
\begin{align*}
& \lambda_{0, p}=\frac{j_{0, p}^{2}}{R^{2}}, \quad p \geq 1, \\
& u_{0, p}(r, \theta)=\sqrt{\frac{1}{\pi}} \frac{1}{R\left|J_{0}^{J}\left(j_{0, p}\right)\right|} J_{0}\left(\frac{j_{0, p} r}{R}\right), \quad p \geq 1, \\
& \lambda_{m, p}=\frac{j_{j, p}^{2}}{R^{2}}, \quad m, p \geq 1, \quad \text { double eigenvalues } \\
& u_{m, p}(r, \theta)=\left\{\begin{array}{l}
\sqrt{\frac{2}{\pi}} \frac{1}{R\left|J_{m}^{J}\left(j_{m, p}\right)\right|} J_{m}\left(\frac{j_{m, p} r}{R}\right) \cos (m \theta) \\
\sqrt{\frac{2}{\pi}} \frac{1}{R\left|J_{m}^{\prime}\left(j_{m, p}\right)\right|} J_{n}\left(\frac{j_{m, p} r}{R}\right) \sin (m \theta)
\end{array} \quad, \quad m, p \geq 1,\right. \tag{5}
\end{align*}
$$

where $j_{m, p}$ is the $p$-th zero of the Bessel function $J_{m}$.


- Area $\pi$
- Small variations of the boundary of the unit disc
- $(r, \theta)$ polar coordinates of the boundary points of the new domain $\Omega_{\varepsilon}$ with $r=R(\theta, \varepsilon)$ for small $\varepsilon$ with

$$
\begin{equation*}
R(\theta, \varepsilon)=1+\varepsilon \sum_{n=-\infty}^{\infty} a_{n} e^{i n \theta}+\varepsilon^{2} \sum_{n=-\infty}^{\infty} b_{n} e^{i n \theta}+O\left(\varepsilon^{3}\right) \tag{6}
\end{equation*}
$$

with $a_{-n}=\overline{a_{n}}$ and $b_{-n}=\overline{b_{n}}$ for all $n$.

- Development to the second order necessary
- Using $\left(\sum_{n=-\infty}^{\infty} a_{n} e^{i n \theta}\right)^{2}=\sum_{n, l=-\infty}^{\infty} a_{l} a_{n} e^{i(I+n) \theta}, a_{n} a_{-n}=\left|a_{n}\right|^{2}$ and $\int_{0}^{2 \pi} e^{i n \theta} d \theta=0$ for $n \neq 0$ we show that the area of $\Omega_{\varepsilon}$ is

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} \int_{0}^{R(\theta, \varepsilon)} r d r d \theta=\int_{0}^{2 \pi} \frac{R(\theta, \varepsilon)^{2}}{2} d \theta \\
& =\pi\left[1+2 \varepsilon a_{0}+\varepsilon^{2}\left(2 b_{0}+\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}\right)+O\left(\varepsilon^{3}\right)\right]
\end{aligned}
$$

- $A\left(\Omega_{\varepsilon}\right)=\pi \Rightarrow$

$$
\begin{equation*}
a_{0}=0 \quad \text { and } \quad b_{0}=-\frac{1}{2} \sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2} \tag{7}
\end{equation*}
$$

- $\lambda=\omega^{2}$ eigenvalues of the Laplacien-Dirichlet on $\Omega_{\varepsilon}$
- $\omega=\omega_{0}+\varepsilon \omega_{1}+\varepsilon^{2} \omega_{2}+O\left(\varepsilon^{3}\right)$
- Associated eigenfunctions:

$$
\begin{equation*}
u(r, \theta, \varepsilon)=\sum_{n=-\infty}^{\infty} A_{n}(\varepsilon) J_{n}(\omega r) e^{i n \theta}, \quad \text { with } A_{-n}=\overline{A_{n}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n}(\varepsilon)=\delta_{|n| m} \alpha_{n}+\varepsilon \beta_{n}+\varepsilon^{2} \gamma_{n}+O\left(\varepsilon^{3}\right) \tag{9}
\end{equation*}
$$

- $A_{-n}=\overline{A_{n}} \Rightarrow \alpha_{-n}=\overline{\alpha_{n}}, \beta_{-n}=\overline{\beta_{n}}, \gamma_{-n}=\overline{\gamma_{n}}$
- Dirichlet boundary condition $\Rightarrow$

$$
\begin{equation*}
u(R(\theta, \varepsilon), \theta, \varepsilon)=\sum_{n=-\infty}^{\infty} A_{n}(\varepsilon) J_{n}(\omega R(\theta, \varepsilon)) e^{i n \theta}=0 \tag{10}
\end{equation*}
$$

$$
\sum_{n} \delta_{|n| m} \alpha_{n} J_{n}\left(\omega_{0}\right) e^{i n \theta}
$$

$$
\begin{aligned}
& +\varepsilon \sum_{n}\left(\beta_{n} J_{n}\left(\omega_{0}\right)+\delta_{|n| m} \alpha_{n} J_{n}^{\prime}\left(\omega_{0}\right)\left[\omega_{1}+\omega_{0} \sum_{l} a_{l} e^{i l \theta}\right]\right) e^{i n \theta} \\
& +\varepsilon^{2} \sum_{n}\left(\gamma_{n} J_{n}\left(\omega_{0}\right)+\beta_{n} J_{n}^{\prime}\left(\omega_{0}\right)\left[\omega_{1}+\omega_{0} \sum_{l} a_{l} e^{i l \theta}\right]\right. \\
& +\delta_{|n| m} \alpha_{n}\left[J_{n}^{\prime}\left(\omega_{0}\right)\left(\omega_{2}+\omega_{1} \sum_{l} a_{l} e^{i l \theta}+\omega_{0} \sum_{l} b_{l} e^{i l \theta}\right)\right. \\
& \left.\left.+\frac{1}{2} J_{n}^{\prime \prime}\left(\omega_{0}\right)\left(\omega_{1}^{2}+2 \omega_{0} \omega_{1} \sum_{l} a_{l} e^{i l \theta}+\omega_{0}^{2}\left(\sum_{l} a_{l} e^{i l \theta}\right)^{2}\right)\right]\right) e^{i n \theta}
\end{aligned}
$$

$$
\begin{equation*}
+O\left(\varepsilon^{3}\right)=0 \tag{11}
\end{equation*}
$$

- Separate cases $m=0, m$ odd, $m$ even
- $J_{-m}=(-1)^{m} J_{m}$

$$
\sum_{n} \delta_{|n| m} \alpha_{n} J_{n}\left(\omega_{0}\right) e^{i n \theta}
$$

Case $m=0 \Rightarrow \alpha_{0} J_{0}\left(\omega_{0}\right)=0$.
But $\alpha_{0} \neq 0$ else $u(r, \theta, 0)=0$.
So $J_{0}\left(\omega_{0}\right)=0$ that is to say $\omega_{0}=j_{0, p}$.
Case $m \neq 0$ even

$$
\begin{align*}
\alpha_{m} J_{m}\left(\omega_{0}\right) e^{i m \theta} & +\alpha_{-m} J_{-m}\left(\omega_{0}\right) e^{-i m \theta} \\
& =2 \operatorname{Re}\left(\alpha_{m} e^{i m \theta}\right) J_{m}\left(\omega_{0}\right)=0
\end{align*}
$$

so $J_{m}\left(\omega_{0}\right)=0$ that is to say $\omega_{0}=j_{m, p}$
Case modd

$$
\begin{align*}
\alpha_{m} J_{m}\left(\omega_{0}\right) e^{i m \theta} & +\alpha_{-m} J_{-m}\left(\omega_{0}\right) e^{-i m \theta} \\
& =2 \operatorname{Im}\left(\alpha_{m} e^{i m \theta}\right) J_{m}\left(\omega_{0}\right)=0
\end{align*}
$$

so $J_{m}\left(\omega_{0}\right)=0$ that is to say $\omega_{0}=j_{m, p}$

## Simple eigenvalues

Theorem
The eigenvalues of the Laplacian-Dirichlet in dimension 2 which are simple on the disc except the first one ( $\lambda_{1}$ ) are not locally minimized by the disc among sets of constant measure.

## Simple eigenvalues

$$
\lambda=j_{0, p}^{2}+8 \varepsilon^{2} j_{0, p}^{2} \sum_{l>0}\left(1+\frac{j_{0, p} J_{l}^{\prime}\left(j_{0, p}\right)}{J_{l}\left(j_{0, p}\right)}\right)\left|a_{l}\right|^{2}+O\left(\varepsilon^{3}\right)
$$

- $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}_{+}^{*}, x J_{n}^{\prime}=n J_{n}-x J_{n+1}=-n J_{n}+x J_{n-1}$ et $\frac{2 n}{x} J_{n}=J_{n-1}+J_{n+1}$
- $f(x)=1+x \frac{5 x^{2}-24}{x\left(8-x^{2}\right)}=4 \frac{x^{2}-4}{8-x^{2}}$
- $f(x)>0 \forall x \in] 2,2 \sqrt{2}[$ and $f(x)<0$ $\forall x \in] 0,2[\cup] 2 \sqrt{2},+\infty[$
- $\left.j_{0,1} \in\right] 2,2 \sqrt{2}\left[\right.$ so $f\left(j_{0,1}\right)>0$ whereas $j_{0, k} \geq j_{0,2}>2 \sqrt{2}$ so $f\left(j_{0, k}\right)<0 \forall k \geq 2$
$-1+\frac{j_{0, p} J_{3}^{\prime}\left(j_{0}, p\right)}{J_{3}\left(j_{0}, p\right)}=f\left(j_{0, p}\right)$


## Simple eigenvalues

In conclusion, for $\left(a_{n}\right)$ given by $a_{i}=0, \forall|i| \neq 3, a_{3} \neq 0$ and $a_{-3}=\overline{a_{3}}$, and for $\left(b_{n}\right)$ such that $b_{0}=-\left|a_{3}\right|^{2}$ and $\sum_{n=-\infty}^{\infty} b_{n} e^{i n \theta}$ convergent

$$
\lambda=j_{0, p}^{2}+8 \varepsilon^{2} j_{0, p}^{2} \underbrace{\left(1+\frac{j_{0, p} J_{3}^{\prime}\left(j_{0, p}\right)}{J_{3}\left(j_{0, p}\right)}\right)}_{<0}\left|a_{3}\right|^{2}+O\left(\varepsilon^{3}\right) \quad \forall p \geq 2 .
$$

Remark that it corresponds to the case

$$
\begin{aligned}
R(\theta, \varepsilon)=1+2 \varepsilon\left[\operatorname{Re}\left(a_{3}\right)\right. & \left.\cos (3 \theta)-\operatorname{Im}\left(a_{3}\right) \sin (3 \theta)\right]-\varepsilon^{2}\left|a_{3}\right|^{2} \\
& +\varepsilon^{2} \sum_{n \geq 1}\left(b_{n} e^{i n \theta}+\overline{b_{n}} e^{-i n \theta}\right)+O\left(\varepsilon^{3}\right) .
\end{aligned}
$$

## Double eigenvalues

Theorem
The eigenvalues of the Laplacian-Dirichlet in dimension 2 which are double on the disc except $\lambda_{3}$ are not locally minimized by the disc among sets of constant measure.

## Double eigenvalues

- $m \neq 0$
- First order:

$$
\lambda_{k}=j_{m, p}^{2}\left(1-2 \varepsilon\left|a_{2 m}\right|\right) \quad \leq \quad \lambda_{k+1}=j_{m, p}^{2}\left(1+2 \varepsilon\left|a_{2 m}\right|\right) .
$$

- for all families $\left(a_{n}\right)$ with $a_{2 m} \neq 0 \lambda_{k}<j_{m, p}^{2}$ that is to say $\lambda_{k}$ is not locally minimized by the disc,
- for all families $\left(a_{n}\right)$ with $a_{2 m} \neq 0 \lambda_{k}>j_{m, p}^{2}$ but we have to study the case $a_{2 m}=0$, and so the second order, in order to conclude.


## Double eigenvalues

- Second order, case $a_{2 m}=0$

$$
\begin{aligned}
& \lambda_{k}=j_{m, p}^{2}\left[1+2 \varepsilon^{2}\left(2 \sum_{|| | \neq m}\left(1+\frac{j_{m, p} J_{l}^{\prime}\left(j_{m, p}\right)}{J_{l}\left(j_{m, p}\right)}\right)\left|a_{m-l}\right|^{2}\right.\right. \\
&\left.\left.-\left|b_{2 m}-\sum_{|| | \neq m}\left(\frac{1}{2}+j_{m, p} \frac{J_{l}^{\prime}\left(j_{m, p}\right)}{J_{l}\left(j_{m, p}\right)}\right) a_{m-l} a_{l+m}\right|\right)\right] \\
& \leq \lambda_{k+1}= j_{m, p}^{2}\left[1+2 \varepsilon^{2}\left(2 \sum_{|| | \neq m}\left(1+\frac{j_{m, p} J_{l}^{\prime}\left(j_{m, p}\right)}{J_{l}\left(j_{m, p}\right)}\right)\left|a_{m-l}\right|^{2}\right.\right. \\
&\left.\left.+\left|b_{2 m}-\sum_{|| | \neq m}\left(\frac{1}{2}+j_{m, p} \frac{J_{l}^{\prime}\left(j_{m, p}\right)}{J_{l}\left(j_{m, p}\right)}\right) a_{m-l} a_{l+m}\right|\right)\right]
\end{aligned}
$$

Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
$\left\llcorner_{\text {Elements/Ideas of the proofs }}\right.$

- Dirichlet 2D: disc


## Double eigenvalues

- For $m>1$

$$
\begin{aligned}
& \left(1+\frac{j_{m, p} J_{m+2}^{\prime}\left(j_{m, p}\right)}{J_{m+2}\left(j_{m, p}\right)}\right)+\left(1+\frac{j_{m, p} J_{m-2}^{\prime}\left(j_{m, p}\right)}{J_{m-2}\left(j_{m, p}\right)}\right) \\
& \quad=-\left(\frac{j_{m, p}^{2}}{(m+1)(m-1)}+2\right)<0, \quad \forall p \in \mathbb{N}^{*}
\end{aligned}
$$

## Double eigenvalues

In conclusion, $\forall m>1, \forall p \in \mathbb{N}^{*}$, for ( $a_{n}$ ), given by $a_{i}=0$, $\forall|i| \neq 2, a_{2} \neq 0$ and $a_{-2}=\overline{a_{2}}$, and for $\left(b_{n}\right)$, such that $b_{0}=-\left|a_{2}\right|^{2}, b_{2 m}=b_{-2 m}=0$ and $\sum_{n=-\infty}^{\infty} b_{n} e^{i n \theta}$ convergent

$$
\begin{aligned}
\lambda=j_{m, p}^{2}+4 \varepsilon^{2} j_{m, p}^{2} \underbrace{\left(1+\frac{j_{m, p} J_{m+2}^{\prime}\left(j_{m, p}\right)}{J_{m+2}\left(j_{m, p}\right)}+1+\frac{j_{m, p} J_{m-2}^{\prime}\left(j_{m, p}\right)}{J_{m-2}\left(j_{m, p}\right)}\right)}_{<0}\left|a_{2}\right|^{2} \\
+O\left(\varepsilon^{3}\right) \quad \forall p \geq 1 .
\end{aligned}
$$

Remark that it corresponds to the case

$$
\begin{aligned}
R(\theta, \varepsilon)=1+2 \varepsilon\left[\operatorname{Re}\left(a_{2}\right)\right. & \left.\cos (2 \theta)-\operatorname{Im}\left(a_{2}\right) \sin (2 \theta)\right]-\varepsilon^{2}\left|a_{2}\right|^{2} \\
& +\varepsilon^{2} \sum_{\substack{n \geq 1 \\
n \neq 2 m}}\left(b_{n} e^{i n \theta}+\overline{b_{n}} e^{-i n \theta}\right)+O\left(\varepsilon^{3}\right) .
\end{aligned}
$$

## Double eigenvalues

- For $m=1$
- $f(x)=\frac{8 x^{2}-96}{24-x^{2}}$
- $f(x)>0$ for $x \in] 2 \sqrt{3}, 2 \sqrt{6}[$ and $f(x)<0$ for $x \in[0,2 \sqrt{3}[\cup] 2 \sqrt{6},+\infty[$
- $\left.j_{1,1} \in\right] 2 \sqrt{3}, 2 \sqrt{6}\left[\right.$ so $f\left(j_{1,1}\right)>0$ whereas $j_{1, p} \geq j_{1,2}>2 \sqrt{6}$ so $f\left(j_{1, p}\right)<0 \forall p \geq 2$
$-\left(1+\frac{j_{1, p} J_{2}^{\prime}\left(j_{1, p}\right)}{J_{2}\left(j_{1}, p\right)}\right)+\left(1+j_{1, p} \frac{J_{4}^{\prime}\left(j_{1, p}\right)}{J_{4}\left(j_{1, p}\right)}\right)=f\left(j_{1, p}\right)$


## Double eigenvalues

In conclusion, $\forall p \in \mathbb{N} \backslash\{0,1\}$, for $\left(a_{n}\right)$, given by $a_{i}=0, \forall|i| \neq 3$, $a_{3} \neq 0$ and $a_{-3}=\overline{a_{3}}$, and for $\left(b_{n}\right)$ such that $b_{0}=-\left|a_{3}\right|^{2}$,
$b_{2 m}=b_{-2 m}=0$ and $\sum_{n=-\infty}^{\infty} b_{n} e^{i n \theta}$ convergent

$$
\begin{array}{r}
\lambda=j_{1, p}^{2}+4 \varepsilon^{2} j_{1, p}^{2} \underbrace{\left(\left(1+\frac{j_{1, p} J_{2}^{\prime}\left(j_{1, p}\right)}{J_{2}\left(j_{1, p}\right)}\right)+\left(1+\frac{j_{1, p} J_{4}^{\prime}\left(j_{1, p}\right)}{J_{4}\left(j_{1, p}\right)}\right)\right)}_{<0}\left|a_{3}\right|^{2} \\
+O\left(\varepsilon^{3}\right) \quad \forall p \geq 2 .
\end{array}
$$

Remark that it corresponds to the case

$$
\begin{aligned}
& R(\theta, \varepsilon)=1+2 \varepsilon\left[\operatorname{Re}\left(a_{3}\right) \cos (3 \theta)-\operatorname{Im}\left(a_{3}\right) \sin (3 \theta)\right]-\varepsilon^{2}\left|a_{3}\right|^{2} \\
&+\varepsilon^{2} \sum_{\substack{n \geq 1 \\
n \neq 2 m}}\left(b_{n} e^{i n \theta}+\overline{b_{n}} e^{-i n \theta}\right)+O\left(\varepsilon^{3}\right) .
\end{aligned}
$$

## Dirichlet boundary condition

Neumann boundary condition

Elements/Ideas of the proofs
Dirichlet 2D: disc
Dirichlet 2D: unions of discs
Dirichlet 3D: derivative with respect to the domain

$$
\lambda_{n}^{*}=\lambda_{n}\left(\Omega_{n}^{*}\right)=\min \left\{\lambda_{n}(\Omega) ; \Omega \text { open st }|\Omega|=1\right\}
$$

Theorem (Wolf-Keller)
Suppose that $\Omega_{n}^{*}$ is the union of at least two disjoint open sets, each of positive measure. Then

$$
\begin{equation*}
\left(\lambda_{n}^{*}\right)^{N / 2}=\left(\lambda_{i}^{*}\right)^{N / 2}+\left(\lambda_{n-i}^{*}\right)^{N / 2}=\min _{1 \leq j \leq \frac{n-1}{2}}\left[\left(\lambda_{j}^{*}\right)^{N / 2}+\left(\lambda_{n-j}^{*}\right)^{N / 2}\right] \tag{12}
\end{equation*}
$$

where $i$ is a value of $1 \leq j \leq \frac{n-1}{2}$ minimizing the sum $\left(\lambda_{j}^{*}\right)^{N / 2}+\left(\lambda_{n-j}^{*}\right)^{N / 2}$. Moreover,

$$
\begin{equation*}
\Omega_{n}^{*}=\left[\left(\frac{\lambda_{i}^{*}}{\lambda_{n}^{*}}\right)^{1 / 2} \Omega_{i}^{*}\right] \bigcup\left[\left(\frac{\lambda_{n-i}^{*}}{\lambda_{n}^{*}}\right)^{1 / 2} \Omega_{n-i}^{*}\right] \quad \text { (disjoint union). } \tag{13}
\end{equation*}
$$

## Using

- Wolf-Keller theorem which allows to determine iteratively which disjoint union of discs minimize the eigenvalues,
- numerical results of Édouard Oudet or the improved ones of Pedro Antunes and Pedro Freitas 56
we obtain the result

[^2]For instance,

- suppose $\lambda_{k}$ minimized by union of 2 balls
- $\exists i<k$ st $\lambda_{i}$ minimized by 1 ball and $\lambda_{k-i}$ minimized by 1 ball
- $\Rightarrow i \in\{1,3\}$ and $k-i \in\{1,3\}$
- $\Rightarrow k \in\{2,4,6\}$
- case $k=6$ not possible because



## Dirichlet boundary condition

Neumann boundary condition

Elements/Ideas of the proofs
Dirichlet 2D: disc
Dirichlet 2D: unions of discs
Dirichlet 3D: derivative with respect to the domain

- The technique used in dimension 2 is not usable in dimension 3
- The following technique can be used in dimension 2, but not enough in order to show the same result (need derivatives of second order)
- Multiple eigenvalues are not differentiable (all dimensions)
- Use of directional derivatives for multiple eigenvalues
$\Omega$ bounded open set.
Let's denote by $\Omega_{t}=(I d+t V)(\Omega)$ and $\lambda_{k}(t)=\lambda_{k}\left(\Omega_{t}\right)$ the $k$-th eigenvalue of the Laplacian-Dirichlet on $\Omega_{t}$.


## Theorem (Derivation of the volume)

Let $\Omega$ be a bounded open set and $\operatorname{Vol}(t):=\left|\Omega_{t}\right|$ the volume of $\Omega_{t}$. Then the function $t \mapsto \operatorname{Vol}(t)$ is differentiable at $t=0$ with

$$
\begin{equation*}
V o l^{\prime}(0)=\int_{\Omega} d i v(V) d x \tag{14}
\end{equation*}
$$

Moreover, if $\Omega$ is Lipschitz,

$$
\begin{equation*}
V o l^{\prime}(0)=\int_{\Omega} V \cdot n d \sigma . \tag{15}
\end{equation*}
$$

## Theorem (Derivative of a multiple Dirichlet eigenvalue)

Let $\Omega$ be a bounded open set of class $C^{2}$. Assume that $\lambda_{k}(\Omega)$ is a multiple eigenvalue of order $p \geq 2$. Let us denote by
$u_{k_{1}}, u_{k_{2}}, \ldots, u_{k_{p}}$ an orthonormal (for the $L^{2}$-scalar product) family of eigenfunctions associated to $\lambda_{k}$. Then $t \mapsto \lambda_{k}\left(\Omega_{t}\right)$ has a (directional) derivative at $t=0$ which is one of the eigenvalues of the $p \times p$ matrix $\mathcal{M}$ defined by

$$
\begin{equation*}
\mathcal{M}=\left(m_{i, j}\right) \quad \text { avec } m_{i, j}=-\int_{\partial \Omega}\left(\frac{\partial u_{k_{i}}}{\partial n} \frac{\partial u_{k_{j}}}{\partial n}\right) V . n d \sigma \tag{16}
\end{equation*}
$$

where $\frac{\partial u_{k_{i}}}{\partial n}$ denotes the normal derivative of the $k_{i}$-th eigenfunction $u_{k_{i}}$ and $V . n$ is the normal displacement of the boundary induced by the deformation field $V$.

- deformation in direction of the vector field $V$
- if exists a vector field $V$ for which the first derivative is $<0$ then the eigenvalue is decreasing so that the ball is not a minimizer


## Eigenvalues of multiplicity $2 I+1, I>0$

## Theorem

Let be $k \in \mathbb{N}^{*}$ and $I \in \mathbb{N}^{*}$ such that $\lambda_{k-1}\left(B_{R}\right)<\lambda_{k}\left(B_{R}\right)=$ $\lambda_{k+1}\left(B_{R}\right)=\cdots=\lambda_{k+2 \prime}\left(B_{R}\right)<\lambda_{k+2 I+1}\left(B_{R}\right)$ (that is to say
$\lambda_{k}\left(B_{R}\right)$ is of multiplicity $\left.2 l+1\right)$.
Then the eigenvalues $\lambda_{k}, \lambda_{k+1}, \ldots \lambda_{k+2 l-1}$ of the
Laplacian-Dirichlet are not minimized among sets of constant measure by the ball in dimension 3.

Examples:

- $\lambda_{2}, \lambda_{3}, \lambda_{18}, \lambda_{19}, \lambda_{67}, \lambda_{68}, \lambda_{154}$ et $\lambda_{155}$ (multiplicity 3),
- $\lambda_{5}, \lambda_{6}, \lambda_{7}, \lambda_{8}, \lambda_{30}, \lambda_{31}, \lambda_{32}, \lambda_{33}, \lambda_{94}, \lambda_{95}, \lambda_{96}$ et $\lambda_{97}$ (multiplicity 5)


## Eigenvalues of multiplicity $2 I+1, I>0$

- B ball of $\mathbb{R}^{3}$
- $u_{1}, \cdots u_{2 /+1}$ basis of eigenfunctions of the Laplacien-Dirichlet on the ball associated to $\lambda_{k}(B)$
- $F_{r}(t)=\left|\Omega_{t}^{r}\right|^{2 / 3} \lambda_{k}\left(\Omega_{t}^{r}\right)$ with $\Omega_{t}^{r}=\left(\operatorname{Id}+t V^{r}\right)(B)\left(\right.$ so $\left.\Omega_{0}^{r}=B\right)$

$$
F_{r}^{\prime}(0)=|B|^{2 / 3} \operatorname{eig}\left(\mathcal{M}^{r}\right)+\frac{2}{3} \lambda_{k}(B)|B|^{-1 / 3} \int_{\partial B} V^{r} \cdot n d \sigma
$$

where

$$
\mathcal{M}_{i, j}^{r}=\int_{\partial B}\left(\frac{\partial u_{i}}{\partial n} \frac{\partial u_{j}}{\partial n}\right) V^{r} \cdot n d \sigma
$$

## Eigenvalues of multiplicity $2 I+1, I>0$

- can't compute for any $V$
- for $V=a \delta_{\left(\theta_{0}, \phi_{0}\right)}$

essentially $\mathcal{M} \simeq\left(\frac{\partial u_{k_{i}}}{\partial n} \frac{\partial u_{k_{j}}}{\partial n}\right)_{i, j}$ so 0 is an eigenvalue of $\mathcal{M}$ of multiplicity $2 I$ and $F_{r}^{\prime}(0)$ has $2 /$-times the same value that can be negative

Optimization of the eigenvalues of the Euclidean Laplacian in two and three dimensions
LElements/Ideas of the proofs
LDirichlet 3D: derivative with respect to the domain

## Eigenvalues of multiplicity $2 I+1, I>0$



## Simple eigenvalues

Theorem
Let $\lambda_{i}$ be a simple eigenvalue of the Laplacian-Dirichlet on the ball in dimension 3.
The ball of measure 1 is a critical point for $t \mapsto\left|\Omega_{t}\right|^{2 / 3} \lambda_{i}\left(\Omega_{t}\right)$.

## Simple eigenvalues

$$
\begin{gathered}
\lambda_{0, k}\left(B_{R}\right)=\frac{j_{\frac{1}{2}}^{2}, k}{R^{2}} \\
v_{k}(r, \theta, \phi)=\sqrt{\frac{2 R}{k}} \frac{1}{\pi r} \sin \left(\frac{k \pi}{R} r\right) \\
\lambda_{0, k}^{\prime}(0)=-\frac{k^{2} \pi}{2 R^{3}} \int_{0}^{\pi} \int_{-\pi}^{\pi} \sin (\theta) V_{r}(R, \theta, \phi) d \phi d \theta \\
\operatorname{Vol}^{\prime}(0)=R^{2} \int_{0}^{\pi} \int_{-\pi}^{\pi} V_{r}(R, \theta, \phi) \sin (\theta) d \theta d \phi
\end{gathered}
$$

Let's define

$$
F(t)=\left|\Omega_{t}\right|^{2 / 3} \lambda_{0, k}\left(\Omega_{t}\right)
$$

Then $F^{\prime}(0)=0$.

## Questions?

## Thanks


[^0]:    ${ }^{1}$ Numerical minimization of eigenmodes of a membrane with respect to the domain, É. Oudet, ESAIM: COCV, Vol. 10, N ${ }^{\circ} 3$, 2004, p. 315-330
    ${ }^{2}$ Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians, P. R.S. Antunes and P. Freitas, Journal of Optimization Theory and Applications, Vol. 154, N ${ }^{\circ} 1$, 2012, p. 235-257
    ${ }^{3}$ ShapeBox is available on Édouard Oudet's personal webpage http://www-ljk.imag.fr/membres/Edouard.Oudet/ShapeBox/solver.php

[^1]:    ${ }^{4}$ Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians, P. R.S. Antunes and P. Freitas, Journal of Optimization Theory and Applications, Vol. 154, No 1,2012 , p. 235-257

[^2]:    ${ }^{5}$ Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians, P. R.S. Antunes and P. Freitas, Journal of Optimization Theory and Applications, Vol. 154, N ${ }^{\circ} 1$, 2012, p. 235-257
    ${ }^{6}$ Numerical minimization of eigenmodes of a membrane with respect to the domain, É. Oudet, ESAIM: COCV, Vol. 10, N³, 2004;p. 315-330

